
Agile Practices

302

@rchatley #doc302 

In this section we look in more detail at some of the
individual practices that are commonly used in agile
software development. For each of these you can find
many more resources online giving more detail about their
implementation, and case studies of teams using them. !
To effectively deliver your Group Projects, you will likely
want to adopt some of these practices - you will want to
read and research further to choose something that is
appropriate for your project.

#doc302 

Requirements Design Coding Testing Deployment Released

Firstly, let’s look more concretely at some of the
techniques and practices we might use in the early part of
the iteration to specify features and to plan our work.

#doc302 

Agile teams do not typically write long specification
documents detailing everything that will be present in the
system they are building. Instead they often write each
requirement in the form a of User Story. A very brief
description, just enough to remind us of discussions we
have had with customers about the feature. To avoid these
stories evolving into long specification documents, they
are often written on index cards. A story card is a promise
of a conversation. It does not have all of the detail we’ll
eventually need - but it has enough to serve as a
discussion point.

#doc302 

In XP and Scrum, at the beginning of an iteration, the
team holds a planning meeting with the customer, to work
out what features they can build (completely) within the
next iteration. The customer can prioritise which features
they want next. The team discusses the requirements with
customer, and can estimate how much work each feature
will be. !
In Kanban, there are still customer discussions, but
planning tends to happen “just in time”, rather than on a
regular schedule. This can be more efficient, but it can
also be more difficult to organise.

#doc302 

Once the plan for the iteration is set, the team typically
uses a noticeboard or a wall to put the plan up in plain
sight. They may add other charts or diagrams related to
the project. This makes the information visible to
everyone and is often called an Information Radiator. !
Some teams use digital versions of these dashboards,
either instead or as well as the low-tech versions.

#doc302 

Requirements Design Coding Testing Deployment Released

Now let’s look at some more technical practices,
concerned with the development of features during the
iteration.

#doc302 

We see that one of the artefacts that the team has in this
picture is a broad-brush architecture diagram. As it is up
on a whiteboard people can easily talk about it, and update
it when the design changes. This is better than keeping it
in a computerised document, which is less likely to be
kept up to date. !
We also see people pair-programming. This is a key XP
practice, and makes programming into a conversation.
Two people work on each feature, so that more than one
person knows how each part of the system works. It also
helps to keep good habits, and to improve the design of
the system.

#doc302 

XP (and Scrum) teams typically hold short daily meetings
to plan what they are going to do that day, which stories to
tackle, who will pair together, and to share anything they
have learned the previous day. These meetings are
typically held standing up to help keep them focussed and
short, hence they are known as standups.

#doc302 

public class CalculatorTest {!
!

 @Test !
 public void canAddTwoNumbers() {!
 Calculator calc = new Calculator();!
 int result = calc.add(1, 2);!
 assertEquals(3, result);!
 }!
!

}

To allow us to release new versions regularly, without
introducing bugs and regressions, automated testing is a
key practice in agile development. Unit tests help us to
ensure the quality of classes and methods inside our
codebase. A good test suite give the developer confidence
to change parts of the system, even if they are unfamiliar
with the code, as they know that if they break something
then a test will (hopefully) fail and let them know straight
away.

#doc302 

Requirements Design Coding Testing Deployment Released

Let’s look at the remaining phases, what happens at the
end of the iteration. !
This is sometimes known as the “last mile”. Often actually
getting software released can take a long time, even
though it is “code complete”. It is also often a stressful
time. We want to automate as much of this as possible,
and make it a quick, easy, reliable, repeatable process.

#doc302 

Push-Button Release

We want to release our software to production (or as close
to production as possible) every iteration. If the user
cannot use a new feature, it is not “done”. Releasing is
often a stressful time, when things go wrong, especially
when deadlines are involved. The best way to relieve this
pressure is to automate as much of the deployment
procedure as possible, and to practise it often.

#doc302 

Showcase

At the end of the iteration, we demo the features we’ve
built to the customer in a showcase. This is a great time to
get feedback to feed into the next planning meeting. When
people see features working, they often have new ideas
about how they could work better. That’s ok, this is the
best way to learn how to improve our product. We can
feed these ideas in to the next iteration and make the
product better.

#doc302 

Retrospective

As well as reflecting on the features that we have built, the
end of the iteration is a good time to reflect on how the
team is working. Is the process working? Are there things
we could do better? A quick retrospective meeting is a
good way to review these issues. Work out something to
try and improve during the next iteration. Retrospectives
are key to continuous improvement. !
There is lots of material online giving ideas for different
styles of retrospective., e.g. http://retrospectivewiki.org/

#doc302 

Iterative Approach

Start with the simplest possible version of the system

Once you’ve learned that it is worth it, improve it

Iterative is not the same as incremental

By picking an agile method, applying the practices, and
reflecting on your progress through retrospectives, you
can iteratively improve the way that your team works to
make it more efficient and more effective. !
You can also continuously improve your product by
releasing new versions and eliciting feedback.

