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Département d’Informatique
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In this work we review and analyse some recent advances on the application of multi-

agent modal logics in the representation of individual and group knowledge, as well as

temporal and spatial reasoning. The main theoretical contributions can be summa-25

rized as follows. In Chapter 3 we introduce the language of (multi-modal) second-order

propositional modal logic (SOPML), an extension of standand modal logic with propo-

sitional quantification. We show how SOPML can be usefully adopted as a specification

language to express local properties of Kripke frames in modal logic, including higher-

order knowledge of agents in epistemic contexts, that is, knowledge agents have about30

other agents’ knowledge. Further, we prove novel axiomatisation results with respect to

several classes of Kripke frames. In particular, we highlight the key role played by com-

mon knowledge in obtaining a complete axiomatisation for second-order propositional

epistemic logic (SOPEL), the epistemic version of SOPML. In Chapter 4 we introduce

original notions of (bi)simulation and prove that they preserve the interpretation of for-35

mulas in SOPML. We also define (bi)simulation games and show them as powerful as

(bi)simulation relations. Then, we apply this formal machinery to assess the expres-

sive power of SOPML in representing spatial and temporal properties. In Chapter 5

we move to a dynamic setting and introduce second-order public announcement logic

(SOPAL) by extending SOPEL with announcement operators. We make use of SOPAL40

to analyse the notions of knowability, successfulness of announcements, and preservation

under arbitrary announcements. Interestingly, SOPAL is proved to be as expressive as

SOPEL, but exponentially more succint. Finally, in Chapter 6, we return to a purely

propositional setting and extend public announcement logic (PAL) with operators for

both global and local announcements. We illustrate the formal machinery by means45

of scenarios in multi-agent systems and prove that this logic is stricly more expressive

than PAL. The final outcome of these investigations is a family of expressive modal lan-

guages, suitable to reason about relevant concepts in knowledge representation, while

still enjoying nice computational properties.
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Chapter 1

Introduction

In this chapter we review our main scientific contributions since obtaining the PhD in

2006. These are situated at the intersection of three relevant research areas:120

1. Multi-agent systems (MAS) and logics for strategic abilities;

2. Data-aware systems, including auctioning mechanisms;

3. Formal methods and verification by model checking.

In order to position our contributions with respect to the state-of-the-art and to

illustrate the comparative advancement, here we discuss significant, recent works in125

these three areas. Given the vastity of the subject matter, the discussion will necessarily

be partial and oriented towards our research interests in the verification of multi-agent

systems by means of agent-based techniques.

1.1 Logics for Multi-agent Systems

Multi-agent systems are open, distributed systems where the processes involved, or130

agents, show highly flexible and autonomous behaviour [127]. Agents in MAS are as-

sumed to be proactive, endowed with beliefs about the surrounding environment, as

well as their own private goals and plans to achieve them [101]. Researchers in artificial

intelligence have adopted multi-agent systems to model and solve problems in several

areas – including economics, game theory, planning, and robotics – that are difficult,135

viz. impossible, for an individual agent or a monolithic system to tackle [105]. Most

importantly, the agent paradigm allows for a modular approach to system modelling,

in which the interactions between agents are not hard-coded in the systems description,

1



Introduction 2

but emerge at run-time according to the agents’ specification. Moreover, the description

of agents in terms of intentional attitudes (e.g., beliefs, intentions, goals) allows us to140

abstract from actual implementation details and accounts for a high level of flexibility

in the system description. The problems and techniques in the literature on MAS have

much in common with distributed systems and software engineering, but contrary to

these disciplines, here the emphasis is on the local, private information state of agents,

as well as concepts such as individual and collective knowledge and belief. These fea-145

tures of MAS have been deemed extremely valuable in designing complex distributed

applications, at least in the modelling stage.

Closely related to the verification of multi-agent stystems, logic-based formalisms

for representing and reasoning about strategic abilities, both individual and coalitional,

have been a thriving area of research in artificial intelligence and multi-agent system150

[51, 52, 74]. A diverse family of multi-modal logics has been introduced to provide

a formal account of complex strategic reasoning and behaviours for individual agents

and groups, including alternating-time temporal logic (ATL) [4], strategy logic [53],

coalition logic [98], just to name a few. In parallel with these developments, a well-

established tradition in knowledge representation focuses on extending formalisms for155

reactive systems with epistemic operators, so as to reason about the systems’ evolution,

as well as the knowledge agents have thereof [64]. Seminal contributions on extensions of

linear- and branching-time temporal logics with agent-indexed epistemic modalities date

back to the ’80s [79, 80]. Since then, these investigations have matured into a solid body

of works, which is nowadays rightly regarded as a key contribution of formal methods160

to computer science [95], particularly when combined with verification techniques [70,

89, 91].

In this broad research area our contributions have been aimed at

(i) analysing individual and group knowledge in multi-agent systems, with a specific

focus on contexts of imperfect information;165

(ii) specifying properties of data-aware and data-intensive MAS, where processes and

data are seen as two equally relevant tenets of the system specification.

To develop these points I benefited from an IEF Marie Curie fellowship related to

the FoMMAS project: First-order Modal Logics for the Specification and Verification

of Multi-Agent Systems. Hereafter we review the key findings of the FoMMAS project,170

including later developments.



Introduction 3

1.1.1 Temporal and Epistemic Logics for Multi-agent Systems

In this line we investigated expressive epistemic and temporal-epistemic multi-agent log-

ics for MAS specification, proving both completeness [26–28, 31] and verification results

[23–25]. Also related to general knowledge representation, a crucial distinction operated175

in game-theoretic contexts, including MAS, is whether players have perfect/imperfect

information about the environment they are interacting in and with. Originally, most

of the logics for strategies mentioned above have been introduced in contexts of per-

fect information, partly because this setting exhibits better computational properties.

However, for many applications of interest, including autonomous agents, distributed180

computing, and economic theory, perfect information is either unrealistic as a working

hypothesis or unattainable [63], and has to be dropped. Unfortunately, imperfect in-

formation is known to make the verification task computationally more costly. As an

example, while we can model check ATL with perfect information in polynomial time,

the corresponding problem for imperfect information is ∆P
2 -complete [88]. When per-185

fect recall is included in the picture, the problem goes from being PTIME-complete to

undecidable [62]. Thus, for logics of strategies to be adopted as specification languages

in contexts of imperfect information it is key to develop efficient verification tools and

techniques, capable of tackling model checking for practical cases of interest, possibly

by means of appropriate approximations whenever the original problem is untractable190

or undecidable.

Our contribution on this subject consists of rich combinations of strategy and epis-

temic logic for MAS specifications [15, 16, 18]. Specifically, in [15] we introduced Epis-

temic Strategy Logic, an extension of strategy logic [96] with modal operators for indi-

vidual and group knowledge, and we showed that the complexity of the model checking195

problem is no worse than in the purely strategic case. So, the extra expressivity for

knowledge representation and reasoning comes at no computational cost, at least as

long as the verification task is concerned. In [16] we provided a tableau-based decision

procedure for ATEL, an epistemic extension of ATL, by building on previous work in

[75, 76]. Finally, in [18] we proposed a context-sensitive semantics for ATL, in which200

epistemic alternatives are restricted according to the strategy currently used. This mod-

elling choice allows us to recover some important validities that do not normally hold

under imperfect information.

Directly related to the present work, we have recently started to investigate proposi-

tional quantification in epistemic logic. In [43] we introduced second-order propositional205

epistemic logic (SOPEL), where propositional quantification is used to express compara-

isons between agents’ knowledge such as “agent a knows at least as much as agent b”.
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The issues pertaining to the formalisation of such properties have already been consid-

ered in the literature (e.g., comparative epistemic logic [119]), but within a different

formal account [120, 121]. The completeness results for SOPEL appearing in [43] are210

extended in Chapter 3 to general second-order propositional modal logic (SOPML). Fur-

ther, in [44] we introduced (bi)simulation relations for SOPML, as well as (bi)simulation

games. Then, we showed that the two notions, while preserving both the truth of for-

mulas in SOPML, are not equivalent in general. In Chapter 4 we put forward a novel

notion of (bi)simulation that is provably equivalent to (bi)simulation games. Finally,215

in [45] we defined an extension of public announcement logic (PAL) with propositional

quantification, in order to express relevant epistemic concepts, including knowability,

preservation under arbitrary announcements, and successfulness. These results appear

as Chapter 5 hereafter.

1.1.2 First-order Extensions of MAS Logics220

If agent-based logics are to be applied to the specification of multi-agent systems where

the role played by data is key, these need to be extended with relational and first-order

features to account for the data part. As an example, in auctions the behaviour of

agents has to be checked against all admissible values for bids, asking prices, and true

values, thus calling for (universal) quantification in the specification language for such225

properties. However, it is well-known that assuming naively unrestricted first-order

quantification quickly leads to the undecidability of a number of problems, including

satisfiability and model checking. Hence, more sophisticated methodologies have to be

adopted to lift logics for agents to the first order. In fact, first-order logic includes some

interesting fragments with nice computational properties (e.g., the monadic, guarded,230

and two-variable fragments [49]), which can be used to express specific behaviours of

data-aware systems (DaS). For instance, quantification in DaS can be guarded by as-

suming that values range on appropriate subsets, suitably specified by predicates in the

language. Also, whenever we want to compare two values that appear at different times

of the system’s execution, two variables are sufficient. Within the FoMMAS project we235

contributed to these investigations, by proving that some sound and complete axiomati-

sations for multi-agent temporal-epistemic logics can be lifted to the monodic fragment

of first-order logic, i.e., a controlled form of quantification [29, 30, 32–34]. These inves-

tigations were further pursued with the EU STREP Project ACSI [1].
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Figure 1.1: The order-to-cash scenario.

1.2 Data-aware Systems240

Data-aware systems (DaS) are a novel paradigm for the design, implementation and

integration of business processes in service-oriented computing [106]. The originality of

this approach consists in “combin[ing] data and processes in a holistic manner as the

basic building block[s]” of the system’s description [56]. Typically data-aware systems

include a data model, to account for the relational structure of data, as well as the245

business processes manipulating data. Both the data model and business processes are

seen as equally important tenets of the system description. This setting is in marked

contrast with most of the tradition on service architectures and composition, which

usually abstracts data away to reduce the complexity of the system description and thus

making the verification task amenable to standard model checking techniques [106]. As250

an example of DaS, here we briefly describe a business process inspired by a concrete

IBM use case [87], illustrated in Fig. 1.1.

The order-to-cash scenario details the interactions of manufacturers, customers, and

suppliers in an e-commerce situation involving the purchase and delivery of goods and

services. At the start of the business process, a customer prepares and submits to some255

manufacturer a purchase order (PO), i.e., a list of products the customer requires, to-

gether with information about these products such as quantity, price, expected-by date,

etc. Upon receiving a PO , the manufacturer prepares a material order (MO), i.e., a

list of components needed to assemble the requested products, based on the informa-

tion provided by the customer herself. The manufacturer then selects some suppliers260

and forwards them the appropriate material orders. Upon receiving an MO , a supplier
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evaluates the information provided therein and either accepts or rejects the order. In

the former case she then proceeds to deliver the requested components to the manufac-

turer, according to the relevant specs. In the latter she notifies the manufacturer of her

rejection. Finally, when the manufacturer receives the components, she assembles the265

product and, provided that the order has been paid for, she delivers it to the customer.

Observe that, even in such a plain scenario, all key components of data-aware systems

are clearly represented. The data model includes the purchase and material orders,

which can be encoded as some kind of data structure, typically a relation database;

while the business processes detailing the evolution of orders from creation, through270

validation/rejection, to fulfilment, can be described by an appropriate set of operations

on relational structures. Most importantly, the system’s execution depends crucially on

the data content of purchase and material orders: the supplier might chose to accept or

reject a material order depending on whether she has enough resources for the requested

quantity, whether the price is within a certain range of profitability, or whether she275

can meet the deadline for delivery. Thus, the agents’ available actions and behaviour

essentially depend on the information registered in the data model.

Our contributions in this area showed that the specification and verification of data-

aware systems can benefit hugely from the adoption of a multi-agent perspective. Indeed,

in the other-to-cash scenario above, the clients, manufacturers, and suppliers all have280

their private information, that they might want to share only partially or in a con-

trolled way. They also have different goals (e.g., profit maximisation, timeliness), and

they might have various plans available to achieve them. Similarly, in auction-based

mechanisms bidders normally keep their true values private, as well as their bids in

sealed auctions, for instance. This agent-based perspective on DaS has been explored285

in our works [40, 42], while most of current approaches still regard DaS as monolithic

systems [59–61, 82]. Moreover, the agent approach allows for the application of modular

abstraction techniques to tackle the model checking problem [77].

A significant advancement in the verification of data-aware systems has come from

the EU STREP project ACSI [1], to which I contributed in 2011-12. The ACSI project290

focused on artifact-centric systems, a specific data-driven approach to the modelling and

deployment of business processes, for which we produced a stream of fundamental con-

tributions [38, 39, 41, 42, 59, 73, 82]. Among these results, a key finding is represented

by the notion of uniformity, which has been used in [40, 42] to obtain a decidable model

checking problem. Intuitively, a data-aware system is uniform whenever its evolution295

is determined only by data that are named explicitly in the system’s description. Con-

versely, all data that are not exhibited can be deemed equivalent, as far as the system’s

execution is concerned. This allows to apply abstraction-based techniques to reduce the
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model checking problem to the finite case, provided that some additional constraints are

met. Interestingly, the uniformity condition, which is related to the notion of genericity300

in database theory [2], is satisfied by a vast class of interesting systems, including some

types of auctions. After the completion of the ACSI project, we pursued further these

investigations into the verification of DaS. In particular, we applied these results and

methodology to open multi-agent systems, where agents are assumed to join and leave

the system at run-time. In [21, 22] we were able to prove that, under specific conditions,305

the model checking problem for these open MAS is decidable.

Albeit their success, we identify several criticalities regarding the methods made

available by the ACSI project, as well as the current literature on DaS in general.

1. Although uniformity defines an important class of DaS, many systems of interest

are not uniform. Indeed, most manipulations of data bring us outside the realm of310

uniformity. Even simple operations, such as increments on natural numbers, are

sufficient to break uniformity. Hence, a first challenge is to find conditions more

robust than uniformity, which still imply a decidable model checking problem. We

tackled these issues in [17, 19], where we showed that some weaker results are

available also for non-uniform systems.315

2. A further assumption normally required to obtain decidability, besides uniformity,

is boundedness, that is, the existence of an upper bound on the number of active

elements in a data-aware system at any time in the execution [59]. However, in

several scenarios assuming the existence of such a bound may appear arbitrary and

artificial: databases can grow beyond any given size, by simply keeping on adding320

new entries (without removing any of the old ones). Thus, a further challenge

with respect to the state-of-the-art is to identify classes of models, still general

enough for representing most DaS of significance, but which can also be bounded

in a natural way.

3. Related to the previous point, a third challenge is represented by unbounded sys-325

tems (such as the expanding databases above). Again, in this case the decidability

results of the ACSI project do not apply unconditionally, so novel techniques need

to be explored. In [17] we obtained preliminary results on the verification of un-

bounded systems.

To provide principled answers to the questions raised above, we recently obtained330

a Jeunes Chercheuses/Jeunes Chercheurs fellowship from the Agence Nationale de la

Recherche for our project SVeDaS: Specification and Verification of Data-aware Systems.

The SVeDaS project is solidly set within the most recent advances on the verification of
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data-aware systems. Yet, it is meant to question the constraints imposed on DaS, namely

uniformity and boundedness, in order to develop novel verification methods suitable for335

a wider class of DaS. Moreover, the SVeDaS project focuses on the particular data-

aware systems represented by auction-based mechanisms. Indeed, auctions can be seen

as a specific class of DaS: their outcome depends essentially on the values of bids, base

prices, and true values. As a proof of concept, in [14, 35] we formalised a basic version

of parallel and iterated English (ascending bid) auctions as DaS, then we successfully340

verified them against safety and liveness properties. These results validate the approach

proposed in the SVeDaS project. However, more elaborate use cases, including real-

time bidding, in which agents can modify their behaviour according to the outcome of

previous auctions, are not covered by ACSI, since they suffer from limitation (1) detailed

above. To overcome such issues, proposals have been put forward [17] that also support345

arithmetic operations [61]. Yet, these contributions neglect the imperfect knowledge

that agents typically have of the system’s global state, which limits the applicability of

similar results to auctions.

1.3 Formal Verification by Model Checking

Formal methods are widely used to represent and analyse distributed and reactive sys-350

tems. In combination with verification techniques by model checking, they have become

one of the success stories in computer science [8, 55]. In the model checking approach,

to verify whether a system S satisfies a property P (such as a safety, liveness, or secrecy

requirement), first S is modelled as (some kind of) transition system MS , while prop-

erty P is recast as a formula φP in some logical language of choice. Finally, verification355

is reduced to check whether the formula φP is true in the model MS , or MS ⊧ φP

formally. This verification procedure in outlined in Fig. 1.2. Nowadays, model checking

is being successfully applied to the automated verification of real-life scenarios in safety

critical systems, avionics, AUVs, robotics, and security protocols [85, 91, 99].

Similarly, the actual deployment of data-aware systems calls for the development360

of verification techniques. As an example, in designing auction-based mechanisms we

might require that bidders for a particular resource bid consistently with the true value

they assign to the resource (i.e., they do not exceed it), without revealing this true value

publicly. Such requirements specify the behaviour of agents with respect to a possible

infinite number of values for their bids and true values. However, verification techniques365

such as model checking are “mainly appropriate to control-intensive applications and less

suited for data-intensive applications” [8]. Irrespectively of these difficulties, the model

checking problem for auctions has received considerable attention recently [7, 78, 126,
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System S

Modeling

Model MS

Model Checking: MS ⊧ φP ?

Specification φP

Formalising

Requirement P

True FalseTime Out

Figure 1.2: The model checking procedure in a nutshell.

128, 129]. Indeed, it is hard to overestimate the relevance of auctions and auction-based

mechanisms in a wide range of distributed systems (e.g., task scheduling, power grid370

management, and resource allocation [57, 102]). However, with some notable exceptions,

most of the research on this topic has focus on the design of auctioning mechanisms and

the analysis of their formal properties, while the automated verification of these designs

has only partially been addressed.

Our contributions to formal verification by model checking cover a wide range of375

methodologies and application domains. In [24, 25] we put forward an automata-

theoretic technique for the verification of CTLK, an epistemic extension of the temporal

logic CTL. This technique was implemented in an explicit-state model checker called

ETAV – Epistemic Tree Automata Verifier. Finally, in [20] we developed an automated

procedure for model checking quantum protocols, on top of the MCMAS model checker380

[92]. Further, in [36, 37] we introduced abtraction techniques for MAS verification,

based on three-valued logics. While results along these lines are certainly of interest for

model checking general multi-agent systems, we advocate a principled approch to the

verification of data-aware systems that it is also capable of dealing with auction-based

mechanisms. We reckon that, given the relevance that data representation and reasoning385

have gained in recent years, it is key for the deployment of business processes to pro-

vide data-aware systems with sound verification methodologies. In turn, this endeavour

raises a number of challenges ranging from (i) the logic-based languages for specifying

DaS behaviours, to (ii) the data structures to represent DaS symbolically, as well as
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(iii) efficient model checking algorithms to deal with relational and first-order features.390

We presented preliminaries results on model checking auctions in [35]. However, efficient

verification algorithms are yet to be explored.



Chapter 2

Overview

The rest of the present work is devoted to one particular line of research among those395

reviewed in Chapter 1. Specifically, we develop and extend some of our contributions in

the area of knowledge representation and reasoning [43–45]. This is meant to provide a

coherent picture of some recent and interesting results, which still fit in the more general

framework of modal logics for multi-agent systems.

Modal logics are nowadays a well-established area in mathematical logic, which has400

also become one of the most popular formal frameworks in artificial intelligence for

knowledge representation and reasoning [47, 123]. This success is due to several reasons,

including an expressive and flexible formal language, which enjoys nice computational

properties [48, 109]. In particular, at the core of the semantics of modal logics lies the

notion of world, or state. Indeed, this concept is very natural when analysing compu-405

tational notions (a system evolving over time from a previous to a successive state),

accounts of agency (states that are preferred, desired, or epistemically possible), and

rational interactions (states that can be winning, losing, terminal, initial, etc.) Indeed,

distributed computing [81], reactive systems [93], multi-agent systems [113], and game

theory [112] have all benefited from the application of tools and techniques from modal410

logics, and this list is by no means exhaustive. Most importantly, the states in the mod-

els for modal logics are connected by means of indexed relations Ra, for some index a,

which can model (program) transitions, epistemic or desired alternatives, or the effect of

possible moves, where index a can assume a number of readings: a specific program, a

dimension of time (say, future or past), an agent, a move, etc. Each accessibility relation415

Ra in the semantics is then paired with a necessity operator ◻a in the modal language,

where a formula ◻aϕ may be read as: after every execution of a, in each future time

along dimension a, in every state considered possible or desired by agent a, or in every

state that is the result of performing move a, formula ϕ holds.

11
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The language of modal logics provides a crisp, variable-free way of expressing a420

variety of properties of interest. It is also important to realise that there is a multiplicity

of modal logics: although the well-known normal axiomatisation K characterises the

class K of validities on all models for modal logic, this does not mean that all logics for,

say, agency, are the same and correspond to K. It only means that they are typically

extensions of K. As a simple example, the scheme of formulas (i) ◻aϕ → ϕ appears425

reasonable when ◻a denotes ‘agent a knows that . . . ’, but perhaps it is less desirable

when it is read as ‘agent a believes that . . . ’, as philosophically knowledge is analysed

as truthful belief [83]. One of the reasons for the success of modal logics is that in

many relevant cases a syntactic scheme corresponds to an additional constraint on the

accessibility relation Ra: in the case of scheme (i), reflexivity of Ra is, in a precise sense,430

a sufficient and necessary condition for its validity.

To appreciate this point, we use a little bit more detail (we assume some familiarity

with modal logics, precise definitions are given in Section 3.1.) As already mentioned,

central in the semantics of modal logic is the notion of (Kripke) frame F , which comprises

of a set W of states and some accessibility relations Ra, for indexes a ∈ I. We can then435

define a notion of validity ⊧ on frames and formulate the result mentioned above as

follows:

Ra is reflexive iff F ⊧ ◻aϕ→ ϕ, for all formulas ϕ (2.1)

Characterisations such as (2.1) are referred to as correspondence results [109], because

they establish a mapping between a first-order property on frames (i.e., reflexivity) and

a modal validity (i.e., scheme (i)). Another example of correspondence is between the440

first-order formula ∀x∀y(Ra(x, y) → Rb(x, y)) and modal scheme ◻bϕ → ◻aϕ, which

intuitively says that, e.g., whatever is achieved by program b, is also achieved by program

a, or that agent a knows at least as much as agent b.

Mathematically elegant and powerful as correspondence theory may be, it also has

shortcomings. Firstly, note that in the case of (2.1), correspondence is defined globally,445

i.e., scheme (i) has to be valid throughout the frame. This means that for instance (using

a doxastic reading of (i)), we cannot model situations in which a’s beliefs are true, but b

does not know that. Indeed, if the truthfulness of agent a’s beliefs is tantamount to the

validity of (i), then (ii) Kb(◻aϕ → ϕ) is also a validity, enforcing agent b’s knowledge.

In particular, we cannot express that for all ϕ, ◻aϕ → ϕ is true, while for some some450

ψ, ¬Kb(◻aψ → ψ) holds as well. Secondly, in (2.1) quantification appears at the meta-

, and therefore the outermost, level. It is therefore impossible to distinguish (and to

express in the language of modal logic) the following two situations: in the first, agent b

knows that a has perfect information and is a perfect reasoner, and therefore, b knows a
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priori that whatever a believes must be correct, that is, b knows that, for every formula455

ϕ, (i) holds. Informally, this would be represented as Kb(for all φ,◻aφ → φ), which

is not a well-formed formula in modal logic however. In the second situation agent b

has systematically some empirical way to verify a posteriori, for every property ϕ, that

whenever a believes it, then ϕ is true, that is, for every formula ϕ, b knows that (i)

holds. This other situation can be represented as scheme (ii) above, which we remarked460

to be valid whenever (i) is.

As observed in [43], by allowing for quantification over propositions – and thus

obtaining the language of second-order propositional modal logic (SOPML) – both issues

mentioned above can be addressed. To wit, as regards the first example, the SOPML

formula ∀p(◻ap → p) ∧ ¬Kb∀p(◻ap → p) intuitively expresses that all beliefs of agent a465

are correct, but b does not know this fact. Moreover, the two different readings in the

second example can be represented by formulas Kb∀p(◻ap → p) and ∀pKb(◻ap → p),

respectively. The reader may recognise here the distinction between de dicto and de re

quantification. More generally, the truth of formula ∀p(◻ap→ p) at state s enforces the

truthfulness of agent a’s beliefs in s only, therefore this is a local property of the frame, as470

opposed to the global validity of (i). This fact allows agent b to consider (epistemically)

possible a different state s′ in which (i) does not hold.

The aim of the present work is to advance the application of propositional quan-

tification and second-order propositional modal logic in knowledge representation and

reasoning, through exploring and securing their theoretical fundations. We uphold the475

use of propositional quantification to express higher-order properties of knowledge, i.e.,

knowledge about other agents’ knowledge, including truthfulness of knowledge, inclu-

sions between the knowledge of agents, as well as dynamic properties such as knowability,

successfulness, and preservation after arbitrary announcements. Specifically, the present

work is structured as follows. In Part I we analyse second-order propositional modal480

logic from a static viewpoint. In Chapter 3 we introduce SOPML and interpret it on

different classes of Kripke frames according to the features of the accessibility relations

as well as the algebraic structure of the quantification domain of propositions. Most

importantly, we provide completeness results with respect to various classes of Kripke

frames. Results along this line are key to assess the computational properties of formal485

languages, as well as to develop automated reasoning methods. Here the main result

shows that for SOPEL – the epistemic version of SOPML – the common knowledge

operator acts as a universal modality on the class of full frames, thus allowing us to ob-

tain a complete axiomatisation. In Chapter 4 we introduce (bi)simulation relations and

prove that they preserve the interpretation of formulas in SOPML. Bisimulations are490

then applied to assess the expressive power of SOPML. Furthermore, part II is devoted

to the dynamics of knowledge. In Chapter 5 we introduce second-order propositional
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announcement logic (SOPAL), an extension of SOPEL with public announcements. No-

tably, the interplay of announcement operators and propositional quantification allows

us to express arbitrary announcements as well as notions such as knowability, preser-495

vation, and successfulness, which have been analysed previously within the framework

of arbitrary public announcement logic (APAL) [9]. We thoroughly compare these two

formalisms. Finally, in Chapter 6 we revert to a purely propositional setting to discuss

the logic of global and local announcements (GLAL), an extension of public announce-

ment logic (PAL) with operators for both global and local announcements. The final500

outcome of this work is a family of expressive modal languages, suitable to reason about

relevant concepts in knowledge representation, while still enjoying nice computational

properties.

A Note on Related Work. The present contribution builds on previously pub-

lished works by the applicant and co-authors. Specifically, Chapter 3 extends [43] by505

considering general SOPML instead of just SOPEL. Indeed, here we tackle all normal

modalities, rather than considering only multi-modal S5, suitable for the epistemic in-

terpretation of modal logic, as it is done in [43]. Further, Chapter 4 draws from [44], but

the (bi)simulation relations here considered are more general and provably equivalent to

the (bi)simulation games. Finally, Chapter 5 is based on [45]. We refer to each chapter510

for an in-depth discussion of the differences with respect to the published papers.
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Reasoning about Knowledge
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Chapter 3

Completeness Results for

Second-order Propositional

Modal Logic

In this chapter we introduce the formal machinery on propositional quantification that520

will be used throughout the thesis. The main theoretical contribution consists in the

completeness proof for second-order propositional modal logic with respect to several

classes of Kripke frames. More specifically, in Section 3.1 we present the language of

SOPML, including its epistemic version SOPEL, and provide it with a semantics in

terms of Kripke frames extended with a domain D of sets of states for the interpretation525

of quantification. We consider various semantical constraint on our models, both on

domain D and on the accessibility relations, and create a logical landscape that extends

the state-of-the-art in a multi-agent direction, which we set to explore in the rest of the

thesis. In Section 3.2 we illustrate the richness of the formal framework, particularly to

express local properties in modal logic (LPML) [119, 120]. We compare and contrast our530

approach with [121], and show that the latter can be subsumed in the account here put

forward. This validates our endeavour from the viewpoint of applications to knowledge

representation. However, we maintain that for SOPML to be adopted as a specification

language in artificial intelligence and knowledge representation, appropriate theoretical

results and formal tools need to be developed. To this end, in Section 3.3 we present535

axiomatisations for a number of classes of validities and provide novel soundness and

completeness results. The key finding here is that, while the full semantics for SOPML

is incomplete for most of modal calculi, the same semantics admits a complete ax-

iomatisation for SOPEL, where the accessibility relations are interpreted on equivalence

relations. To obtain such a result, we make essential use of the fact that the common540

knowledge operator C acts as a universal modality. As a consequence, for reasoning

17
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about knowledge, SOPML admits sound and complete axiomatisations. To conclude, in

Section 3.4 we discuss the results obtained and compare them with the state-of-the-art

in SOPML. Our long-term aim for this thesis is to provide formal tools so as to facilitate

the use of SOPML as a language for knowledge representation, as well as temporal and545

spatial reasoning in artificial intelligence.

3.1 Second-order Propositional Modal Logic

In this section we present the language of SOPML, some of its syntactic fragments, and

their interpretation on Kripke frames and models. Then, we prove some preliminary

results to be used hereafter.550

3.1.1 The Formal Languages

To introduce second-order propositional modal logic, we fix a set AP of atomic propo-

sitions and a finite set I of indexes for modalities.

Definition 3.1 (SOPML). The language Lsopml contains formulas ψ as defined by the

following BNF:555

ψ ∶∶= p ∣ ¬ψ ∣ ψ → ψ ∣ ◻aψ ∣ ◻∗Aψ ∣ ∀pψ

where p ∈ AP , a ∈ I, and A ⊆ I.

The language Lsopml contains modal formulas ◻aψ, for every index a ∈ I. A general

reading of this would be ‘according to the aspect or dimension a, formula ψ holds’. The

box can have more concrete interpretations, for instance dynamic (after execution of

program or action a, ψ holds), temporal or spatial (along dimentions a, ψ), or deontic560

(in all situations that abide to norm a, ψ is true). Indices may also denote agents,

in which case ◻aψ can represent attitudes that relate to goals (‘agent a desires ψ’,

or ‘has ψ as a goal’), actions (agent a intends to achieve ψ), or information (‘agent

a believes ψ’ or ‘a knows that ψ’). The latter, epistemic interpretation of ◻a will

obtain some special attention in this thesis, and we will write Kaψ rather than ◻aψ565

for ‘agent a knows that ψ’. Instead of ◻∗Aψ, in the epistemic interpretation we will

write CAψ (in the group A of agents it is common knowledge that ψ). To give a

hint of what this operator means in epistemic logic, define EAψ (everybody in group

A knows that ψ) as ⋀a∈AKaψ. Then, formula CAψ intuitively captures the infinite

conjunction ψ ∧EAψ ∧EAEAψ ∧EAEAEAψ ∧ . . . (the standard definitions for ⊺,�,∨,∧,570
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and ↔ apply). To sum up, whenever we consider the epistemic interpretation of modal

operators, we write Ka and CA, and define formulas ψ in the language Lsopel of second-

order propositional epistemic logic (SOPEL) according to the following BNF:

ψ ∶∶= p ∣ ¬ψ ∣ ψ → ψ ∣Kaψ ∣ CAψ ∣ ∀pψ

for p ∈ AP , a ∈ I, and A ⊆ I. Then, the operator ◻∗A is interpreted intuitively as

reachability along all dimensions in A, similarly to the interpretation of CA. Also, we575

omit index A whenever it is equal to I and write ◻∗ψ and Cψ for ◻∗Iψ and CIψ. Standard

references for modal logic are [47, 48], while for epistemic logic we refer to [64, 95].

In this paper we extend modal (epistemic) languages with propositional quantifica-

tion. The quantified formula ∀pψ informally says that ‘for all propositions, ψ is true’,

or, ‘for all interpretations of p, ψ obtains’. As standard, the quantifier ∃ is dual to ∀:580

∃pψ = ¬∀p¬ψ. Analogously, in Lsopml , ◇aφ and ◇∗
Aφ ares shorthands for ¬ ◻a ¬φ and

¬◻∗A¬φ, and in Lsopel , Ma and CA are dual to Ka and CA. In what follows we use ♯ as a

placeholder for any unary operator ¬, ◻a, ◻
∗, and Q for any quantifier ∀, ∃. The name

‘second-order propositional modal (epistemic) logic’ is related to second-order quantifi-

cation, as will become apparent in Section 3.2. In particular, this formalism has been585

studied in relation to monadic second-order logic – MSO [90, 107].

Example 3.1. To give a flavour of the expressivity of Lsopml , we present some speci-

fications written in the language. We use variants of ◻a in our notation: their mean-

ing will be clear from the context. Using Lsopml one can for instance express that

agents a believes that agent b will always have some desire p that will remain unful-590

filled: Ba◻
∗ ∃p(Dbp∧¬p), where operators Ba and Db are used to represent the doxastic

and desire dimensions for agent a and b, respectively, whereas ◻∗ corresponds to the

reachability relation with respect to all agents’ moves. As a further example, formula

(i) ∀p(◻ap → ◻bp) expresses, in a dynamic context, that everything brought about by

program a is also brought about by program b, or, provided a doxastic interpretation of595

the box operator, agent b believes everything that agent a believes. Deontically, the for-

mula ∃p(Op∧¬p) expresses that the current world is not ideal: there are facts that ought

to hold, but they don’t. Finally, the doxastic-epistemic formula (ii) Kb∃p(Bap ∧ ¬p)

intuitively expresses that agent b knows that agent a’s beliefs are incorrect, while (iii)

∀p(Bap → p) ∧ ◻α∃q(Baq ∧ ¬q)) denotes that currently, agent a’s beliefs are correct,600

but after executing program α, this ceases to be the case. We remark that by using

propositional quantification we can reason about general properties of knowledge, e.g.,

truthfulness, inclusion, equivalence of agents’ knowledge and beliefs, as in specifications

(i), (ii), and (iii) above.
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In this thesis we consider various fragments of Lsopml and Lsopel . To begin with,605

the languages Lml of (propositional) modal logic and Lel of (propositional) epistemic

logic are obtained by removing clause ∀pψ from the definitions of Lsopml and Lsopel ,

respectively. Likewise, the language Lqbf of quantified boolean formulas omits clauses

◻aψ and ◻∗Aψ from Lsopml ; while propositional logic Lpl is defined as standard by con-

sidering only propositional connectives. Moreover, the universal fragment of Lsopml (or610

La−sopml ) is defined by the following BNF:

ψ ∶∶= p ∣ ¬p ∣ ψ ∧ ψ ∣ ψ ∨ ψ ∣ ◻aψ ∣ ◻∗Aψ ∣ ∀pψ

Notice that in La−sopml negation applies to atoms only. Hence, La−sopml contains no

formula of the form ∃pψ, ◇aψ, or ◇∗
Aψ. For convenience, we will also denote the set of

atoms AP by Lap . A special role in this paper will be played by the languages Lx of

sort x, with x ∈ X = {ap,pl ,ml , sopml}. We summarise the main (syntactic) inclusions615

between languages in the following schema.

Lap ⊆ Lpl
⊆
Lml

⊆
Lqbf

⊆

⊆

La−sopml
⊆
Lsopml

We now introduce some syntactic notions that will be used throughout the chapter,

starting with subformulas and free atoms.

Definition 3.2 (Subformula and free atoms). The sets Sub(φ) and fr(φ) of subformulas620

and free atoms of formula φ ∈ Lsopml are recursively defined as follows:

Sub(p) = {p} fr(p) = {p}

Sub(♯φ) = {♯φ} ∪ Sub(φ) fr(♯φ) = fr(φ)

Sub(φ→ φ′) = {φ→ φ′} ∪ Sub(φ) ∪ Sub(φ′) fr(φ→ φ′) = fr(φ) ∪ fr(φ′)

Sub(∀pφ) = {∀pφ} ∪ Sub(φ) fr(∀pφ) = fr(φ) ∖ {p}

A sentence is a formula φ with an empty set of free atoms, i.e., fr(φ) = ∅. The set

bnd(φ) of bound atoms in φ is defined as standard as the set of all atoms q appearing

in the scope of any quantifier Qq. We assume that for each formula φ ∈ Lsopml , fr(φ)

and bnd(φ) are disjoint. Actually, we impose that each quantifier binds a different625

variable. Both constraints can be enforced without loss of generality by renaming bound

variables. Also, we introduce the set of atomic propositions in a formula φ as AP (φ) =

fr(φ) ∪ bnd(φ).

Next we define when a formula is free for substitution.
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Definition 3.3 (Free for . . . ). Given an atom p ∈ fr(φ), a formula ψ is free for p in φ iff630

p does not appear in φ within the scope of any quantifier Qq for q ∈ fr(ψ). Alternatively,

we can define whether ψ is free for p in φ by induction on the structure of φ as follows:

for φ atomic, ψ is free for p in φ

for φ = ♯φ′, ψ is free for p in φ iff it is in φ′

for φ = φ′ → φ′′, ψ is free for p in φ iff it is in φ′ and φ′′

for φ = ∀qφ′, ψ is free for p in φ iff q ∉ fr(ψ) and ψ is free for p in φ′

We finally introduce a notion of substitution for free formulas.

Definition 3.4 (Substitution). Let ψ be free for p ∈ fr(φ), the substitution φ[p/ψ] is

inductively defined as follows:635

q[p/ψ] =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

q for q different from p

ψ otherwise

(♯φ′)[p/ψ] = ♯(φ′[p/ψ])

(φ′ → φ′′)[p/ψ] = (φ′[p/ψ])→ (φ′′[p/ψ])

(∀rφ′)[p/ψ] = ∀r(φ′[p/ψ]), where r is assumed different from p as p ∈ fr(φ)

Intuitively, ψ being free for p in φ means that a substitution of p by ψ in φ does

not create any new binding. As an example, ¬q is free for p in ∃r(r → p) but not in

φ = ∃q(p↔ q). In the following we will see that, while ∃q(p↔ q) is actually a validity,

if we were to blindly substitute p with ¬q in φ, we would obtain ∃q(¬q ↔ q), which

is tantamount to a contradiction. But note that, since ¬q is not free for p in φ, by640

Definition 3.4, φ[p/¬q] is not well-defined.

Example 3.2. As a further example of the expressive power of SOPEL, consider the

following specification: agent b knows everything that a knows, and agent c knows this

fact, but d does not. This epistemic situation can be recast in Lsopel as the following

formula:

∀p(Kap→Kbp) ∧Kc∀p(Kap→Kbp) ∧ ¬Kd∀p(Kap→Kbp)

In particular, we can reason further about agent d’s knowledge. Indeed, agent d might

know that a knows something ignored by b, without being able to explicitly point out the

content of a’s extra knowledge. This can be recast in Lsopel by the following de dicto

formula:645

Kd∃p(Kap ∧ ¬Kbp) (3.1)
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However, d could actually know about a specific fact that a knows, but b ignores, as

expressed in the de re formula:

∃pKd(Kap ∧ ¬Kbp) (3.2)

We remark that intuitively (3.2) is strictly stronger than (and entails) (3.1), in the

sense that any model satisfying (3.2) also satisfies (3.1). Thus, among other things,

SOPEL allows us to distinguish the two readings – de re and de dicto – of individual650

knowledge.

3.1.2 Kripke Frames and Models

To provide a meaning to formulas in Lsopml and fragments, we consider multi-modal

Kripke frames and models, extended with a domain for the interpretation of quantifiers.

Definition 3.5 (Kripke frame). A Kripke frame is a tuple F = ⟨W,D,R⟩ where655

� W is a set of possible worlds;

� D is the domain of propositions, i.e., a subset of 2W ;

� R ∶ I → 2W×W assigns a binary relation on W to each index in I.

As standard in propositional modal logic (PML), for every index a ∈ I, Ra is an

accessibility relation between worlds in W [47]. Differently from standard Kripke frames,660

Definition 3.5 includes a set D ⊆ 2W of “admissible” propositions for the interpretation of

atoms and quantifiers. Clearly, the Kripke frames in Definition 3.5 are related to general

frames [47, 94]. However, there are some notable differences. Firstly, in general frames

the domain D of propositions is a boolean algebra with operators, whereas no such

assumption holds in the present case. Secondly, the language interpreted on general665

frames is usually a plain modal logic, while here we address quantification as well.

Indeed, propositional quantification makes our language strictly more expressive than

propositional modal logic interpreted on general frames, as will become apparent later

on.

The accessibility relations can satisfy various properties, e.g., seriality, symmetry,670

transitivity, reflexivity, etc. When interpreting the language Lsopel we assume that each

Ra is an equivalence relation (i.e., symmetric, transitive and reflexive), in line with

the epistemic reading of modal operators [95]. In the following, for a coalition A ⊆ I,

we consider also the reflexive and transitive closure R∗
A = (⋃a∈ARa)

∗ of the union of
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accessibility relations, to be used for the interpretation of operator ◻∗A. Then, for agent a,675

coalition A, and w ∈W , we set Ra(w) = {w′ ∣ Ra(w,w
′)} and R∗

A(w) = {w′ ∣ R∗
A(w,w

′)}.

If Ra is an equivalence relation for every a ∈ A, then R∗
A(w) is the equivalence class of

w ∈W , it can be represented as the set EA = {R∗
A(w) ∣ w ∈W} of its equivalence classes,

and whenever A is a singleton {a}, we have that R∗
A(w) = {w′ ∣ R{a}(w,w

′)} = Ra(w).

To interpret formulas in Lsopml on Kripke frames, we introduce assignments as680

functions V ∶ AP → D. Also, for U ∈ D, the assignment V p
U assigns U to p and

coincides with V on all other atoms. Hence, atoms can only be assigned proposi-

tions in D ⊆ 2W . A Kripke model over F is then defined as a pair M = ⟨F , V ⟩. In

the rest of the paper we consider specific classes of Kripke frames and models, which

feature pre-eminently in the literature on SOPML [66, 94]. To introduce them, we685

first define operators [a] ∶ 2W → 2W , for every a ∈ I, such that [a](U) = {w ∈ W ∣

Ra(w) ⊆ U}; while operator [A]∗ ∶ 2W → 2W is introduced so that [A]∗(U) = {w ∈

W ∣ for every n ∈ N, for every sequence w0, . . . ,wn, if w0 = w and for every i < n,wi =

wi+1 or Ra(wi,wi+1) for some a ∈ A, then wn ∈ U}.

Definition 3.6. A Kripke frame F is690

boolean iff D is a boolean algebra, i.e., it is closed under intersection, union,

and complement

modal iff D is a boolean algebra closed under operators [a] and [A]∗,

for every a ∈ I and A ⊆ I

full iff D = 2W

A Kripke model M = ⟨F , V ⟩ is boolean (modal, full, respectively) whenever the

underlying frame F is. We distinguish the class Kall of all Kripke frames, the class Kbool

of all boolean frames, the class Kmodal of all modal frames, and the class Kfull of all

full frames. Observe that, by using an analogy with monadic second-order logic, the695

class of full frames corresponds to the basic interpretation of SOPML, where any frame

is uniquely identified by fixing the set W of worlds and accessibility relations, as the

domain D is equal to 2W . On the other hand, the other classes of frames are related

to the Henkin interpretation of MSO, where D can be a possibly strict subset of 2W

(cf. [108]).700

Furthermore, within each of the classes in Definition 3.6, we will consider further

conditions on the accessibility relations Ra: reflexivity r, transitivity t, and symmetry

s. Hereafter, given type y ∈ Y = {all , bool ,modal , full} and subset τ ⊆ {r, t, s}, Kτy

denotes the corresponding class of frames satisfying the properties in τ . For simplicity,

Key denotes class K
{r,t,s}
y (which we also write as Krtsy ) of frames in which all accessibility705

relations are equivalences, that is, the class of epistemic frames for the interpretation of
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SOPEL. We define a function ̂∶ X → Y from language sort symbols to type symbols

as follows: âp = all ; p̂l = bool ; m̂l = modal ; and ŝopml = full . In total, we obtain 32

classes Kτy of frames. However, we only consider 20 of them: the subsets τ ⊆ {r, t, s}

corresponding to the 5 normal modalities K, T, S4, B, and S5, combined with the710

4 types all , bool , modal , and full . Further classes of frames could be introduced, for

instance the class where every formula in Lsopml defines a proposition in D. However,

such a class is not directly relevant for the results below and its introduction requires a

non-trivial generalisation of Kripke frames [94]. Thus, such extensions are beyond the

scope of the present work.715

We finally define the notion of satisfaction for formulas in Lsopml .

Definition 3.7 (Semantics). We define whether Kripke model M = ⟨F , V ⟩ satisfies

formula ϕ ∈ Lsopml at world w, or (M,w) ⊧ ϕ, as follows:

(M,w) ⊧ p iff w ∈ V (p)

(M,w) ⊧ ¬ψ iff (M,w) /⊧ ψ

(M,w) ⊧ ψ → ψ′ iff (M,w) /⊧ ψ or (M,w) ⊧ ψ′

(M,w) ⊧ ◻aψ iff for all w′ ∈ Ra(w), (M,w′) ⊧ ψ

(M,w) ⊧ ◻∗Aψ iff for all w′ ∈ R∗
A(w), (M,w′) ⊧ ψ

(M,w) ⊧ ∀pψ iff for all U ∈D, (Mp
U ,w) ⊧ ψ

where Mp
U = ⟨F , V p

U ⟩.

By Definition 3.7, a quantified formula ∀pψ (respectively, ∃pψ) is true at world w720

iff for every (respectively, some) assignment of propositions in D to atom p, ψ is true.

Further, as it is the case for the common knowledge operator CA, (M,w) ⊧ ◻∗Aψ iff

(M,w′) ⊧ ψ for every world w′ reachable from w, i.e., for every w′ such that for some

sequence w0, . . . ,wk of worlds, (i) w0 = w, (ii) wk = w
′, and (iii) for every i < k, wi = wi+1

or Ra(wi,wi+1) for some a ∈ A. Hence, in non-epistemic contexts, ◻∗A can be interpreted725

as a reachability operator, analogous to the common knowledge operator CA. Indeed,

in epistemic contexts, formulas Kaφ can be defined as C{a}φ.

The satisfaction set ⟦ϕ⟧M of formula ϕ in modelM is defined as {w ∈W ∣ (M,w) ⊧

ϕ}. We omit the subscript M whenever clear by the context. We now introduce var-

ious notions of truth and validity. First, we write (F , V,w) ⊧ φ as a shorthand for730

(⟨F , V ⟩,w) ⊧ φ. Then, we say that φ is true at w, or (F ,w) ⊧ φ, iff (F , V,w) ⊧ φ for

every assignment V ; φ is valid in a frame F , or F ⊧ φ, iff (F ,w) ⊧ φ for every world w

in F ; φ is valid in a class K of frames, or K ⊧ φ, iff F ⊧ φ for every F ∈ K. Also, φ is

true in a model M, or M ⊧ φ, iff (M,w) ⊧ φ for every world w. Finally, φ is satisfiable

iff for some model M and world w, (M,w) ⊧ φ.735
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Observe that if we define Th(K) = {φ ∈ Lsopml ∣ K ⊧ φ}, then clearly

Th(Kall) ⊆ Th(Kbool) ⊆ Th(Kmodal) ⊆ Th(Kfull)

We will show that these inclusions are strict, but first we illustrate some applications

of SOPEL in reasoning about knowledge.

Example 3.3. Consider sets I = {a, b, d} of agents and AP = {p} of atoms. The

epistemice frame F = ⟨W,D,R⟩ ∈ Keall is given with components W and R as depicted in

Fig. 3.1.

u

w1 w2

b b

d

a, b, d

a, b, d a, b, d

Figure 3.1: Frame F in Example 3.3.

740

Moreover, if we suppose that D = {{w1},{w2}}, then for every assignment V , (F , V,w1) ⊧

∃p(Kap∧¬Kbp), as (F , V p
{w1}

,w1) ⊧Kap∧¬Kbp. Similarly, (F , V,w2) ⊧ ∃p(Kap∧¬Kbp)

by considering assignment V p
{w2}

. As a consequence, (F ,w1) ⊧Kd∃p(Kap∧¬Kbp), that

is, the de dicto formula in Example 3.2 holds at w1. However, this is not the case for

its de re counterpart, as (F ,w1) /⊧ ∃pKd(Kap ∧ ¬Kbp). To see the latter, note that745

Kd(Kap ∧ ¬Kbp) is not true at w1 for any valuation of p with {w1} or {w2}.

On the other hand, if we suppose that F is a full frame in Kefull , that is, D = 2W , then

we obtain that (F , V,w1) ⊧ ∃pKd(Kap ∧ ¬Kbp), as both (F , V p
{w1,w2}

,w1) ⊧ Kap ∧ ¬Kbp

and (F , V p
{w1,w2}

,w2) ⊧Kap ∧ ¬Kbp.

Example 3.4. To assess the expressivity of SOPEL in knowledge representation, we750

contrast it with comparative epistemic logic (CEL) [121]. CEL extends the language Lml

of propositional modal logic with formulas a ≽ b, the intuitive interpretation of which is:

agent b knows at least as much as agent a. Semantically, the clause for satisfaction of

such formulas at world w in model M is given as

(M,w) ⊧ a ≽ b iff Ra(w) ⊇ Rb(w) (3.3)
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In this sense a ≽ b also expresses a local property of frame F , namely the inclusion755

Rb(w) ⊆ Ra(w).

We show that the comparison between agent a’s and agent b’s knowledge can be recast

in Lsopel as

∀p(Kap→Kbp) (3.4)

In particular, the RHS of (3.3) is tantamount to the satisfaction of (3.4) at w,

whenever model M is full. More precisely, for an arbitrary model M we have760

(M,w) ⊧ a ≽ b ⇒ (M,w) ⊧ ∀p(Kap→Kbp)

while the converse holds for full M. As a result, formulas a ≽ b and (3.4) have the

same meaning in the class of full models, and therefore CEL can indeed be mimicked in

SOPEL. We discuss this fact in more detail in Section 3.2.

Moreover, in SOPEL we can make distinctions that are not expressible in epistemic

logic. Related to Example 3.1, in Lsopel we can state that b knows that a’s beliefs are765

not truthful by using formula

Kb∃p(Bap ∧ ¬p) (3.5)

Notice that (3.5) expresses a de dicto reading of quantification with respect to agent

b’s knowledge, that is, b knows that there exists some fact believed by a, which is false,

possibly without being able to explicitly point out the actual content of a’s false belief. On

the other hand, b could actually be aware of some fact which is believed by a but false,770

as expressed in the following de re formula:

∃pKb(Bap ∧ ¬p) (3.6)

We remark that (3.5) and (3.6) are not equivalent in general, (3.6) being strictly

stronger than (3.5). Specifically, to account for the difference between (3.5) and (3.6),

consider frame G in Fig. 3.2(a), where the W - and R-components are as depicted, and

D = {{w} ∣ w ∈ W}. Clearly, (G, V,w1) ⊧ Bap ∧ ¬p for V (p) = {u1}, and similarly775

(G, V ′,w2) ⊧ Bap ∧ ¬p for V ′(p) = {u2}. Hence, (G,w) ⊧ (3.5) for w ∈ {w1,w2}. On

the other hand, for no U ∈ D, (G, V p
U ,w) ⊧ Bap ∧ ¬p. Therefore, (G,w) /⊧ (3.6) for

w ∈ {w1,w2}. Finally, we observe that ∃pKaφ → Ka∃pφ is a validity in every class of

frames. As a result, in SOPEL formula (3.6) is strictly stronger than (3.5), and we can

distinguish the de dicto and de re readings of agent b’s higher-level knowledge.780
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u1

u2

w1

w2

b

a

a
b

b

b

b

(a) frame G

u′w′
a

bb

(b) frame G′

Figure 3.2: Frames G and G′ in Example 3.4.

Finally, consider frame G′ in Fig. 3.2(b) with D′ = {{w′} ∣ w′ ∈ W ′}. We can

check that (G′,w′) ⊧ (3.6) (and (3.5) as well). However, G and G′, taken as frames for

modal logic (that is, suppressing the domains D and D′ of interpretation, and using only

the language Lml), are bisimilar, with bisimulation relation H such that H(w′,wi) and

H(u′, ui) for i ∈ {1,2} [47]. Hence, G and G′ cannot be distinguished by any propositional785

modal formula, implying that the de re formula (3.6) cannot be expressed in Lml . We

return to this example and the notion of bisimulation in Chapter 4.

3.1.3 Preliminary Results

In this section we prove some preliminary results on the model theory of second-order

propositional modal logic, that will be frequently used hereafter. To start with, in790

Lemma 3.8 we extend some basic but useful results in the theory of quantification.

Lemma 3.8.

1. Let φ be a formula in Lsopml and F a frame in Kall . If assignments V and V ′

coincide on fr(φ), then

(F , V,w) ⊧ φ iff (F , V ′,w) ⊧ φ

2. Recall that X = {ap,pl ,modal , sopml} and ̂= {(ap,all), (pl , bool), (ml ,modal),795

(sopml , full)}. Let x ∈X. Then,

(a) for every ψ ∈ Lx and model M over F ∈ Kx̂, we have ⟦ψ⟧M ∈D;

(b) if F ∈ Kx̂ and ψ ∈ Lx is free for p in φ, then

(F , V p
⟦ψ⟧⟨F,V ⟩

,w) ⊧ φ iff (F , V,w) ⊧ φ[p/ψ]

By Lemma 3.8(1) models built over the same frame and agreeing on the interpretation

of free atoms, satisfy the same formulas. It follows in particular that a sentence φ is800
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either satisfied by any assignment or none, that is, (F ,w) ⊧ φ iff for every model M

over F , (M,w) ⊧ φ, iff for some model M over F , (M,w) ⊧ φ. As a consequence of

Lemma 3.8(2a), the domain of quantification in a model includes the set of denotations

of formulas in that model, according to the various fragments of Lsopml . Moreover,

by Lemma 3.8(2b) the syntactic operation of substitution φ[p/ψ] corresponds to the805

semantic notion of reinterpretationMp
⟦ψ⟧

. These results, which show that quantification

in SOPML is “well-behaved”, will be extensively used hereafter.

As a further preliminary result, we show that if a formula φ ∈ Lsopel is satisfied,

then it is satisfied in a universal model, that is, a model where each state is reachable

from any other state. Notice that in universal models, the operator C is the universal810

modality, defined so that (M,w) ⊧ Cψ iff for all w′ ∈W , (M,w′) ⊧ ψ. Although this is

a standard result in propositional modal logic (e.g., [47, Proposition 2.6]), which makes

use of the notion of generated submodel, in our case we need to ensure that taking

submodels keeps the underlying frame in the same class as the original one. First of all,

we define the submodel generated by a world.815

Definition 3.9 (Submodel). Given model M = ⟨W,D,R,V ⟩ and world w ∈ W , the

submodel generated by w is the model Mw = ⟨Ww,Dw,Rw, Vw⟩ such that

� Ww is the set of worlds reachable from w, i.e., Ww = R∗
I (w);

� Dw = {Uw ⊆Ww ∣ Uw = U ∩Ww for some U ∈D};

� for every a ∈ I, Rw,a = Ra ∩W
2
w;820

� for every p ∈ AP , Vw(p) = V (p) ∩Ww.

We remark that Definition 3.9 applies to any model M and it is tantamount to

restricting the components of M to the set of states reachable from the selected world

w.

We now state the following preservation result on the submodel construction.825

Proposition 3.10. For y ∈ {all , bool ,modal , full} and τ ⊆ {r, t, s}, if a frame F belongs

to Kτy then also Fw ∈ Kτy . In particular, F ∈ Key implies Fw ∈ Key .

By the following lemma formulas in Lsopml are preserved on generated submodels.

Lemma 3.11. Let M be a model and consider submodel Mw for w ∈ W . For every

v ∈Ww and φ ∈ Lsopml ,830

(M, v) ⊧ φ iff (Mw, v) ⊧ φ
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As an immediate corollary of Lemma 3.11 we have that, for every w ∈W , (M,w) ⊧ φ

iff (Mw,w) ⊧ φ.

Now let Kuniv be the class of universal frames, that is, the frames where every world is

accessible from any other world. In universal (epistemic) frames the common knowledge

operator C acts clearly as the universal modality. Also, every generated submodel is835

based on a frame in Kuniv . As a consequence of Lemma 3.11, we have the following

result.

Corollary 3.12. For y ∈ {all , bool ,modal , full},

Th(Key) = Th(Key ∩Kuniv)

By Corollary 3.12 we can assume without loss of generality that, as long as we are

interested in validity, the common knowledge operator C acts as the universal modality840

on the set W of worlds. This fact will be used in Section 3.3 for the completeness proof

of SOPEL.

3.2 Local Properties in Modal Logic

In the introduction we discussed the difference between a global property as expressed

by the modal schema (i) ◻aϕ → ϕ, whose validity entails that the accessibility relation845

in a given frame is reflexive, and a local property such as the one represented by the

SOPML formula ∀p(◻ap → p) that, as we shall see, implies that Ra(w,w) holds in all

and only worlds w where the formula is evaluated to true. Along this line, [119–121] put

forward a sophisticated account to express local properties, by introducing dedicated

modal operators to a basic propositional modal logic. In order to present the language850

of local properties in modal logic, or LPML, to compare the two approaches, and more

generally to discuss the expressive power of SOPML, we consider a monadic second-order

logic and a first-order fragment interpreted on Kripke frames.

Given a frame F = ⟨W,D,R⟩ and a set AP of atoms, we define an MSO alphabet

containing binary predicate constants R∗
A and Ra for every index a ∈ I and set A ⊆ I, a855

unary predicate variable P for every atom p ∈ AP , and a set X of individual variables.

Then, MSO formulas Θ ∈ Lmso are defined in BNF as follows:

Θ ∶∶= P (x) ∣ x = y ∣ Ra(x, y) ∣ R∗
A(x, y) ∣ ¬Θ ∣ Θ→ Θ ∣ ∀xΘ ∣ ∀PΘ

where a ∈ I, A ⊆ I, and x, y ∈ X .
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We also consider the following first-order fragment Lfo of MSO:

Θ ∶∶= x = y ∣ Ra(x, y) ∣ ¬Θ ∣ Θ→ Θ ∣ ∀xΘ

The first-order language Lfo is obtained from Lmso by removing predicate quantifi-860

cation obviously, but also the clauses for unary predicates as well as binary relation

R∗
A. This is indeed the first-order language considered in [121]. Moreover, we denote as

L1fo the fragment of Lfo containing formulas with at most one free individual variable.

This fragment is well-known to be rich enough to express properties of frames such as

reflexivity, symmetry, and transitivity.865

As regards the interpretation of MSO and FO formulas, an assignment ρ now is a

function associating a world w ∈ W to every individual variable x, and a set U ∈ D to

every predicate variable P . For w ∈ W and U ∈ D, the variants ρxw and ρPU are defined

similarly to SOPML.

Definition 3.13 (Semantics of MSO). We define whether frame F = ⟨W,D,R⟩ satisfies870

formula Θ ∈ Lmso for an assignment ρ, or (F , ρ) ⊧ Θ, as follows:

(F , ρ) ⊧ P (x) iff ρ(x) ∈ ρ(P )

(F , ρ) ⊧ x = y iff ρ(x) = ρ(y)

(F , ρ) ⊧ Ra(x, y) iff Ra(ρ(x), ρ(y))

(F , ρ) ⊧ R∗
A(x, y) iff R∗

A(ρ(x), ρ(y))

(F , ρ) ⊧ ¬Θ iff (F , ρ) /⊧ Θ

(F , ρ) ⊧ Θ→ Θ′ iff (F , ρ) /⊧ Θ or (F , ρ) ⊧ Θ′

(F , ρ) ⊧ ∀xΘ iff for all w ∈W , (F , ρxw) ⊧ Θ

(F , ρ) ⊧ ∀PΘ iff for all U ∈D, (F , ρPU) ⊧ Θ

Obviously Definition 3.13 induces an interpretation of formulas in Lfo as well. In

particular, for a formula Θ(x) ∈ L1fo , we write (F ,w) ⊧ Θ to denote that (F , ρ) ⊧ Θ for

ρ(x) = w, and F ⊧ Θ if (F ,w) ⊧ Θ for all w ∈ W . The different interpretations of the

satisfaction relation ⊧ for SOPML and MSO respectively will be clear from the context.875

We now briefly recall some basic modal theory on local definability: we refer the

interested reader to [47, 48] for further details. We use θ (or θ(a⃗, p⃗) to emphasise

sequences a⃗ of indices and p⃗ of atoms) for formulas in Lml . Likewise, we use Θ ∈ L1fo for

first-order formulas with at most one free variable interpreted over states (or Θ(a⃗, x) to

denote that Θ mentions a⃗ as indices and has x as the free variable).880

Definition 3.14. Let θ ∈ Lml and Θ ∈ L1fo ,
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1. θ defines frame property Θ iff for all frames F , F ⊧ θ iff F ⊧ Θ.

2. θ locally defines Θ iff for all F and all w ∈ F , (F ,w) ⊧ θ iff (F ,w) ⊧ Θ.

As examples of Definition 3.14, consider the well-known schemes T ◻aϕ → ϕ, 4

◻aϕ → ◻a ◻a ϕ, and B ϕ → ◻a ◇a ϕ, that (locally) define the properties of reflexivity,885

transitivity, and symmetry on frames.

In the theory of PML, when formula θ locally defines Θ and some other mild con-

ditions hold, one obtains the following connection between axiomatisation and com-

pleteness: if an axiomatisation Ax is complete for a class K of frames, then Ax + θ

is complete for class {F ∈ K ∣ F ⊧ ∀xΘ} of frames satisfying condition Θ. So for890

instance, taking the basic modal logic K, which is sound and complete with respect

to the class K of all frames, the logic K + T is sound and complete with respect to

class {F ∈ K ∣ F ⊧ ∀xRa(x,x)}, that is, the class of reflexive frames. As further

examples, whereas S5 = K + T + 4 + B is sound and complete with respect to class

S5 = {F ∈ K ∣ Ra is an equivalence relation}, the logic S5 + (◻bϕ → ◻cϕ) is sound and895

complete with respect to {F ∈ S5 ∣ F ⊧ ∀x(Rc(x) ⊆ Rb(x))}.

This is an appealing modular feature of modal logic. Yet, as also remarked in ([119–

121]), this can only be applied if one adds formula θ as a global property: assuming θ

as an axiom implies that it becomes a validity. For instance, adding formula Baϕ → ϕ

to an axiom system, in order to model that agent a’s beliefs are correct, implies that900

in the resulting logic, it is common knowledge that a’s beliefs are correct, and this

fact will remain true no matter what happens. Likewise, by adding Kbϕ → Kcϕ as an

axiom for modelling that c is at least as knowledgeable as b, in the resulting frames and

models it will be common knowledge that c knows whatever b knows, and this will again

remain true no matter what happens. Thus, it is of interest to study formalisms that905

can express properties like: ‘although a’s beliefs are correct, b does not know this’ and

‘c knows everything that b knows, but after b opens the letter, this ceases to hold’. By

using propositional quantification we can intuitively formalise such expressions as

∀p(Bap→ p) ∧ ¬Kb∀p(Bap→ p) (3.7)

and

∀p(Kbp→Kcp) ∧ [readb]∃q(Kbq ∧ ¬Kcq) (3.8)

respectively.910

To compare our approach based on SOPML to van Ditmarsch et al.’s LPML, we

first provide a brief account of the latter.
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θ(a⃗, p⃗) Θ(a⃗, x) ⊡(a⃗)

◻ap→ ◻bp ∀y(Rb(x, y)→ Ra(x, y)) Sup(a, b)
◻cp→ ◻a ◻b p ∀y, z(Ra(x, y) ∧Rb(y, z)→ Rc(x, z)) Trans(a, b, c)
¬ ◻a � ∃yRa(x, y) Ser(a)
◻ap→ p Ra(x,x) Refl(a)
¬ ◻a p→ ◻b¬ ◻c p ∀y, z(Ra(x, y) ∧Rb(x, z)→ Rc(y, z)) Eucl(a, b, c)
¬ ◻a p→ ¬ ◻b ◻cp ∀z(Ra(x, z)→ ∃yRb(x, y) ∧Rc(y, z)) Dens(a, b, c)
(¬ ◻a p ∧ ¬ ◻b q)→ ¬ ◻c (p ∨ q) ∀y, z((Ra(x, y) ∧Rb(x, z))→ (y = z ∧Rc(x, y)) Func(a, b, c)

Table 3.1: as in [12, Table 1] Θ(a⃗, x) is a property of state x, and ⊡(a⃗) is a name in
the object language such that ⊡(a⃗) holds at w iff Θ(a⃗, x) holds in M for ρ(x) = w.

3.2.1 Local properties and LPML

This section on LPML is based on [119–121]: we refer the reader to these references for a

more extensive exposition. The term ‘logic’ is maybe not appropriate for LPML, rather,915

it is a specific approach to ‘connect’, in a modal object language, a modal formula θ ∈ Lml

and a first-order property Θ ∈ L1fo through the introduction of a relational atom ⊡ (or

⊡(a⃗)), in such a way that on Kripke models ⊡ is interpreted as Θ locally. More precisely,

the language of LPML extends Lml with formulas of type ⊡(a⃗), whose interpretation is

provided by an associated formula Θ⊡(a⃗, x) ∈ L
1
fo , according to the following satisfaction920

clause:

(F , V,w) ⊧ ⊡(a⃗) iff (F ,w) ⊧ Θ⊡(a⃗, x) (3.9)

By clause (3.9) we say that formula ⊡(a⃗) expresses locally first-order property Θ⊡

(at w).

Then, LPML investigates how operator ⊡ can help us, in the object language, to

build a bridge between modal formulas θ⊡ on the one hand, and first-order properties925

Θ⊡ that θ⊡ locally defines on the other. So, for instance, we can have ⊡(a) = Refl(a)

for Θ⊡(a, x) = Ra(x,x), or ⊡(b, c) = Sup(b, c) for Θ⊡(b, c, x) = ∀y(Rc(x, y) → Rb(x, y))

(for more examples, see Table 3.1). In LPML, property (3.7) is then represented as

Refl(a) ∧ ¬KbRefl(a), while property (3.8) is given as Sup(b, c) ∧ [readb]¬Sup(b, c).

Recalling that operator ⊡ is part of the object language of LPML, [121] then adds to930

the basic modal logic K, for specific formulas θ⊡ ∈ Lml , an axiom Ax⊡ and an inference

rule R⊡. Further, [121, Theorem 2] provides a sufficient condition on the relationship

between θ⊡,⊡ and Θ⊡, called local harmony, under which K+Ax⊡ +R⊡ is a sound and

complete axiomatisation for the class of models that satisfy Θ⊡.

Definition 3.15 (Local Harmony). Formulas θ(a⃗, p⃗) ∈ Lml , Θ(a⃗, x) ∈ L1fo , and ⊡(a⃗) in935

LPML are in local harmony iff (i) θ (locally) defines Θ, and (ii) ⊡ expresses Θ locally.
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Now, one could say that LPML as a language is at least as expressive as first-order

logic over binary relations, as there are no restrictions, in the object language, on the

relational atoms ⊡ that can be added to standard PML. However, the aim of LPML is

not to express arbitrary first-order properties Θ, but to reason locally about properties940

like veridicality of agent a’s beliefs, or an agent c knowing more than b. In particular,

there has to exist a modal formulas θ that (locally) defines Θ. LPML expresses such

first-order properties by adding atoms like Refl(a) and Sup(b, c), respectively. We reckon

that SOPML, allowing for quantification over propositions, is an alternative way to study

local properties which is at least as natural as LPML, provably more expressive.945

3.2.2 Local properties, LPML and SOPML

We now show that if formulas Θ⊡(a⃗, x) and θ⊡(a⃗, p⃗) are in local harmony with some

atom ⊡(a⃗), then ⊡(a⃗) is equivalent to ∀p⃗θ(a⃗, p⃗) ∈ Lsopml , within the class of full frames.

Hence, SOPML is at least as expressive as LPML in expressing local properties.

Theorem 3.16. Suppose that θ(a⃗, p⃗), ⊡(a⃗), and Θ(a⃗) are in local harmony. Then, for950

every full model M and world w,

(M,w) ⊧ ∀p⃗θ(a⃗, p⃗) iff (M,w) ⊧ ⊡(a⃗)

Theorem 3.16 implies in a sense that what can be done in LPML, can also be done

in SOPML: if θ(a⃗, p⃗), ⊡(a⃗) and Θ(a⃗) are in local harmony, then, to reason locally about

a scheme θ, one can either use the universal closure ∀p⃗θ in SOPML, or atom ⊡(a⃗)

in LPML. The result also suggests ways in which SOPML may be more appropriate955

to reason about local properties, namely cases where Θ is not locally defined by any

formula θ ∈ Lml , or, conversely, when θ does not define a first-order property Θ locally.

Hereafter we consider such cases.

Example 3.5. Consider the following first-order formulas:

� Θ1 = ¬Ra(x,x) (irreflexivity)960

� Θ2 = ∃x1, . . . , xn⋀i≤n(Ra(x,xi) ∧⋀i≠j≤n xi ≠ xj) (having at least n Ra-successors)

� Θ3 = ∀y(Ra(x, y) ∧Ra(y, x)→ x = y) (anti-symmetry)

� Θ4 = ∀y(Rb(x, y)→ ¬Ra(x, y)) (Ra and Rb have empty intersection)

� Θ5 = ∀y(Ra(x, y) ∧Rb(x, y) → Rc(x, y)) (Rc contains the intersection of Ra and

Rb).965
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It is well-known that these first-order properties are not definable in modal logic

[47, 48]. However, consider the following formulas in SOPML

� ϕ1 = ∃p(◻ap ∧ ¬p)

� ϕ2 = ∃p1, . . . , pn(⋀i≤n◇a(pi ∧⋀j≤n,j≠i ¬pj))

� ϕ3 = ∃p(p ∧ ∀q(◇a(q ∧◇ap)→ q))970

� ϕ4 = ∃p(◻ap ∧ ◻b¬p)

� ϕ5 = ∀p(◻cp→ ∃q(◻aq ∧ ◻b(q → p)))

which locally define Θ1 to Θ5 on full frames. We show this result in the following lemma.

Lemma 3.17. Consider formulas ϕi ∈ Lsopml and Θi ∈ L
1
fo in Example 3.5, for i =

1, . . . ,5. Let F be a full frame, then975

F ⊧ ϕi iff F ⊧ Θi

As a consequence of Lemma 3.17, SOPML is strictly richer than LPML, as in the

former we can express properties Θ1-Θ5 that cannot be expressed in the latter.

Example 3.6 (Distributed Knowledge). To come back to an example from epistemic

logic, an interesting notion in collective knowledge is that of distributed knowledge Dϕ.

The intuition here is that distributed knowledge is the knowledge of a ‘wise man’ (cf. [64])980

with whom all agents have shared their knowledge. The typical example is a situation

where, for instance, one agent knows ϕ, another knows that ϕ→ ψ, implying distributed

knowledge of ψ. A more concrete example goes as follows: it is distributed knowledge in

every group of agents (provided everybody knows its own birthday) whether two agents

share their birthday. The notion of distributed knowledge Dϕ for n agents has an ax-985

iomatisation that is sound and complete with respect to models where the corresponding

relation RD is the intersection of all the individual agents’ accessibility relations. How-

ever, intersection is not locally definable in modal logic (for more on a discussion on

modal properties of distributed knowledge, or implicit knowledge as it is sometimes called,

see for instance [84, 103].) However, in SOPML, by using formula ϕ5 in Example 3.5990

we can express that agent c knows exactly what the distributed knowledge of agents a

and b is:

∀p(Kap→Kcp) ∧ ∀p(Kbp→Kcp) ∧ ∀p(Kcp→ ∃q(Kaq ∧Kb(q → p))) (3.10)

Notice that (3.10) uses exactly the idea of the typical example of distributed knowledge

between two agents discussed above: if agent c knows some fact p, i.e., p is distributed
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knowledge between a and b, then there exists some fact q such that a knows q and b995

knows q → p. So, they are able to derive p by pooling together their knowledge.

Can we generalise this to n agents? Indeed we can, as follows. Define

ϕ = ∀p(Dp→ ∃q1 . . .∃qn−1(K1q1 ∧ ⋅ ⋅ ⋅ ∧Kn−1qn−1 ∧Kn(⋀
i<n

qi → p))

and let

Θ = ∀y((R1(x, y) ∧ ⋅ ⋅ ⋅ ∧Rn(x, y)→ RD(x, y))

Then, we can prove the following result.

Proposition 3.18. For every full frame F , (F ,w) ⊧ ϕ iff (F ,w) ⊧ Θ(x).1000

The proof is a generalisation of the proof of Lemma 3.17(5). It follows that operator

D locally expresses the distributed knowledge of ψ among agents 1, . . . , n:

⋀
i≤n

∀p(Kip→Dp) ∧ ϕ ∧Dψ

From Examples 3.5 and 3.6 it follows that SOPML is more expressive than proposi-

tional modal logic, and it can also express local properties that cannot be dealt with in

LPML. Example 3.5 also indicates when SOPML can axiomatise frames that cannot be1005

characterised in PML: for instance, formula ∃p(◻p∧¬p) characterises irreflexive frames,

in the same way as ∃p(◻p ∧ ◇ ◇ ¬p) characterises intransitive frames. Venema [124]

calls such characterisations negatively definable. The idea here is the following: suppose

that formula θ ∈ Lml locally defines some property Θ; is there a modal formula that

locally defines ¬Θ? As an example, whereas Ra(x,x) is (locally) defined by ◻ap → p,1010

the negation ¬R(x,x) is not (locally) defined by ¬(◻p → p), or equivalently, ◻ap ∧ ¬p,

since this would require that on frames for this formula, atom p were false. Gabbay

[69] came up with a derivation rule, rather than an axiom, to characterise irreflexivity;

while [124] analyses more generally when a negative characterisation of some class of

frames also leads to an axiomatisation of such class. For our discussion, it is important1015

to realise that reflexivity is actually characterised by a modal scheme ◻aϕ → ϕ, and,

in contrast, by formula ∀p(◻ap→ p) in SOPML. But then, irreflexivity is characterised

by the negation of that SOPML formula: ∃p(◻p ∧ ¬p). Moreover, notice that SOPML

allows us to interpret such formulas locally, so that we can reason about models that

have both reflexive and irreflexive points.1020

From Example 3.5 we also learn that there are first-order properties Θ that cannot

be characterised by any modal formula θ ∈ Lml , while we do have a formula in SOPML



Completeness Results for SOPML 36

characterising it. It is also possible to come up with formulas in SOPML that do not

correspond to any first-order formula (hence, in SOPML one could reason locally about

them, but not in LPML.) A first example of such formulas is ∃p¬δ for δ = (◇p∧◇◻¬p)→1025

◇(◻−1◇p∧◻¬p) (here ◻−1 is interpreted as the converse of relation R for ◻). As argued in

[124], although δ as a scheme characterises Dedekind-complete frames among the linear

orderings, the frames for ¬δ are not elementary, and hence not first-order definable. A

further example is Löb formula ∀p(◻(◻ → p) → ◻p): this formula characterises frames

with R being transitive and its converse well-founded [124, p. 8].1030

To conclude our comparison between SOPML and LPML, we observe that the ⊡

operators act in fact as a sort of linguistic black boxes, bringing the metalanguage of

the theory of first-order logic into the object language of modal logic. In constrast,

SOPML is more transparent, as everything is done in the object language. In addition,

for the first-order conditions in [121] there must always be a suitable modal counterpart.1035

Indeed, the axioms Ax⊡ ∶ ⊡(a⃗) → θ⊡(a⃗, p⃗) in [121] make sense only as long as there is a

propositional modal formula θ⊡ related to ⊡, and this is not always the case as discussed

above. We will see later that none of the above has to be assumed to axiomatise SOPML.

3.2.3 Monadic Second-order Logic

We conclude this section by analysing the expressiveness of second-order propositional1040

modal logic through a correspondence between SOPML and monadic second-order logic

(MSO), that extends the standard translation between modal and first-order logic [47].

More specifically, ST is the translation between SOPML and MSO defined as follows:

STx(p) = P (x)

STx(¬φ) = ¬STx(φ)

STx(φ→ φ′) = STx(φ)→ STx(φ
′)

STx(◻aφ) = ∀y(Ra(x, y)→ STy(φ))

STx(◻
∗
Aφ) = ∀y(R∗

A(x, y)→ STy(φ))

STx(∀pφ) = ∀P (STx(φ))

Clearly, for every formula φ ∈ Lsopml , STx(φ) ∈ Lmso is a formula where x is the

only free individual variable. If ψ ∈ Lml is a purely propositional modal formula, then1045

STx(ψ) ∈ Lfo is a first-order formula, as obtained via the standard translation. In

particular, STx(ψ) belongs to L1fo .

We can now prove the following preservation result for the standard translation, that

will be used later in the completeness proof.



Completeness Results for SOPML 37

Lemma 3.19. For every model M = ⟨F , V ⟩, world w ∈W , and formula ψ ∈ Lsopml ,1050

(M,w) ⊧ ψ iff (F , ρ) ⊧ STx(ψ)

whenever ρ(x) = w and ρ(Pi) = V (pi).

As a consequence of Lemma 3.19, there is a one-to-one correspondence between

formulas in SOPML and their standard translations in MSO in the following sense:

a frame F validates the universal closure ∀p⃗ψ of a formula ψ ∈ Lsopml iff property

∀x∀P⃗STx(ψ) ∈ Lmso holds in F , where P⃗ are all the unary predicates appearing in1055

STx(ψ). We observe that this is not the case for propositional modal logic in general.

For instance, for the McKinsey formula ◻◇ p→◇◻ p there is no first-order principle Θ

such that Θ holds in all and only frames validating the McKinsey formula.

3.3 Completeness and Model Checking

In this section we present two theoretical results regarding second-order propositional1060

modal logic. First, by building on [43, 66] we provide sound and complete axiomatisa-

tions for various classes of validities, defined on a number of classes of models for SOPML.

In particular, we will show that the operator ◻∗ (or, rather, common knowledge) is key

to obtain a complete axiomatisation of epistemic models with respect to SOPEL. Fur-

ther, we will analyse the model checking problem and prove that its complexity is no1065

worse than for quantified boolean logic. These results give us useful insights into the

computational complexity of SOPML, as well as its amenability for knowledge repre-

sentation and reasoning. Specifically, we are able to demonstrate that in many cases of

interest the computational properties of SOPML are no worse than that of the purely

propositional case.1070

3.3.1 Semantic Completeness

This section is devoted to axiomatise several classes of validities on Kripke frames built

on sets I of indexes and AP of atomic propositions. We first present a class Kx of logics,

one for each x ∈ {ap,pl ,ml , sopml}. In the following, ◻ is a placeholder for any of modal

operators ◻a and ◻∗A, for a ∈ I and A ⊆ I.1075

Definition 3.20 (Logic Kx). For each x ∈ {ap,pl ,ml , sopml}, the axioms and inference

rules of Kx are as follows:
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Prop all instances of propositional tautologies

K ◻(φ→ ψ)→ (◻φ→ ◻ψ)

T ◻∗Aφ→ φ

4 ◻∗Aφ→ ◻∗A ◻
∗
A φ

C1 ◻∗Aφ→ ⋀a∈A ◻a(φ ∧ ◻
∗
Aφ)

C2 from φ→ ⋀a∈A ◻a(ψ ∧ φ) infer φ→ ◻∗Aψ

Exx ∀pφ→ φ[p/ψ], where ψ ∈ Lx

BF ∀p ◻ φ→ ◻∀pφ

MP from φ→ ψ and φ infer ψ

Nec from φ infer ◻φ

Gen from φ→ ψ infer φ→ ∀pψ, for p not free in φ

On top of that, Ksopml also includes axiom1080

At ∃p(p ∧ ∀q(q → ◻∗(p→ q)) ∧⋀a∈I ∀r(◇ar → ◻∗(p→◇ar)))

The axioms Prop and K are standard of any modal logic, as are rules Modus Ponens

(MP) and Necessitation (Nec). Axioms T, 4, C1 and inference rule C2 guarantee that

◻∗A is interpreted as the reflexive and transitive closure of the various ◻a, for a ∈ A:1085

T and 4 ensure reflexivity and transitivity respectively, C1 is the ‘elimination’ rule for

◻∗A, as it enables to derive arbitrary iterations ◻a1 . . . ◻an φ from ◻∗Aφ, and C2 is the

‘introduction’ or ‘induction’ rule for ◻∗A. Axiom BF is known as the Barcan formula and

it intuitively says that the domain D of interpretation is the same for all worlds in W : if

for all assignments something holds in all reachable worlds, then in all reachable worlds,1090

it holds for all assignments (this would not be the case if in a a-successor world, the

domain D′ of intepretation were bigger than D, for instance.) In Example 3.7 we will

demonstrate that the converse of BF is derivable in all Kx. The scheme of axioms Exx

and the generalisation rule Gen are typical of first-order settings. Scheme Exx is the

elimination axiom for ∀: if something holds for all valuations, then it also holds for each1095

instance from the domain (which can be the set of all atoms, boolean formulas, modal

formulas, or SOPML formulas.) The rule Gen of generalisation is the introduction rule

for ∀: if ψ follows from φ for an arbitrary p, we infer that ∀pψ follows from φ.

Notice that axiom At is only part of logic Ksopml . It modifies the homonymous

axiom appearing in [66] to take into account the multi-modal setting. Semantically, this1100

formula is true at a world w if {w} ∈ D. To see this, take assignment V for which

V (p) = {w}. Then whichever property ψ holds in w (q and ◇r being specific instances),

in all worlds reachable from w, property (p→ ψ) will hold: for w itself, this is so because
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both p and ψ hold; for any world reachable from w, different from w, this is so because

p is false at that successor. More generally, At holds on frames that are atomic:1105

Definition 3.21 (Atomicity). A frame F = ⟨W,D,R⟩ is atomic if for every w ∈W there

is U ∈ D such that (i) w ∈ U ; (ii) for all U ′ ∈ D, w ∈ U ′ implies U ⊆ U ′; and (iii) for all

u ∈ U , U ′ ∈ D, and a ∈ I, if Ra(w,w
′) for some w′ ∈ U ′, then Ra(u,u

′) holds for some

u′ ∈ U ′. We call such U ∈D an atom (of F).

Loosely speaking, At holds in w if there is an atom U containing w and such that1110

all worlds in U have access to the same sets U ′ in D as w. Clearly, for every w ∈W , the

atom containing w is unique.

As customary in PML, by considering a suitable combination of axioms

T ◻φ→ φ

B φ→ ◻ ◇ φ

4 ◻φ→ ◻ ◻ φ
1115

we can introduce the following normal extensions of Kx, for x ∈ {ap,pl ,ml , sopml}:

Tx ∶= Kx +T

S4x ∶= Kx +T + 4

Bx ∶= Kx +T +B

S5x ∶= Kx +T +B + 4

This gives us our 20 logics, 5 for each type x ∈X.

The notions of proof and theoremhood are defined as standard. A formula φ is1120

derivable in logic L from a set ∆ of formulas, or ∆ ⊢L φ, iff for some φ0, . . . , φm ∈ ∆,

formula ⋀i≤m φi → φ is a theorem in L, or ⊢L ⋀i≤m φi → φ.

Example 3.7. As an example, we provide a proof of the converse of the Barcan formula

CBF ◻∀pφ→ ∀p ◻ φ in Kap:

1. ∀pφ→ φ by axiom Exap

2. ◻(∀pφ→ φ)→ (◻∀pφ→ ◻φ) by axiom K

3. ◻(∀pφ→ φ) from (1) by rule Nec

4. ◻∀pφ→ ◻φ from (2), (3) by rule MP

5. ◻∀pφ→ ∀p ◻ φ from (4) by rule Gen, as p is not free in ◻∀pφ

Since CBF is derivable in Kap, it is derivable in all the other 19 logics mentioned so1125

far.
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We now prove the soundness and completeness results for some of the logics Lx

with respect to the corresponding class Kτx̂ of Kripke frames, starting with soundness.

Hereafter, given a logic Lx, let τ(Lx) be a subset of {r, t, s}, such that Lx includes axiom

T iff τ contains r (for reflexivity), Lx includes axiom 4 iff τ contains t (for transitivity),1130

and Lx includes axiom B iff τ contains s (for symmetry).

Theorem 3.22 (Soundness). Recall that X = {ap,pl ,modal , sopml} and ̂= {(ap,all),

(pl , bool), (ml ,modal), (sopml , full)}. For x ∈X and every formula φ ∈ Lsopml ,

⊢Lx φ implies K
τ(Lx)
x̂ ⊧ φ

As a consequence of Theorem 3.22, all our 20 logics are sound with respect to the

corresponding classes of frames.1135

Before moving to the completeness proof, we state some negative results already

stated in [66].

Theorem 3.23. For ∣I ∣ = 1, the theories Th(Kτfull) are not axiomatisable for τ ⊆ {r, t}

and τ = {rs}.

No result is available in the literature for classes Ksfull and Ktsfull of symmetric and1140

symmetric, transitive full frames. Here we provide a complete axiomatisation for the

class Kefull of epistemic full frames, among others. Hence, our result is in contrast with

Theorem 3.23. We immediately state the completeness result. Here we use the notation

of Theorem 3.22.

Theorem 3.24 (Completeness). For x ∈ {ap,pl}, and every φ ∈ Lsopml ,1145

K
τ(Lx)
x̂ ⊧ φ implies ⊢Lx φ

Moreover,

Kefull ⊧ φ implies ⊢S5sopml
φ

Theorem 3.24 guarantees completeness of logics of type x, with respect to models

of sort x̂, for the types of atomic propositions and propositional formulas. Complete-

ness also holds if we add properties such as reflexivity, transitivity, and symmetry to

the frames, as long as we add the corresponding axioms from {T,4,B} to the logic.1150

The theorem also states completeness for logic S5sopml with respect to full frames with

equivalence relations. To our knowledge this is the first completeness result for SOPML

in a multi-agent setting. Most importantly, by using common knowledge and axiom
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At we are able to prove that logic S5sopml is complete, differently to what stated in

Theorem 3.23 for modalities weaker than S5. On the other hand, our method does not1155

apply to modal frames. Hence, the completeness result for the class of modal frames

remains an open problem.

To prove Theorem 3.24 for x ∈ {ap,pl}, we show that if a formula φ is Lx-consistent,

then we can construct an appropriate model MLx that satisfies φ. For logic Lap (re-

spectively, Lpl ) this amounts to finding a model whose underlying frame is any frame1160

(respectively, a boolean algebra). As regards S5sopml, more work is needed.

3.3.1.1 Completeness of Lap and Lpl

In this section we show that if a formula φ is Lx-consistent for x ∈ {ap,pl}, that is,

⊬Lx ¬φ, then we can construct a (canonical) model MLx = ⟨F , V ⟩ that satisfies φ.

Moreover, F is shown to belong to the appropriate class K
τ(Lx)
x̂ of frames. This implies1165

that K
τ(Lx)
x̂ /⊧ ¬φ. Hereafter we prove this result first for x = ap, and then introduce

the changes to be made for x = pl . For readability, we omit the subscript ap whenever

clear by the context. First of all, we present some useful notions. We define Sub∗(φ)

as the set of all subformulas of φ, together with formulas θ ∧ ◻∗Aθ and ◻a(θ ∧ ◻
∗
Aθ) for

every subformula ◻∗Aθ of φ and a ∈ A. Further, let Sub¬(φ) be the set of all formulas in1170

Sub∗(φ) as well as their negations. More formally,

Sub∗(φ) ∶= Sub(φ) ∪ {θ ∧ ◻∗Aθ,◻a(θ ∧ ◻
∗
Aθ) ∣ ◻∗Aθ ∈ Sub(φ) and a ∈ A}

Sub¬(φ) ∶= Sub∗(φ) ∪ {¬θ ∣ θ ∈ Sub∗(φ)}

Notice that Sub∗(φ) and Sub¬(φ) are finite by construction.

Next we introduce some terminology on sets of formulas.

Definition 3.25. Let Λ,Σ ⊆ Lsopml be sets of formulas over set AP of atoms, and Y a

denumerable set of atoms. Let φ ∈ Lsopml and define1175

∼ φ =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

φ′ if φ = ¬φ′

¬φ otherwise

We say that Λ is closed under single negation if for each φ ∈ Λ, either φ is of the

form ¬φ′ for some φ′ ∈ Λ, or else ¬φ ∈ Λ. Moreover, Λ is

Lx-consistent iff Λ /⊢Lx �
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Σ-complete iff for every formula φ ∈ Σ, φ ∈ Λ or ∼ φ ∈ Λ

Σ-maximal iff Λ is consistent and Σ-complete

Y -rich iff for every φ over AP , if ∃pφ ∈ Λ then φ[p/q] ∈ Λ for some q ∈ Y

Y -universal iff for every φ over AP , if ∀pφ ∈ Λ then φ[p/q] ∈ Λ for every q ∈ Y

Σ−saturated iff Λ is Σ-maximal, Y -rich and Y -universal for some Y ⊆ AP

Hereafter we omit the subscript Lx whenever clear by the context. We may also

omit reference to Σ if Σ = Lsopml .

By the next lemma every consistent set of formulas can be extended to a maximal1180

set.

Lemma 3.26 (Maximality). Suppose that Σ is closed under single negation. If a set

∆ ⊆ Σ is consistent, then there exists a Σ-maximal set Φ ⊇ ∆.

Now we show that a Σ-maximal set Φ can be extended to obtain a Ω-saturated set

Γ, for some Ω ⊆ Lsopml . First, we present the procedure informally, referring to the1185

construction in the saturation lemma below. The issue with Φ is that it might contain

existential formulas ∃pψ, for which there is no witness q such that ψ[p/q] ∈ Φ. Hence,

we consider such a new atom q and add ψ[p/q] to Φ: this can be done consistently as

q, being new, does not appear in ψ, and therefore it can substituted for p in ψ. We

repeat the procedure for all existential formulas in Φ. The result is a consistent set1190

Γpre
1 , which also contains a witness for every existential formula in Φ. However, this

procedure has two consequences: on one hand, we add formulas ψ[p/q] to Φ, whose

subformulas are not necessarily decided by Φ. On the other, for every universal formula

∀pθ, the substitution θ[p/q] is admissible, but subformulas of θ[p/q] are not decided

either. Hence, we consider all subformulas of the various ψ[p/q] and θ[p/q], and proceed1195

to maximise Γpre
1 against these subformulas, similarly as shown in Lemma 3.26. The

outcome is a maximal and rich set Γ1, with witnesses for all existential formulas in Φ.

However, new existential formulas might have been introduced in the step from Γpre
1 to

Γ1, which have to be taken care of. Therefore, we repeat these steps and build an infinite

sequence Φ = Γ0,Γ
pre
1 ,Γ1,Γ

pre
2 ,Γ2 . . . of sets of formulas. Finally, we show that the union1200

of all the sets in the sequence is a saturated set as desired.

Lemma 3.27 (Saturation). Let Σ be closed under single negation, and let Φ be Σ-

maximal. Then there exists a set Ω ⊇ Σ of formulas in Lsopml , closed under negation,

and a set Γ of formulas over AP∪Y, where Y is an infinite set of new variables, such

that Γ ⊇ Φ, and Γ is Ω-saturated.1205

Observe that, in the construction of Γ, only witnesses for existential formulas and

exemplifications of universal formulas are introduced (as well as subformulas thereof).
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Hence, Γ really contains only alphabetical variants of the formulas in Sub¬(φ). On the

other hand, all modal formulas in Γ have bounded modal depth. These features are

key for the completeness proof, specifically for the truth lemma, and it also prevents1210

the application of the method developed here to the class of modal frames. Indeed,

saturated sets are infinite in general because of quantification; whereas there is only a

finite number of types of modal formulas.

We now describe the construction of the canonical model for a formula φ such that ⊬

¬φ. First, define W as the set of all saturated sets w of formulas over AP ∪ Y as1215

obtained in Lemmas 3.26 and 3.27 starting from Sub¬(φ). Notice that W is non-empty

as the set {φ} ⊆ Sub¬(φ) is consistent by hypothesis, and by Lemma 3.27 there exists

a saturated set Γ ⊇ {φ} in W . Further, for w,w′ ∈ W and a ∈ I, define Ra(w,w
′) iff

{φ ∣ ◻aφ ∈ w} ⊆ w′. Finally, for every new atom p in Lemma 3.27, we consider a set

Up = {w ∈W ∣ p ∈ w} ⊆W and define the domain D of propositions as {Up ∣ p ∈ Q}.1220

We can then introduce the canonical model for a consistent formula φ.

Definition 3.28 (Canonical Model). The canonical model for an L-consistent formula

φ is a tuple ML = ⟨W,D,R,V ⟩ where (i) W , D and R are defined as above; and (ii) V

is the assignment such that w ∈ V (p) iff p ∈ w.

Next we prove that the canonical model with respect to any logic Lap is indeed1225

a model based on a frame in K
τ(Lap)

all (recall that âp = all and that Lap represents 5

different logics: Kap ,Tap ,S4ap ,Bap , and S5ap).

By the remarks above, W is a non-empty set of saturated sets and D is a subset of

2W . Moreover, axiom T (respectively, 4, B) enforces relation Ra on W to be reflexive

(respectively, transitive, symmetric), as it is the case for propositional modal logic.1230

Hence we obtain the following result.

Lemma 3.29. The canonical model MLap in Definition 3.28 is a Kripke model based

on a frame in K
τ(Lap)

all .

We can finally prove the truth lemma for logics Lap . Here we adapt the proof in

[64] for propositional epistemic languages with common knowledge. Indeed the key case1235

concerns operators ◻∗A.

Lemma 3.30 (Truth lemma). For every logic Lap, in the canonical model MLap , for

every w ∈W and every formula ψ ∈ Ω,

(MLap ,w) ⊧ ψ iff ψ ∈ w
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By Lemma 3.30, if ⊬Lap ¬φ then there exists a saturated set w ⊇ {φ} such that in the

canonical model MLap , we have (MLap ,w) ⊧ φ. Moreover, MLap is based on a frame1240

F ∈ K
τ(Lap)
ap . Thus, K

τ(Lap)
ap /⊧ ¬φ. This concludes the completeness proof for Lap .

As regards logic Lpl , we need to modify the definition of saturation, the proof of

Lemma 3.27, the definition of the canonical model, and the proof of the truth lemma.

First, a set Λ of formulas in Lsopml is1245

Y -universal iff for every formula φ over AP , if ∀pφ ∈ Λ then φ[p/ψ] ∈ Λ

for every propositional formulas ψ ∈ Lpl , possibly by propositional

equivalence, built over Y

Σ−saturated iff Λ is Σ-maximal, Y -rich and Y -universal for some Y ⊆ AP

In particular, for Lpl witnesses of existential formulas and instantiations of universal

formulas are propositional formulas ψ ∈ Lpl , built over set Y of atoms, which without

loss of generality can be assumed to be in some canonical representation, for instance,

in conjunctive normal form. By doing so, we have that there is only a finite number of

equivalent propositional formulas.1250

We now state the appropriate version of the saturation lemma for Lpl .

Lemma 3.31 (Saturation). Let Σ be closed under single negation, and let Φ be Σ-

maximal. Then there exists a set Ω ⊇ Σ of formulas in Lsopml , closed under negation,

and a set Γ of formulas over AP∪Y, where Y is an infinite set of new variables, such

that Γ ⊇ Φ, and Γ is Ω-saturated.1255

Notice that the statement of Lemma 3.31 is the same as for Lemma 3.27, but here

we are using a different notion of saturation. In particular, the proof of the lemma is

different in the following: Γi+1 is obtained by saturating Γpre
i+1 with propositional formulas,

rather than simply atoms.

We now introduce the canonical model for Lpl .1260

Definition 3.32 (Canonical Model). The canonical model for an Lpl -consistent formula

φ is a tuple MLpl
= ⟨W,D,R,V ⟩ where

� W is the set of all saturated sets w of formulas over AP ∪ Y as obtained in

Lemma 3.31, starting from Sub¬(φ);

� D is the domain of sets Uψ = {w ∈W ∣ ψ ∈ w} ⊆W , for every propositional formula1265

ψ ∈ Lpl over Q;
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� R and V are given as in Def. 3.28.

Given Def. 3.32 of canonical model, we can show that D is closed under boolean

operations, and therefore MLpl
is indeed a boolean model.

Lemma 3.33. The canonical model MLpl
is boolean.1270

As a consequence of Lemma 3.33, MLpl
is based on a frame in K

τ(Lpl)

bool . Moreover,

we are able to prove the following version of the truth lemma.

Lemma 3.34 (Truth lemma). For every logic Lpl , in the canonical model MLpl
, for

every w ∈W and every formula ψ ∈ Ω,

(MLpl
,w) ⊧ ψ iff ψ ∈ w

As a consequence of Lemma 3.34, the truth lemma also holds for boolean frames and1275

we obtain a completeness proof for Lpl .

We now discuss briefly why the method developed above fails for modal frames. In

modal models each modal formula ψ defines an element in D, that is, the set Uψ of states

satisfying ψ, and by axiom Exml, ψ can be substitued in any formula. As a result, in

the construction of the canonical model we obtain formulas of arbitrary modal depth,1280

while a key feature of the proof for arbitrary and boolean frames is the fact that the

construction of the canonical model make use only of formulas of bounded modal depth.

As a result, the completeness proof for boolean frames is left as an open problem.

3.3.1.2 Completeness of S5sopml

We now establish the completeness of S5sopml with respect to class Kefull . To do this,1285

apart from atomicity of frames, we introduce an additional property on them: complete-

ness.

Definition 3.35 (Completeness of frames). A frame F is complete iff the domain D is

closed under infinite unions and intersections.

Notice that we use ‘complete’ with two different meanings: (i) semantical complete-1290

ness of a logic, and (ii) algebraic completeness of a frame. The context will disambiguate.

We use at and com as subscripts to denote the respective classes of frames. Clearly, every

full frame is boolean, atomic and complete. Hence, Th(Kebool ,at ,com) ⊆ Th(Kefull). The

converse inclusion follows from the next well-known algebraic result.
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Theorem 3.36 ([72]). Every complete atomic boolean algebra is isomorphic to the pow-1295

erset of some set.

By Theorem 3.36 we can prove the following lemma.

Lemma 3.37. Th(Kefull) = Th(Kebool ,at ,com).

In [66] Fine remarks that the language of second-order propositional mono-modal

logic is not rich enough to express algebraic completeness. We prove that this is the case1300

for SOPML as well. To do so, we introduce the Dedekind-MacNeille completion F+ of an

epistemic frame F . First of all, given a set Z ⊆D, let Zu = {U ∈D ∣ U ′ ⊆ U for every U ′ ∈

Z} denote the set of upper bounds of Z, and let Z l = {U ∈D ∣ U ⊆ U ′ for every U ′ ∈ Z} be

the set of lower bounds. The Dedekind-MacNeille completion F+ of F has components

� W + =D;1305

� D+ = {Z ⊆D ∣ (Zu)l = Z}.

� for every a ∈ I and atoms U,U ′, R+
a(U,U

′) iff Ra(u,u
′) for some u ∈ U and u′ ∈ U ′.

Notice that once again each R+
a is well-defined by the definition of atomicity, that is,

if R+
a(U,U

′) then Ra(u,u
′) for some u ∈ U and u′ ∈ U ′. Hence, for every v ∈ U , Ra(v, v

′)

for some v′ ∈ U ′. Moreover, R+
a is an equivalence relation whenever Ra is, and F+ is1310

atomic by construction, as for each atom U ∈ D, ({U}u)l = {U} is an atom in D+. It

is also complete (it is well-known that the completion of a partially ordered set is the

smallest complete lattice that contains the given partial order, see for instance [72].)

Given this background, we are now able to prove the following result.

Lemma 3.38. Th(Kebool ,at ,com) = Th(Kebool ,at)1315

By combining Lemma 3.37 and 3.38 we obtain that Th(Kefull) = Th(Kebool ,at). Thus,

for our purposes it is sufficient to prove completeness of S5sopml with respect to Kebool ,at .

To this aim, we introduce the canonical model MS5sopml
.

Definition 3.39 (Canonical Model). The canonical model for an S5sopml -consistent

formula φ is a tuple MS5sopml
= ⟨W,D,R,V ⟩ where1320

� R and V are given as in Def. 3.28.

� W is the restriction of the set of all saturated sets w of formulas over AP ∪ Y

as obtained in Lemma 3.31, starting from Sub¬(φ), to the states reachable from

Π ⊇ {φ} through the reachability relation R∗
I ;
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� D is the domain of sets Uψ = {w ∈W ∣ ψ ∈ w} ⊆W , for every propositional formula1325

ψ ∈ Lpl over Q;

By Corollary 3.12 and following discussion, the restriction on W can be operated

without loss of generality. We now prove that axiom At ensures atomicity of M in

particular.

Lemma 3.40. The canonical model MS5sopml is boolean and atomic.1330

By Lemma 3.40, we obtain that the canonical model is built on a boolean and atomic

frame. Finally, we state the truth lemma for MS5sopml .

Lemma 3.41 (Truth lemma). In the canonical model MS5sopml
, for every w ∈ W and

every formula ψ ∈ Ω,

(MS5sopml
,w) ⊧ ψ iff ψ ∈ w

We omit the proof as it goes as in Lemma 3.34. This completes the proof for S5sopml.1335

Observe the essential use of common knowledge in the proof of Lemma 3.40. Specifically,

operator C acts as the universal modality in the canonical frame for S5sopml, and this

allows us to quantify over all states belonging to the same atom. This remark fails

for modalities strictly weaker than S5. Thus, common knowledge is key to obtain a

complete axiomatisation for epistemic frames.1340

We conclude this section by summarising the soundness and completeness results for

our logics with respect to the relevant classes of frames.

Theorem 3.42 (Soundness and Completeness). For x ∈ {ap,pl}, each logic Lx is sound

and complete with respect to the class K
τ(Lx)
x̂ of frames that are reflexive (respectively,

transitive, symmetric), whenever Lx includes axiom T (respectively, 4, B).1345

Moreover, the logic S5sopml is a sound and complete axiomatisation of Kefull .

As a result, for types ap and pl we are able to prove soundness and completeness for

all normal modalities in a multi-modal setting. More interestingly, for type sopml we

obtain such result for the epistemic interpretation of modalities only. To our knowledge,

these are the first results of this kind on SOPML in a multi-modal setting. Finally, the1350

completess question for type x = ml is still open.
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3.3.2 Generalised Completeness

We now extend the completeness results in the previous section by considering extra

axioms expressing properties of frames. Specifically, let L be any axiomatisation men-

tioned in Theorem 3.42. Then, if we extend L with the universal closure ∀p⃗ψ of a1355

formula ψ ∈ Lsopml , the resulting calculus L + ∀p⃗ψ is sound and complete with respect

to the class of frames satisfying the MSO condition ∀x∀P⃗STx(ψ), where P⃗ are all the

unary predicates appearing in STx(ψ).

Theorem 3.43. Let ψ be a formula in SOPML, then the logic L + ∀p⃗ψ is sound and

complete with respect to the corresponding class K of frames satisfying ∀x∀P⃗STx(ψ).1360

By the result above we immediately obtain that for every formula θ(a⃗, p⃗) appearing

in Table 3.1, L + ∀pθ(a⃗, p⃗) is sound and complete with respect to the class of frames

satisfying ∀x∀P⃗Θ(a⃗, x). More generally, there is a one-to-one correspondence between

a SOPML axiom ∀p⃗θ and the MSO condition ∀x∀P⃗STx(θ) on the corresponding class

of sound and complete frames. Notice that this is not the case in propositional modal1365

logic.

3.3.3 The Model Checking Problem

To explore further the computational properties of SOPML, in this section we tackle

the corresponding model checking problem, defined as follows.

Definition 3.44 (Model Checking). Given a formula φ ∈ Lsopml and a finite model M,1370

determine whether M ⊧ φ.

Then, by using also Algorithm 1 we are able to prove the following complexity result.

Theorem 3.45 (Model Checking). The model checking problem for SOPML is PSPACE-

complete.

As a result, the model checking problem for SOPML is no more computationally1375

complex than the corresponding problem for quantified boolean formulas. Thus, the

enhanced expressiveness comes at no extra computational cost, when compared with

QBF. With respect to propositional modal logic, the complexity increases from PTIME

to PSPACE. However, this is something to be expected given the extra expressive power

of propositional quantification.1380
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Algorithm 1 Computation of the satisfaction set ⟦φ⟧M

switch (φ):
case p:

return V (p);
case ¬ψ:

return W ∖ ⟦ψ⟧M;
case ψ ∧ ψ′:

return ⟦ψ⟧M ∩ ⟦ψ′⟧M;
case ◻aψ:

return {w ∈W ∣ Ra(w) ⊆ ⟦ψ⟧M};
case ◻∗Aψ:

return {w ∈W ∣ R∗
A(w) ⊆ ⟦ψ⟧M};

case ∀pψ:
return ⋂U∈D{⟦ψ⟧Mp

U
};

3.3.4 The Finite Model Property

We now briefly argue why the logic SOPML does not have the final model property.

Consider the following set of formulas:

Γ = {◇a⊺,◻a◇a ⊺,∀p(◻ap→ ◻a ◻a p),◻a∃p(p ∧ ◻a¬p)}

The first two formulas of Γ requires Ra to be serial, the third enforces transitivity of

Ra, and by the fourth and Example 3.5, we know that Ra is irreflexive. But it is easy1385

to verify that a transitive, serial, and irreflexive relation requires the underlying model

to be infinite. In other words, we found a finite set Γ of SOPML formulas which only

has infinite models.

Theorem 3.46. The logic SOPML does not have the finite model property.

3.4 Discussion and Related Literature1390

In this section we upheld and motivated the use of second-order propositional modal

logic as a specification language for reasoning about knowledge as well as spatial and

temporal properties in artificial intelligence. Specifically, we aimed at developing proof-

and model-theoretic techniques, notably complete axiomatisations, to support the use

of SOPML in applications. In Section 3.1 we introduced 20 different classes of Kripke1395

frames, according to the structure of the domain D of quantification and the features

of the accessibility relations. In Section 3.3 we provided complete axiomatisations for

11 of these classes. Specifically, whenever the frames are general or boolean, we obtain

complete axiomatisations for all normal modalities. On the other hand, for full frames we
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know from previous results that normal modalities weaker that S5 are unaxiomatisable1400

[66, 90]. Nonetheless, for S5 and the epistemic interpretation of modalities we are able

to provide a complete system of axioms. An interesting feature of the proof is the

essential use of common knowledge as universal operator: this fact, which is exploited

in the completeness proof, only holds for S5 modalities. On the other hand, we left the

completeness of modal frames as an open problem.1405

The contributions in this chapter are inspired by a series of papers on LPML, an

extension of propositional modal logic to express local properties [119–121]. Here, in-

stead of introducing an ad hoc language (with an adjustment for each local property

one has in mind), we make use of the general framework of second-order propositional

multi-modal logic. In Section 3.2 we provided a detailed comparison of the two ap-1410

proaches. In particular, we showed that SOPML subsumes LPML. Moreover, in cases

where first-order properties are not definable by modal formulas (e.g. irreflexivity), or

modal formulas express properties not definable in first-order logic (e.g. Dedekind com-

pleteness), SOPML is strictly more expressive than LPML and allows to reason about

such properties locally.1415

Mono-modal SOPML was first considered by Bull and Fine [50, 66], mainly in relation

with axiomatisability and (un)decidability questions. However, the high computational

complexity of SOPML and some undecidability and non-axiomatisability results might

partially explain why SOPML has been studied far less than propositional modal logic,

and it has been virtually unexplored as a specification language for knowledge repre-1420

sentation and reasoning. Here we considered a multi-modal version of SOPML, and its

epistemic counterpart – SOPEL, which had originally been introduced in [43, 44].

Amongst more recent contributions, in [90] the authors proved that the expressive

power of SOPML (for modalities weaker than 4.2) is the same as second-order predicate

logic, and thus undecidable; while [107] provided SOPML with analogues of the van1425

Benthem-Rosen and Goldblatt-Thomason theorems. In [67] propositional quantification

and bisimulations are analysed in the context of modal logic. However, the type of quan-

tification there considered preserve standard bisimulations, and therefore the resulting

logic is provably as expressive as epistemic logic, strictly weaker than SOPML.

More directly related to the present contribution are [43, 44] by the same authors.1430

In [43] we introduced epistemic quantified boolean logic (EQBL), an epistemic variant

of SOPML, and provided axiomatisability and model-checking results. Differently from

the reference, here we tackle general SOPML, defined also on modalities strictly weaker

than S5. Indeed, in this chapter we analysed all normal modalities. Moreover, in

Appendix A.1 we provide full details on the construction of the canonical models to1435
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prove completeness, and discuss key issues on the interaction between quantification

and common knowledge in the completeness proof.





Chapter 41440

Simulations and Games

In this chapter we investigate the expressive power of second-order propositional modal

logic by introducing truth-preserving (bi)simulation relations for SOPML. Bisimulations

are an essential tool for the model theory of propositional modal logic, as they exactly

describe the conditions under which two models satisfy the same formulas in PML.1445

Moreover, propositional modal logic is characterized by the well-known van Benthem

theorem as the bisimulation-invariant fragment of first-order logic [47]. Hereafter we

introduce (bi)simulations for SOPML and prove that they are indeed truth-preserving.

Further, in Section 4.1.1 we present abstractions for frames and show that these are

similar. In Section 4.2 we define games for (bi)simulations and prove the equivalence1450

of the two approaches: model- and game-theoretic. Finally, in Section 4.3 we provide

examples on the application of (bi)simulations to the analysis of the expressive power of

SOPML in spatial and temporal reasoning.

4.1 Simulations and Bisimulations

We define the notion of (bi)simulations on frames, although it is immediate to extend this1455

definition to models. In the rest of the chapter we consider frames F = ⟨W,D,R⟩, F ′ =

⟨W ′,D′,R′⟩, and models M = ⟨F , V ⟩, M′ = ⟨F , V ⟩ defined on F and F ′ respectively.

Hereafter we use Σ to denote a relation on domain D, differently from Section 3.3, where

it stands for a set of formulas. The distinction will be clear by the context.

Definition 4.1 (Frame Simulation). Given frames F and F ′, a simulation is a pair1460

(σ,Σ) of relations σ ⊆ W ×W ′, Σ ⊆ D ×D′ such that (i) for every U ∈ D, Σ(U,U ′) for

some U ′ ∈D′; and (ii) σ(w,w′) implies

1. for every v ∈W , a ∈ I, if Ra(w, v) then σ(v, v′) for some v′ ∈ R′
a(w

′);

53
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2. for every U ∈D, U ′ ∈D′, Σ(U,U ′) implies w ∈ U iff w′ ∈ U ′.

Notice that condition 1 in Definition 4.1 expresses the standard notion of simulation1465

in PML. Hence, simulations for SOPML extend the corresponding definition for PML (we

devote more discussion to this point later on.) Moreover, the definition of simulation

above differs from a similar notion put forward in [44]. Specifically, in [44] only a

relation on states is considered, thus obtaining a strictly weaker notion. This will become

apparent when analysing simulation games in Section 4.2.1470

We say that state w′ simulates w, or w ⪯ w′, iff σ(w,w′) holds for some simu-

lation pair (σ,Σ). Similarly, a set U ′ simulates U , or U ⪯ U ′, iff Σ(U,U ′) holds

for some simulation pair (σ,Σ). Differently from what happens in PML, the pair

(⪯,⪯) is not a simulation generally. To check this, consider isomorphic1 frames G1 =

⟨{w1,w2},{{w1},{w2}},{(w1,w2), (w2,w1)}⟩ and G2 = ⟨{x1, x2},{{x1},{x2}},{(x1, x2),1475

(x2, x1)}⟩. Clearly, w1 ⪯ x1 and {w1} ⪯ {x2}. However, it is not the case that w1 ∈ {w1}

iff x1 ∈ {x2}. Nonetheless, each ⪯ is a preorder, i.e., a reflexive and transitive relation.

Finally, a frame F ′ simulates F , or F ⪯ F ′, iff for every w ∈W , w ⪯ w′ for some w′ ∈W ′.

We illustrate the newly introduced notion by an example.

Example 4.1. Consider frames G = ⟨W,R,D⟩ and G′ = ⟨W ′,R′,D′⟩ over set I = {a, b, c}1480

of indexes, depicted in Figure 4.1, with

� W = {w1,w2,w3};

� Ra = {(w1,w3), (w3,w1)}, Rb = {(w1,w2), (w2,w1)}, Rc = {(w2,w3), (w3,w2)};

� D = {{w1},{w2},{w3}};

� W ′ = {us ∣ s is a finite sequence on {1,2,3} starting with 1, with no adjacent1485

repetition};

� for every i ∈ I, R′
i = {(us, us′) ∣ s′ = s ⋅m and Ri(wlast(s),wm)};

� let U ′
n = {us ∣ last(s) = n}, then D′ = {U ′

1, U
′
2, U

′
3}.

Intuitively, frame G can be thought of as a scenario where robots a, b, and c move

around locations w1, w2, w3 (robot a moves between w1 and w3, etc.) Frame G′ would1490

then be a structure that allows one to capture the same scenario but with the additional

possibility to reason about some notion of history, or time. One might for instance add

an atom pi which is true exactly at nodes at level i. To do this, one needs to make

1We do not provide a formal definition of isomorphism. It suffices to say that it is a one-to-one
correspondence that preserve accessibility relations and sets in D.
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Figure 4.1: Frames G and G′ in Example 4.1 (D components are omitted for clarity).

appropriate assumptions about D′ in G′, like requiring that the frame is full. We do not

consider these matters further.1495

Now consider the pair (σ,Σ) of relations σ ⊆ W ×W ′ and Σ ⊆ D × D′ such that

σ(wn, us) holds iff last(s) = n and Σ({wn}, U
′
m) holds iff n = m. We check that (σ,Σ)

is indeed a simulation. Firstly, for every {wn} ∈ D, we have Σ({wn}, U
′
n) for Un ∈

D′. Secondly, if σ(wn, us) and Ri(wn,wm), then s′ = s ⋅ m is such that R′
i(us, us′)

and σ(wm, us′). Thirdly, if σ(wn, us) and Σ({wk}, U
′
m), then last(s) = n and k = m.1500

Therefore, wn ∈ {wk} iff n = k, iff last(s) =m, iff us ∈ U
′
m.

Finally, we observe that for every wn ∈ W , σ(wn, us) for last(s) = n. Thus, frame

G′ simulates G.

We now consider the following remark on the relation between simulations and prop-

erties of frames.1505

Remark 4.2. If a frame F ′ simulates a boolean (respectively modal, full) frame F , then

F ′ need not to be boolean (respectively modal, full). Nor does F ′ being boolean (modal,

full) imply that F is also boolean (modal, full).
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To see this, consider that a simulation F ′ may contain sets of states that do not

simulate any state in F , which are not closed under set-theoretic operations. The other1510

implication can be proved by a similar line of reasoning. Hence, similar frames need not

to belong to the same class. Below we compare these results with those available for

bisimulations.

We now state that simulations preserve the satisfaction of the universal fragment of

SOPML.1515

Theorem 4.3. If w ⪯ w′, then for every ϕ ∈ La−sopml ,

(F ′,w′) ⊧ ϕ implies (F ,w) ⊧ ϕ

As an immediate consequence of Theorem 4.3 we obtain the following corollary.

Corollary 4.4. If F ⪯ F ′, then for every ϕ ∈ La−sopml ,

F ′ ⊧ ϕ implies F ⊧ ϕ

Thus, the notion of simulation introduced in Definition 4.1 preserves the universal

fragment of SOPML, similarly to the case for standard simulations and PML.1520

Example 4.2. Consider again frames G and G′ in Example 4.1. We showed that G′

simulates G. Moreover, we can easily check that G′ validates the following formula in

La−sopml :

∀p(p→⋁
i∈I

◻i¬p) (4.1)

which intuitively says that at each position some agent moves to a different position. By

Corollary 4.4 we deduce that (4.1) is valid in G as well.1525

Example 4.3. Consider the notion of submodel Mw generated by world w given in

Definition 3.9. It is easy to check that the pair (σ,Σ), where σ is the identity relation

and Σ(U,U ′) holds iff U = U ′∩Ww is the restriction of U ′ to the worlds accessible from w,

is a simulation between Fw and F . In particular, for every U ∈Dw, Σ(U,U ′) whenever

U = U ′ ∩Ww for U ′ ∈D. Moreover, σ(w,w) implies that, for v ∈W , a ∈ I, if Rw,a(w, v)1530

then Ra(w, v) and σ(v, v). Finally, if σ(w,w) and Σ(U,U ′), then U = U ′∩Ww and w ∈ U

iff w′ ∈ U ′. As an immediate consequence of Theorem 4.3, we obtain the implication from

left to right of Lemma 3.11, restricted to universal SOPML.

Simulations can naturally be extended to bisimulations. Also in this case, our focus

is at the level of frames. In the following the converse of a relation R is the relation1535

R−1 = {(u, v) ∣ R(v, u)}.
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Definition 4.5 (Frame Bisimulation). Given frames F and F ′, a bisimulation is a pair

(ω,Ω) of relations ω ⊆ W ×W ′, Ω ⊆ D ×D′ such that both (ω,Ω) and (ω−1,Ω−1) are

simulations. That is, (i) for every U ∈ D, Ω(U,U ′) for some U ′ ∈ D′, and for every

U ′ ∈D′, Ω(U,U ′) for some U ∈D′; and (ii) ω(w,w′) implies1540

1. for every v ∈W , a ∈ I, if Ra(w, v) then ω(v, v′) for some v′ ∈ R′
a(w

′);

2. for every v′ ∈W ′, a ∈ I, if R′
a(w

′, v′) then ω(v, v′) for some v ∈ Ra(w);

3. for every U ∈D, U ′ ∈D′, Ω(U,U ′) implies w ∈ U iff w′ ∈ U ′.

States w and w′ are bisimilar, or w ≈ w′, iff ω(w,w′) holds for some bisimulation

pair (ω,Ω). Similarly, sets U ′ and U are bisimilar, or U ≈ U ′, iff Ω(U,U ′) holds for1545

some bisimulation pair (ω,Ω). Again, the pair (≈,≈) is not necessarily a bisimulation,

similarly to what was shown above for simulations, but each ≈ is an equivalence relation.

Finally, frames F and F ′ are bisimilar, or F ≈ F ′, iff (i) for every w ∈ W , w ≈ w′ for

some w′ ∈W ′; and (ii) for every w′ ∈W ′, w ≈ w′ for some w ∈W .

Example 4.4. Notice that frames G and G′ in Example 4.1 are actually bisimilar. To1550

prove this fact, we show that the converse relations σ−1 ⊆ W ′ ×W and Σ−1 ⊆ D′ ×D

form a simulation pair. Firstly, for every U ′
n ∈ D′, the set U = {wn} ∈ D is such that

Σ(U,U ′). Secondly, if σ−1(us,wn) and R′
i(us, us′) then last(s) = n and s′ = s ⋅m for

wm ∈W such that Ri(wn,wm). Hence, σ−1(us′ ,wm). As to (3), the proof is identical as

for simulations.1555

We now state the following remark on the relationship between properties of frames

and bisimulations.

Remark 4.6. Suppose that F and F ′ are bisimilar. Then, F is boolean (respectively

modal) iff F ′ is. However, if F is full, then F ′ need not to be full. Nor does F ′ being

full imply that F is also full. Moreover, if F and F ′ are both bisimilar and full, then1560

they are isomorphic, that is, any bisimulation between full F and F ′ is an isomorphism.

Compare the situation for bisimulations with the weaker results available in Re-

mark 4.2 for simulations. Specifically, bisimulations preserve the class of boolean and

modal frames.

We now state the main preservation result of this section.1565

Theorem 4.7. If w ≈ w′, then for every formula ϕ ∈ Lsopml ,

(F ,w) ⊧ ϕ iff (F ′,w′) ⊧ ϕ.
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As an immediate consequence of Theorem 4.7 we obtain the following.

Corollary 4.8. If F ≈ F ′, then for every ϕ ∈ Lsopml ,

F ⊧ ϕ iff F ′ ⊧ ϕ

We can now infer that bisimulations in SOPML are ‘stronger’ than the corresponding

notion for PML: whereas we noticed that the frames of Figure 3.2 are bisimilar in PML,1570

as a consequence of Theorem 4.7, and Example 3.4, which says that the frames do not

agree on formula (3.6), we conclude that they are not bisimilar in the SOPML sense.

Example 4.5. We now consider two graph-theoretic properties. First, the notion of

3-colorability, as formalised by the following SOPML formula, where operator ◻ is in-

terpreted on the edges E ⊆ W 2 of a graph G = ⟨W,E⟩, while ◻∗ is interpreted on the1575

reflexive and transitive closure of E as standard:

∃p1, p2, p3
⎛

⎝
◻∗(p1 ∨ p2 ∨ p3) ∧ ◻

∗
⋀
i≠j

¬(pi ∧ pj) ∧ ⋀
1,2,3

◻∗(pi → ¬◇ pi)
⎞

⎠
(4.2)

The truth of this formula in a vertex v ∈ G implies that (i) all vertices in the subgraph

generated by v are either p1, p2, or p3; (ii) each vertex has at most one colour; and (iii)

no two adjacent vertices have the same colour. Thus, the subgraph generated by v is 3-

colorable. Observe that frame G in Figure 4.1(a) is indeed 3-colorable, and since states1580

w1 and u1 are bisimilar, as an immediate consequence of Theorem 4.7, also frame G′ is

3-colorable.

To illustrate further the (in)expressivity of SOPML through simulations, we consider

one more graph-theoretic property: the existence of a Hamiltonian path, i.e., a path

that visits all vertices in a graph exactly once. Again, frame G in Figure 4.1(a) has a1585

Hamiltonian path w1,w2,w3. On the other hand, frame G′ in Figure 4.1(b) has no such

path. Since G and G′ are bisimilar, the following result immediately follows.

Lemma 4.9. The property of having a Hamiltonian path is not expressible in SOPML.

Indeed, it is known that such property is expressible in the language MSO2, an ex-

tension of MSO, which is strictly more expressive than SOPML [58, Proposition 5.13].1590

Discussion. We now compare our definition of (bi)simulation for SOPML, with the

standard notion of (bi)simulation for PML [47]. Observe that if a frame F ′ simulates

F in SOPML, with simulation pair (σ,Σ), then for every model M = ⟨F , V ⟩ based on

F , model M′ = ⟨F ′,Σ(V )⟩ on F ′ PML-simulates M. In particular, if σ(w,w′) then for
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every v ∈W , a ∈ I, Ra(w, v) implies that σ(v, v′) for some v′ ∈ R′
a(w

′) by condition (ii).11595

in Definition 4.1. Moreover, w ∈ V (p) ∈ D iff w′ ∈ Σ(V )(p) ∈ D′ by conditions (i) and

(ii).2. Therefore, if M′ satisfies any universal formula φ in PML, then φ also holds in

M. Hence, Definition 4.1 of simulation for frames in SOPML is indeed a generalisation

of the model-theoretic notion in PML. Furthermore, if frames F ′ and F are bisimilar in

SOPML, with bisimulation pair (ω,Ω), then models M = ⟨F , V ⟩ and M′ = ⟨F ′,Ω(V )⟩1600

are also bisimilar in PML. Likewise, models M′ = ⟨F ′, V ′⟩ and M = ⟨F ,Ω−1(V )⟩ are

PML-bisimilar as well. Also in this case, SOPML bisimulations on frames generalise

PML bisimulations on models.

4.1.1 Abstraction

This section is devoted to the definition of a notion of abstraction for Kripke frames.1605

Abstractions are deemed useful for system verification, as they allow to ignore some

selected features of the system, thus focusing only on the properties relevant for the

verification task [54]. Indeed, a key fact about abstractions is that they simulate the

original system. Hereafter we prove such a result for SOPML, starting with a family of

equivalence relations on states.1610

Definition 4.10 (Equivalence). Given a frame F , consider an equivalence relation ∼ on

W such that for every state w,w′ ∈ W , w ∼ w′ implies that for every U ∈ D, w ∈ U iff

w′ ∈ U . Further, we denote by [w] = {w′ ∈W ∣ w′ ∼ w} the equivalence class of w in F ,

and for a set U ⊆W , we let [U] be {[w] ∣ w ∈ U}.

Clearly, if we replace ‘implies’ in Definition 4.10 by ‘iff’, we obtain the coarsest1615

equivalence relation satisfying the conditions therein.

Definition 4.11 (Abstraction). Given a frame F , the abstraction FA = ⟨WA,DA,RA⟩

of F (according to equivalence relation ∼) is the frame such that

� WA = {[w] ∣ w ∈W};

� DA = {[U] ∣ U ∈D};1620

� for every a ∈ I, RAa ([w], [w′]) iff Ra(v, v
′) for some v ∈ [w], v′ ∈ [w′].

Notice that the coarsest abstraction FA is finite whenever the interpretation domain

D in F is, and of size ∣WA∣ = O(D) at most.

Example 4.6. To illustrate abstractions, we show that the frame G in Example 4.1

is (isomorphic to) the coarsest abstraction G′A of G′. First of all, two worlds us and1625
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us′ are equivalent according to the coarsest equivalence ∼ iff for all U ′
n ∈ D′, us ∈ U

′
n

iff us′ ∈ U
′
n, iff last(s) = last(s′). So, in abstraction G′A we have three equivalence

classes [ut⋅1], [ut⋅2], and [ut⋅3], for sequences t ∈ {1,2,3}∗ beginning with 1. As to the

accessibility relations, R′A
i ([ut⋅n][ut′⋅m]) iff for ut⋅n, ut′⋅m in W ′, R′

i(ut⋅n, ut′⋅m), that is,

t′ = t ⋅n and Ri(wn,wm). Hence, for instance, for agent a, we have R′A
a ([ut⋅1][ut′⋅3]) and1630

R′A
a ([ut⋅3][ut′⋅1]), as required. Finally, D′A = {[U ′

n] ∣ U
′
n ∈D

′} = {{[ut⋅1]},{[ut⋅2]},{[ut⋅3]}}.

Clearly, the abstraction G′A of G′ is isomorphic to G, with mapping wi ↦ [ut⋅i] for

i = 1,2,3.

We now extend a standard result in modal logic, namely that abstractions are indeed

simulations, to SOPML.1635

Lemma 4.12. Given a frame F with abstraction FA, the pair of mappings w ↦ [w]

and U ↦ [U] is a simulation.

We remark that the abstraction FA of a full frame F is isomorphic to F . In fact, for

every w ∈W , the set {w} belongs to D, and since w ∼ w′ iff for all U ∈D, w ∈ U iff w′ ∈ U ,

w ∼ w′ implies in particular that w ∈ {w′}, that is, w = w′. As a consequence, w ↦ {w} is1640

the only simulation on states between F and FA, and it is also an isomorphism. Further,

in Example 4.6 we observed that frame G is (isomorphic to) the coarsest abstraction of

G′. Hence, Lemma 4.12 provides an alternative proof of the fact that G simulates G′,

that was discussed in Example 4.4.

The following corollary follows immediately from Lemmas 4.3 and 4.12.1645

Corollary 4.13. Let F be a frame with abstraction FA. For every universal formula

ϕ ∈ La−sopml ,

(FA, [w]) ⊧ ϕ implies (F ,w) ⊧ ϕ

The results presented above have an impact that goes beyond their theoretical inter-

est. As an example, we observed that relevant properties P of frames (such as reflexivity,

transitivity, symmetry, etc.) are definable in propositional modal logic in the sense that1650

for some formula φ in PML, a frame F validates φ iff F satisfies property P . In SOPML

more properties become frame-definable within the class of full frames. For instance,

in Section 3.2 we showed that a full frame F is irreflexive iff F ⊧ ∃p(◻p ∧ ¬p). On the

other hand, whenever we consider the class of all frames, several properties remain non-

definable. For instance, the frame G in Example 4.1 is symmetric, while G′ is irreflexive.1655

Since, G and G′ are bisimilar, and therefore satisfy the same formulas in SOPML, we

conclude that neither of these properties is definable in the class of all frames. Such

results provide us with further knowledge on the expressive power of SOPML.
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4.2 Simulation Games for SOPML

The relation between (bi)simulations and zero-sum games is well-known in propositional1660

modal logic [47], where bisimulation games are routinely applied to derive (in)expressivity

results. In this section we introduce (bi)simulation games for SOPML. Similarly to the

case for PML, the existence of a winning strategy for Duplicator guarantees the preser-

vation of (universal) formulas in SOPML. We start by considering simulation games

played by Spoiler and Duplicator.1665

Definition 4.14 (Simulation Game). A simulation game G starting from pointed frames

(F ,w) and (F ′,w′) is defined as follows. Let (F , v, U⃗), (F ′, v′, U⃗ ′) be the current state

of the game, where v ∈ W (respectively, v′ ∈ W ′) and U⃗ (respectively, U⃗ ′) is a possibly

empty tuple of sets in D (respectively, D′).

Then, the game proceeds according to the following rules:1670

1. Either Spoiler picks a set U ∈D and Duplicator has to reply with a set U ′ ∈D′ such

that v ∈ U iff v′ ∈ U ′. The new state of the game is (F , v, U⃗ ⋅U), (F ′, v′, U⃗ ′ ⋅U ′).

2. Or, for some a ∈ I, Spoiler picks a state u ∈ Ra(v) and Duplicator has to reply

with state u′ ∈ R′
a(v

′) such that for every i, u ∈ Ui iff u′ ∈ U ′
i . The new state of the

game is (F , u, U⃗), (F ′, u′, U⃗ ′).1675

If Duplicator cannot match a Spoiler’s move, then Spoiler wins the game. Otherwise,

Duplicator wins the game. A winning strategy is a strategy whereby Duplicator can reply

to all of Spoiler’s moves, thus winning the game.

We now show that the existence of a winning strategy is tantamount to the existence

of a simulation.1680

Theorem 4.15. Duplicator has a winning strategy for the simulation game starting in

(F ,w), (F ′,w′) iff (F ,w) ⪯ (F ′,w′).

Notice that this result is in marked contrast with [44], where the notion of simula-

tion there provided entails the existence of a winning strategy for Duplicator, but the

existence of a winning strategy does not imply the existence of a simulation. On the1685

contrary, here we have a perfect match between the two concepts. This is due to the

novel notion of simulation put forward in Definition 4.1.

As a direct consequence of Theorem 4.3 and 4.15, we obtain that the existence of a

winning strategy for Duplicator implies the preservation of formulas in La−sopml.
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Corollary 4.16. If Duplicator has a winning strategy for the game starting in state1690

(F ,w), (F ′,w′), then for every universal formula ϕ ∈ La−sopml,

(F ′,w′) ⊧ ϕ implies (F ,w) ⊧ ϕ

Next, simulation games can be easily generalized to bisimulation games.

Definition 4.17 (Bisimulation Game). A bisimulation game G starting from pointed

frames (F ,w) and (F ′,w′) is defined as follows. Let (F , v, U⃗), (F ′, v′, U⃗ ′) be the state

of the game, where v ∈ W (respectively, v′ ∈ W ′) and U⃗ (respectively, U⃗ ′) is a possibly1695

empty tuple of sets in D (respectively, D′).

Then, the game proceeds according to the following rules:

1. Either Spoiler picks a set U ∈D (respectively, U ′ ∈D′) and Duplicator has to reply

with a set U ′ ∈ D′ (respectively, U ∈ D) such that v ∈ U iff v′ ∈ U ′. The new state

of the game is (F , v, U⃗ ⋅U), (F ′, v′, U⃗ ′ ⋅U ′).1700

2. Or, for some a ∈ I, Spoiler picks a state u ∈ Ra(v) (respectively, u′ ∈ R′
a(v

′)) and

Duplicator has to reply with state u′ ∈ R′
a(v

′) (respectively, u ∈ Ra(v)) such that

for every i, u ∈ Ui iff u′ ∈ U ′
i . The new state of the game is (F , u, U⃗), (F ′, u′, U⃗ ′).

As above, if Duplicator cannot match a Spoiler’s move, then Spoiler wins the game.

Otherwise, Duplicator wins the game. A winning strategy is defined as usual.1705

By adapting the proof of Theorem 4.15, we can prove the following equivalence

between bisimulations and bisimulation games.

Theorem 4.18. Duplicator has a winning strategy for the bisimulation game starting

in (F ,w), (F ′,w′) iff (F ,w) ≈ (F ′,w′).

Again, the existence of a winning strategy for Duplicator matches the existence of1710

a bisimulation pair. By Theorem 4.7 and 4.18 we are then able to prove the following

preservation result.

Corollary 4.19. If Duplicator has a winning strategy for the bisimulation game starting

in state (F ,w), (F ′,w′), then for every formula ϕ ∈ Lsopml,

(F ′,w′) ⊧ ϕ iff (F ,w) ⊧ ϕ

We conclude by discussing the two groups of preservation results. Both Theorems 4.31715

and 4.7 and Corollaries 4.16 and 4.19 provide results on the preservation of (the universal



Simulations and Games 63

fragment of) SOPML. However, (bi)simulations define global concepts, as these are

defined on the whole state space W ×W ′ and D ×D′; while games are played locally, as

at each point in the game the players have only a local view on the frames, centred on

a pair of states and finite sequences of sets. Hence, the nature of these two notions is1720

profoundly different. However, they are provably equivalent by Theorems 4.15 and 4.18.

We envisage different applications for the two notions. For instance, (bi)simulations are

typically used to prove inexpressibility results; while games can be used to show that

two frames are not bisimilar, by providing moves for Spoiler to which Duplicator cannot

reply. These applications are discussed in the following section.1725

4.3 Simulations and Expressivity

In this section we explore the expressivity of SOPML, also by using the (bi)simulations

and (bi)simulation games introduced in Section 4.1 and 4.2. We focus on some temporal

and spatial. In what follows we say that a property P is expressible in a language L and

class K of frames iff for some formula φ ∈ L, K ⊧ φ iff K has property P . Sometimes we1730

omit either L or K, whenever these are clear from the context.

First of all, consider Dedekind-completeness of a total order ≤, i.e., a total, transitive,

and antisymmetric binary relation: a totally ordered set is Dedekind-complete if every

non-empty subset that has an upper bound, has a least upper bound. We recall that the

Dedekind-completeness of the real numbers is not expressible in PML: the proof makes1735

use of a propositional bisimulation between the structure (R,≤) of reals and the rationals

(Q,≤) [12]. On the other hand, in SOPML we can express Dedekind-completeness by

means of the following formula, where modal operators ◻ and ◇ are interpreted on the

strict linear order <, while ∎φ (respectively, ⧫φ) are shorthands for φ∧◻φ (respectively,

φ ∨ ◇φ). Also, we recall that relation x ≤ y, which is used for the interpretation of1740

operators ∎ and ⧫, can be defined as x < y or x = y.

∀p ((⧫p ∧ ⧫ ∎ ¬p)→ (4.3)

(⧫(p ∧ ◻¬p)∨ (4.4)

∃q (∎(q↔ ∎¬p)∧ (4.5)

∃s (⧫s ∧ ∎(s→ q)∧ (4.6)

∎(¬s ∧ q → ∎¬s) ∧ ∎(s→ ◻¬s))))) (4.7)

This formula states that (4.3) for every non-empty and upper bounded set p, either

(4.4) p has a greatest element, or (4.5) there exists a set q of “strict” upper bounds,

(4.6) which includes a non-empty subset s (4.7) that is a singleton and the least upper
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0 1 2 . . . w′

Figure 4.2: Frames G1 and G2 (the D-components are omitted for clarity).

bound. Thus, the validity of this formula when operators ◻ and ◇ are interpreted on <1745

implies that the corresponding total order ≤ is Dedekind-complete.

Intuitively, formula (4.3)-(4.7) fails in (Q,≤) since, for instance, the set {q ∈ Q ∣ q <
√

2} is non-empty and upper bounded, and therefore satisfy (4.3)-(4.5). However, it has

no least upper bound s ∈ Q to satisfy (4.6) and (4.7).

On the other hand, the identity relation is clearly a simulation between structures1750

(Q,≤) and (R,≤) seen as full frames, i.e., (Q,≤) ⪯ (R,≤), and if Dedekind-completeness

were expressible as a formula φ in universal SOPML, (R,≤) ⊧ φ would imply (Q,≤) ⊧ φ,

a contradiction. Hence, we immediately obtain the following inexpressibility result.

Lemma 4.20. Dedekind-completeness is not expressible in the universal fragment La−sopml.

As a further example, we prove that neither finiteness nor infinity of the state space1755

W are expressible in boolean frames. This is in line with the situation in PML. Indeed,

consider frame G1 = ⟨N, succ,{N,∅}⟩ of the naturals with the successor relation and the

reflexive-point frame G2 = ⟨{w′},{(w′,w′)},{{w′},∅}⟩ in Figure 4.2, which are boolean

by definition of D1 and D2. In particular, the relations ω mapping every natural n ∈ N
to w′, and Ω mapping N to {w′} and the empty set ∅ to itself, form a bisimulation1760

pair. Equivalently, it is easy to see that Duplicator has a winning strategy in the game

starting from state (G1, n), (G2,w
′), for every n ∈ N: Duplicator has only to reply with

w′ to any m ∈ N chosen by Spoiler, and with {w′} (respectively, ∅) whenever Spoiler

chooses N (respectively, ∅). Thus, G1 and G2 validate the same formulas in SOPML.

However, G1 is infinite while G2 is finite. As consequence, we obtain the following result.1765

Lemma 4.21. Neither finiteness nor infinity are expressible in the class of boolean

frames.

To conclude our brief review of expressivity results in SOPML, we show that for

the sublanguage of Lsopml without the reflexive and transitive closure operator ◻∗A,1770

finiteness is not even expressible in full frames. For n ∈ N, let [n] be the set {0, . . . , n},

Gn the frame ⟨[n], succ,2[n]⟩, and GN = ⟨N, succ,2N⟩ the frame isomorphic to the natural

numbers. Both GN and each Gn are full. Let G be the class of all frames Gn, for n ∈ N,

and consider the following result.
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Lemma 4.22. In the fragment of Lsopml without operator ◻∗A, the theory Th(G) is a1775

subset of Th(GN).

Hence, if φ expressed ‘being finite’, then it would be valid in G, and hence also in

GN, a contradiction. Thus, finiteness is not expressible even in the class of full frames.

In this section we made use of (bi)simulations and (bi)simulations games to show that

SOPML can express notions, such as Dedekind-completeness, that are not expressible in1780

PML; whereas other properties, such as finiteness, cannot even be expressed in SOPML.

Together with the remarks in Section 4.1 on 3-colorability and the existence of Hamil-

tonian paths, these results provide us with some interesting insight on the application

of model-theoretic techniques to the analysis of the expressivity of SOPML.

4.4 Discussion and Related Literature1785

In this chapter we introduced suitable notions of (bi)simulation and proved that they

preserve the satisfaction of (universal) SOPML. Then, we defined game-theoretical

counterparts to (bi)simulations and showed that the two approaches are equivalent.

This is in marked contrast with [44], which put forward a different, stronger notion of

(bi)simulation. We remarked that, while set-theoretical (bi)simulations might be more1790

appropriate to prove inexpressibility results, their game-theoretic counterparts might

be better computationally to actually show whether two frames are bisimilar. Finally,

we made use of (bi)simulations to obtain some inexpressibility results. Specifically, we

showed that being finite and having a Hamiltonian path are not expressible in SOPML;

while other properties, viz. Dedekind-completeness and 3-colorability, are actually ex-1795

pressible. We conclude that SOPML can indeed be used as a modelling language for

artificial intelligence, particularly for temporal and spatial reasoning, as well as to de-

scribe higher-level knowledge of agents, that is, the knowledge agents have about other

agents’ knowledge and beliefs. In this respect, we reckon that the development of model-

theoretic techniques is key for applications.1800

In our opinion the results presented in this chapter raise a number of interesting

questions. We believe that one in particular deserves more attention. The Van Ben-

them theorem is a well-known result in model theory, stating that modal logic is the

bisimulation-invariant fragment of first-order logic [109]. In the light of the notion of

bisimulation provided above, it makes sense to ask the same question in the present1805

context: is SOPML the bisimulation-invariant fragment of second-order logic? We leave

this problem open for future work.





Part II1810

Reasoning about Knowledge

and Change
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Chapter 51815

Second-order Propositional

Announcement Logic

Modal epistemic logics have historically been focused primarily on the static proper-

ties of knowledge [83, 125]. Indeed, in Chapter 3 and 4 we introduced the language of

second-order propositional epistemic logic, which is suitable to express static proper-1820

ties of agents in frames. However, nowadays an increasing interest is directed towards

the dynamics of knowledge: how is individual knowledge affected by factual change,

information exchange, or knowledge updates?

These questions have given rise to temporal epistemic logics [64] and dynamic epis-

temic logics [122], among others. A particular form of dynamics appearing in epistemic1825

logic deals with truthful public announcements, i.e., publicly observable information that

is assumed to be reliable. These occur in many multi-agent scenarios: card games, the

muddy children puzzle, security protocols [117]. Public announcements are executed as

model refinements on the epistemic state of the agents listening to them. This idea has

been formalised into public announcement logic (PAL) [71, 100], which extends epistemic1830

logic with formulas of type [φ]ψ, to express that after announcing φ publicly, ψ holds.

Once public announcements are introduced, it is legitimate to wonder what remains

true after arbitrary announcements (a property known as preservation), or what can

be known by agents provided some suitable announcement (knowability). In this paper

we extend the framework of PAL to deal exactly with this sort of issues. We intro-1835

duce second-order propositional announcement logic (SOPAL), which extends PAL with

propositional quantification. As a result, the knowability of formula φ (by an agent a)

becomes intuitively expressible in SOPAL as

φ→ ∃p⟨p⟩Kaφ (5.1)

69
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that is, if φ is true, then after some truthful announcement p, agent a knows that φ is

true.1840

The main contributions in this chapter can be summarized as follows. We first

introduce the syntax and semantics of SOPAL. Then, we compare SOPAL with arbitrary

public announcement logic (APAL) [9, 10], an extension of PAL also including arbitrary

announcements, and show in which sense SOPAL is strictly more expressive than APAL.

We further provide reduction equivalences to eliminate announcements from SOPAL,1845

and thus show that SOPAL is as expressive as second-order propositional epistemic logic

(SOPEL) introduced in Chapter 3. This result allows us to transfer both the complete

axiomatisation and the decidable model checking problem in Chapter 3 for SOPEL

to SOPAL. Moreover, we prove that, even if they are equally expressive, SOPAL is

exponentially more succinct than SOPEL. Finally, we apply SOPAL to multi-agent1850

game scenarios and specify the dynamic epistemic notions of knowable, preserved, and

successful formula.

As a result, we have a powerful logic, with nice computational properties, such as

a complete axiomatisation, a decidable model checking problem, and a wide range of

interesting applications.1855

5.1 The Formal Framework

In this section we introduce the syntax and semantics of second-order propositional

announcement logic. Also in this chapter we make use of a set AP of atomic propositions

and a finite set I of indexes for agents. Formulas in SOPAL are defined as follows.

Definition 5.1 (SOPAL). The formulas in SOPAL are defined in BNF as follows, for1860

p ∈ AP and a ∈ I:

ψ ∶∶= p ∣ ¬ψ ∣ ψ → ψ ∣Kaψ ∣ CAψ ∣ [ψ]ψ ∣ ∀pψ

The language Lsopal of SOPAL extends SOPEL with announcement formulas [ψ]φ,

whose reading is that “after (truthfully) announcing ψ, φ is true”. Equivalently, SOPAL

can be thought of as an extension of PAL with propositional quantification. As stan-

dard, formulas Kaψ can be introduced as C{a}ψ. Nonetheless, here we assume Kaψ as1865

primitive in analogy to SOPML. Further, the dual operator ⟨ψ⟩ is defined as ¬[ψ]¬.

Second-order propositional announcement logic extends a number of well-known for-

malisms. The language Lpal of Public Announcement Logic is obtained by removing

inductive construct ∀pψ in Definition 5.1; language Lel without clause [ψ]ψ as well
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is epistemic logic, and language Lpl without clauses Kaψ and CAψ as well is proposi-1870

tional logic. Also, language Lsopel obtained by removing clause [ψ]ψ in Definition 5.1 is

second-order propositional epistemic logic from Chapter 3; while the language Lqbf of

quantified boolean formulas is obtained from Lsopel by removing clause Kaψ and CAψ

as well.

In the following we consider for comparison also the language of arbitrary public1875

announcement logic [9, 10], obtained by extending PAL with formulas ◻ψ:

ψ ∶∶= p ∣ ¬ψ ∣ ψ → ψ ∣Kaψ ∣ CAψ ∣ [ψ]ψ ∣ ◻ψ

where ◻ψ is here read as “after every truthful announcement, φ holds”. Hereafter we

show that SOPAL is rich enough to express APAL through quantification. We summa-

rize the main (syntactic) language inclusions in the following schema, where languages

in boldface, which have already been introduced in Chapter 3, are mentioned for com-1880

parison.

Lap ⊆ Lpl
⊆

⊆

Lel

Lqbf

⊆

⊆

⊆

Lpal

Lsopel

⊆

⊆

⊆

Lapal

Lsopal

Example 5.1. To illustrate the expressive power of SOPAL, we discuss various epis-

temic notions. In public announcement logic a formula φ is said to be preserved if φ

is true after any announcement. In SOPAL we can capture this by requiring that the1885

following formula holds:

φ→ ∀q[q]φ (5.2)

We informally remark that (5.2) does not hold for Moore’s formula p∧¬Kap. How-

ever, in SOPAL we can define a suitable restriction of (5.2), concerning epistemic an-

nouncements only:

φ→ ∀p[Kap]φ (5.3)

In Example 5.2 we show that (5.3), differently from (5.2), does hold for Moore’s1890

formulas.

Another notion of interest in PAL is knowability: a formula φ is knowable (by agent

a) iff after some announcement, a knows φ. We remarked that this notion can be stated

formally as (5.1). Clearly, Moore’s formulas are not knowable. We will discuss and com-

pare preserved, knowable, and other classes of formulas in more detail in Section 5.3.1.1895
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In the rest of the section we extend to SOPAL the notions of free atom and substi-

tution defined on SOPML in Chapter 3, as well as auxiliary lemmas that are necessary

throughout the rest of the chapter.

Definition 5.2 (Free Atoms). The set fr(φ) of free atoms in a SOPAL formula φ is

recursively defined as in Definition 3.2, together with the following clause for announce-1900

ment formulas:

fr([φ]φ′) = fr(φ) ∪ fr(φ′)

The set bnd(φ) of bound atoms in φ is standardly introduced as the set of all atoms

q appearing in the scope of some quantifier Qq. By renaming bound atoms, here also

we assume without loss of generality that for every formula φ, sets fr(φ) and bnd(φ) are

disjoint. We now define when an atom is free for substitution.1905

Definition 5.3 (Free for . . . ). A formula ψ is free for atom p in φ iff p does not appear

in φ within the scope of any quantifier Qq, whenever q is free in ψ, and if φ = [φ′]φ′′

and p ∈ fr(φ′), then ψ ∈ Lqbf . Alternatively, we can define whether ψ is free for p in φ as

in Definition 3.3, together with the following clause:

if φ = [φ′]φ′′ then ψ is free for p in φ iff it is in φ′ and φ′′ and p ∈ fr(φ′) implies ψ ∈ Lqbf

Finally, we extend the notion of substitution to SOPAL.1910

Definition 5.4 (Substitution). If ψ is free for p in φ, then we inductively define the

substitution φ[p/ψ] as in Definition 3.4, together with the following clause:

([φ]φ′)[p/ψ] = [φ[p/ψ]]φ′[p/ψ]

Notice that we make use of square brackets [, ] for both substitutions and announce-

ment operators, as both usages are standard. The context will disambiguate.

The restriction on substitution can be deemed quite strong, as we allow only for the1915

substitution of quantified boolean formulas in announcements. Intuitively, this is neces-

sary because, while [p]p is valid, substitution [q ∧¬Kaq](q ∧¬Kaq) is not. Nonetheless,

we will see that, also with such restriction, all results mentioned in the introduction are

provable.

To interpret SOPAL formulas we make use of the epistemic Kripke frames and models1920

introduced in Chapter 3, where for every agent index a ∈ I, Ra ⊆W
2 is an equivalence
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relation on the set W of worlds. Nonetheless, for technical reasons, in Section 5.4

we will also consider general frames, whose accessibility relations are not necessarily

equivalences. Further, hereafter we consider classes Keall of all (epistemic) Kripke frames,

Kebool of all (epistemic) boolean frames, Kemodal of all(epistemic) modal frames, and Kefull1925

of all (epistemic) full frames introduced in Chapter 3, where the accessibility relations

are equivalences.

We now define the notion of satisfaction for SOPAL.

Definition 5.5 (Satisfaction). We define whether model M = ⟨F , V ⟩ satisfies formula

ϕ at world w, or (M,w) ⊧ ϕ, as in Definition 3.7, together with the following clause for1930

annoucement formulas :

(M,w) ⊧ [ψ]ψ′ iff (M,w) ⊧ ψ implies (M∣ψ,w) ⊧ ψ′

where the refinementM∣ψ = ⟨W∣ψ,D∣ψ,R∣ψ, V∣ψ⟩ of modelM according to ψ is defined as:

(i) W∣ψ = {v ∈W ∣ (M, v) ⊧ ψ}; (ii) D∣ψ = {U∣ψ = U ∩W∣ψ ∣ U ∈D}; (iii) R∣ψ,a = Ra∩W
2
∣ψ;

and (iv) V∣ψ(p) = V (p) ∩W∣ψ for every p ∈ AP .

We recall that, given formula φ ∈ Lsopal, ⟦φ⟧M = {w ∈ W ∣ (M,w) ⊧ φ} is the1935

satisfaction set in modelM. We omit the subscriptM whenever clear from the context.

We then state the following useful extension of Lemma 3.8(2a) on satisfaction sets. In

the following we extend function ∶̂X → Y from language sort symbols to type symbols

as follows: âp = all ; p̂l = bool ; êl = modal ; p̂al = modal ; and ŝopal = full .

Lemma 5.6. For every formula φ ∈ Lx, for x = ap (resp. pl, el, pal, sopal), and for1940

M = ⟨F , V ⟩ with F ∈ Kex̂, we have that ⟦φ⟧M ∈D.

We observe that the case of x = pal follows from the fact that PAL is as expressive

as epistemic logic [100].

By Lemma 5.6 we can prove the following result, which guarantees that Definition 5.5

is well-defined in the sense that the refinement M∣φ belongs to the same class as model1945

M.

Lemma 5.7. If a model M is boolean (respectively, modal, full), then the model refine-

ment M∣φ for φ ∈ Lsopal is also boolean (respectively, modal, full).

To conclude, in the following we consider the standard notions of truth and validity

introduced in Chapter 3.1950
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Example 5.2. To illustrate the semantics of SOPAL, we consider the following instance

of (5.3) for Moore’s formula p ∧ ¬Kap:

(p ∧ ¬Kap)→ ∀q[Kaq](p ∧ ¬Kap) (5.4)

and show that (5.4) is a validity in all frames.

Suppose that (M,w) ⊧ p ∧ ¬Kap. Then, for some w′ ∈ Ra(w) different from w,

(M,w′) ⊧ ¬p. Also, if (Mq
U ,w) /⊧ [Kaq](p∧¬Kap) for some reinterpretation Mq

U , then1955

we have ((Mp
U)∣Kaq,w) /⊧ p ∧ ¬Kap, that is, (Mp

U ,w) ⊧ Kaq but w′ must not appear in

(Mp
U)∣Kaq, i.e., (Mp

U ,w
′) /⊧Kaq. But then, (Mp

U ,w) /⊧Kaq either. A contradiction.

Thus, even though Moore’s formulas are not preserved under arbitrary announce-

ments, they are indeed preserved by arbitrary epistemic announcements as in (5.4).

Example 5.3. We elaborate on the example of [121, Section 4.3], and consider a simple1960

card game with three players in I = {1,2,3}. The cards are identified by their colour:

red (r), white (w), and blue (b). In AP we consider atoms ri, wi, bi, for i ∈ I, where

intuitively w1 denotes that player 1 holds the white card. Also, all players know the cards

of the game, and that each player can see his own card, but not that of the other players.

The situation where each player is dealt a card can be modeled by the full model M in1965

Fig. 5.1. The state rwb in M denotes that player 1 holds red, 2 holds white, and 3 holds

blue. We then have for instance

(M, rwb) ⊧ r1 ∧K1r1 ∧ ¬K2r1 ∧K1¬K2r1

i.e., player 1 holds red, she knows it, but 2 does not, and finally, 1 knows that 2 does

not know that 1 holds red.

In general, for every state s,1970

(M, s) ⊧ ∃p
⎛

⎝
p ∧Kip ∧⋀

j≠i

¬Kjp ∧Ki⋀
j≠i

¬Kjp
⎞

⎠

i.e., every player i knows something that the other players do not know (and she knows

that they do not), namely the value of the card that i possesses.

Now suppose player i announces publicly the card she has. Such an announcement

in state rwb leads to the updated model M′ in Fig. 5.1. Indeed, for qi ∈ {ri,wi, bi} we

have1975

(M, s) ⊧ qi → ∃p⟨Kip⟩
⎛

⎝
⋀
j≠i

Kjqi
⎞

⎠
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Figure 5.1: The full models M and M′ in Example 5.2 (reflexive edges are omitted
for clarity).

that is, there is some proposition (namely, the value U = Ri(s) of player i’s card) that

player i can truthfully announce, so that any other player knows the value of i’s card.

On the other hand, the mere announcement that player i knows something is not

sufficient to derive the same conclusion, as for every state s ∈W , (M, s) ⊧ ∃pKip, and

therefore M∣∃pKip =M. Hence,1980

(M, s) /⊧ qi → ⟨∃pKip⟩
⎛

⎝
⋀
j≠i

Kjqi
⎞

⎠

Furthermore, the (false) announcement that player i knows everything implies that

the other players know her card:

(M, s) ⊧ qi → [∀pKip]
⎛

⎝
⋀
j≠i

Kjqi
⎞

⎠

Indeed, (M, s) /⊧ ∀pKip, and therefore (M, s) ⊧ [∀pKip](⋀j≠iKjqi) trivially. However,

it is not the case that every truthful announcement pertaining to player i’s knowledge

entails that the other players know her card:1985

(M, s) /⊧ qi → ∀p[Kip]
⎛

⎝
⋀
j≠i

Kjqi
⎞

⎠

as for proposition U = W , (Mp
U , s

′) ⊧ Kip for every s′ ∈ W . But ((Mp
U)∣Kip, s) /⊧

⋀j≠iKjqi, since (Mp
U)∣Kip =M

p
U .

By comparing the formulas above, we clearly see that quantifying inside or outside

(epistemic) announcements allows us to express subtle differences in SOPAL.
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5.2 Comparison with APAL1990

In this section we compare SOPAL with APAL, whose original motivation also included

the ability to express arbitrary announcements in PAL. The main result of this section

is that SOPAL is capable of capturing APAL at the frame level, while the two logics

are incomparable at the model level. But first we state an extension of Lemma 3.8

containing auxiliary results that will be routinely applied throughout the paper.1995

Lemma 5.8. Let q and ψ be free for p in φ.

1. For x = ap (resp. pl , el , pal , sopal), ψ ∈ Lx, and M ∈ Kex̂, (Mp
⟦ψ⟧M

,w) ⊧ φ iff

(M,w) ⊧ φ[p/ψ]

2. If p ∈ fr(φ) implies ψ ∈ Lqbf , then (Mp
⟦ψ⟧

)∣φ = (M∣φ[p/ψ])
p
⟦ψ⟧

3. If V (fr(φ)) = V ′(fr(φ)) then (M,w) ⊧ φ iff (M′,w) ⊧ φ2000

4. If V (fr(ψ)) = V ′(fr(ψ)) then Mψ =M′
ψ

According to Lemma 5.8(1), the syntactic notion of substitution φ[p/ψ] corresponds

to the semantic concept of reinterpretation Mp
⟦ψ⟧

; while Lemma 5.8(2) specifies the

interaction between substitution, reinterpretation and model refinement, namely the re-

finement (Mp
⟦ψ⟧

)∣φ of a reinterpreted model is equal to the reinterpretation (M∣φ[p/ψ])
p
⟦ψ⟧

2005

of the model refined by the substituted formula φ[p/ψ], provided that ψ ∈ Lqbf when-

ever p ∈ fr(φ). Moreover, by Lemma 5.8(3-4) models built on the same frame and

agreeing on the interpretation of free atoms, also satisfy the same formulas, and their

model refinements are equal. These results, which show that quantification in SOPAL

is “well-behaved”, will be extensively used hereafter.2010

To compare SOPAL and APAL we recall the clause for interpreting the operator ◻

[9]:

(M,w) ⊧ ◻ψ iff for all φ ∈ Lel, (M,w) ⊧ [φ]ψ (5.5)

We now prove that, according to (5.5), APAL can be captured within SOPAL in the

following sense.

Definition 5.9. Given a class K of frames, a logic L′ is2015

� at least as m-expressive as logic L, or L ≤m L′, iff for any φ ∈ L, for some φ′ ∈ L′,

for any model M in K,

(M,w) ⊧ φ iff (M,w) ⊧ φ′
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Figure 5.2: The full models M and M′ (reflexive edges are omitted for clarity).

� at least as f-expressive as logic L, or L ≤f L
′, iff for any φ ∈ L, for some φ′ ∈ L′, for

any frame F in K,

(F ,w) ⊧ φ iff (F ,w) ⊧ φ′

Clearly, each relation ≤ is a partial order, and we write L = L′ iff L ≤ L′ and L′ ≤ L,2020

and L < L′ iff L ≤ L′ and L ≠ L′. Also, L ≤m L′ implies L ≤f L
′, but the converse is not

true in general.

To investigate the relation between SOPAL and APAL, we start with some prelimi-

nary results. First of all, we test the intuition that the operator ◻ can be expressed by

quantification and announcements.2025

Lemma 5.10. Let M be an epistemic model, then

(M,w) ⊧ ∀p[p]φ implies that (M,w) ⊧ ◻φ (5.6)

However, the converse of (5.6) does not always hold. Consider the full model M

in Fig. 5.2. Formally, we have that M = ⟨W,R,D,V ⟩ with W = {w00,w01,w10,w11};

Ra = {(wij ,wi′j′) ∣ i = i′}; Rb = {(wij ,wi′j′) ∣ j = j′}; D = 2W ; and V (q) = {wij ∣ j = 0} for

every q ∈ AP . We can check that, for every ψ ∈ Lel, ⟦ψ⟧ is equal to either W , or ∅, or2030

{wij ∣ j = 0}, or {wij ∣ j = 1}. As a consequence, for every ψ ∈ Lel, (M,wi0) ⊧ [ψ](Kaq →

KbKaq), that is, (M,wi0) ⊧ ◻(Kaq → KbKaq). However, for U = {w00,w01,w10} we

obtain that (Mp
U ,w10) /⊧ [p](Kaq →KbKaq), i.e., (M,w10) /⊧ ∀p[p](Kaq →KbKaq).

Actually, clause (5.5) for APAL preserves bisimilarity of structures, while Defini-

tion 5.5 for SOPAL does not. To see this, consider the full model M′ in Fig. 5.2.2035

We remark without proof that the pointed models (M,w10) and (M′, s0) are bisim-

ilar [47], and satisfy the same formulas in PAL, and consequently, in APAL. How-

ever, we noticed that (M,w10) /⊧ ∀p[p](Kaq → KbKaq), while it is easy to check that

(M′, s0) ⊧ ∀p[p](Kaq →KbKaq).
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Incidentally, models M and M′ above prove that SOPAL is no less expressive than2040

APAL at the level of models. Indeed, if SOPAL ≤m APAL, then for φ = ∀p[p](Kaq →

KbKaq) in SOPAL there exists a corresponding φ′ in APAL. However, (M,w10) /⊧ φ

implies (M,w10) /⊧ φ′, which implies (M′, s0) /⊧ φ′ by bisimulation, which finally implies

(M′, s0) /⊧ φ. A contradiction.

Lemma 5.11. In class Kefull of full frames, SOPAL /≤m APAL.2045

We remark that Definition 5.5 is discussed in [9], but discarded exactly on the ground

that it does not preserve bisimulations. Bisimulation-preserving quantification is anal-

ysed in [67] and the resulting logic is proved as expressive as epistemic logic. Here we

maintain that in second-order propositional modal logics a stronger notion of bisimula-

tion is needed, which takes into account also quantification, as discussed in Chapter 4.2050

Also, clause (5.5) has other issues, in particular, it is not analytic (more below).

Even though ∀p[p]ψ is not equivalent to ◻ψ at the level of models, the two formulas

are provably equivalent at the level of frames, under a cardinality assumption.

Consider the following translation τ ∶ Lapal → Lsopal from APAL to SOPAL:

τ(p) = p

τ(¬ψ) = ¬τ(ψ)

τ(ψ → ψ′) = τ(ψ)→ τ(ψ′)

τ(Kaψ) = Kaτ(ψ)

τ(CAψ) = CAτ(ψ)

τ([ψ]ψ′) = [ψ]τ(ψ′)

τ(◻ψ′) = ∀p[p]τ(ψ′)

where p does not appear free in ψ′.2055

We can now prove the following result.

Lemma 5.12. In the class of epistemic frames where ∣D∣ is enumerable,

⊧ φ iff ⊧ τ(φ)

As a result, whenever the domain D of propositions is enumerable, APAL can be

captured within SOPAL at the frame level, by means of translation τ . Specifically, the

arbitrary announcement operator ◻ can be expressed by quantification and standard2060

announcements. As a corollary of Lemma 5.12, we have the following result.
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Corollary 5.13. In the class of epistemic frames where ∣D∣ is enumerable, APAL ≤f

SOPAL.

We now show that the converse of Corollary 5.13 does not hold in general. Specifi-

cally, consider set I = {a} of agents, and the reflexive and full frames F1 = ⟨{w},{(w,w)},2W1⟩2065

and F2 = ⟨{v, v′},W 2
2 ,2

W2⟩. For φ = ∃p(p ∧Ma¬p), notice that (F1,w) /⊧ φ, while

(F2, s) ⊧ φ for every s ∈ W2. Suppose that there exists φ′ corresponding to φ in the

sense of Definition 5.9 for ≤f . Then, (F1,w) /⊧ φ′, while (F2, s) ⊧ φ
′. Moreover, for every

APAL formula ψ, if (M1,w) /⊧ ψ for some modelM1 on F1, then there exists a bisimilar

model M2 on F2 such that (M2, s) /⊧ ψ. Hence, (F2, s) ⊧ ψ implies (F1,w) ⊧ ψ. In2070

particular, (F2, s) ⊧ φ
′ implies (F1,w) ⊧ φ′. A contradiction.

Lemma 5.14. In class Kefull of full frames, SOPAL /≤f APAL.

As an immediate consequence of Corollary 5.13 and Lemma 5.14 we obtain the

following.

Corollary 5.15. In class of epistemic frames where ∣D∣ is enumerable, APAL <f SOPAL.2075

Finally, we remarked above that clause (5.5) is discussed in [9], but dismissed on

the ground that it does not preserve bisimulations. On the other hand, the APAL

semantics is not analytic in the sense that Lemma 5.8(3) fails: models that agree on the

interpretation of free atoms, may differ in the satisfaction of formulas. Consider again

model M in Fig. 5.2 and formula ϕ = ◻(Kaq → KbKaq). Then, define model M′′ such2080

that for every U ⊆W , V (pU) = U for some pU ≠ q. Clearly, V and V ′′ agree on the only

free variable q in ϕ. However, (M,w00) ⊧ ϕ as noticed above, while (M′′,w00) /⊧ ϕ.

In particular, for U = {w00,w01,w10}, (M′′,w00) /⊧ [pU ](Kaq → KbKaq). Therefore, in

APAL the satisfaction of formulas does not depend on values assigned to free variables

only, but, if the formula contains an operator ◻, on the interpretation of all variables in2085

AP . The example above also entails the following result.

Lemma 5.16. In class Kefull of full frames, APAL /≤m SOPAL.

To summarize the main results proved in this section, SOPAL and APAL are incom-

parable at the model level, that is, we have both APAL /≤m SOPAL and SOPAL /≤m

APAL; while the former is strictly more expressive than the latter at the frame level,2090

i.e., APAL <f SOPAL.
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5.3 Expressivity

In this section we explore the expressivity of SOPAL in the various classes of Kripke

frames, starting with the properties of quantifiers. The main result of this section is

that SOPAL is as expressive as second-order propositional epistemic logic introduced in2095

Chapter 3.

Lemma 5.17. In SOPAL we have the following validities, for x ∈ {ap,pl , el ,pal , sopal}:

Kex̂ ⊧ ∀pφ→ φ[p/ψ] for every ψ ∈ Lx (5.7)

where ψ is free for p in φ.

For every class K of frames,

K ⊧ ψ → φ implies K ⊧ ψ → ∀pφ (5.8)

where p does not appear free in ψ.2100

We remark that the proof of Lemma 5.17 makes essential use of Lemma 5.8.

By Lemma 5.17 we can see that SOPAL satisfies the standard principles of quantifi-

cation: the axioms Exx (5.7) for exemplification and Gen (5.8) for generalisation are

indeed valid in SOPAL.

Furthermore, it is of utmost interest to study the interactions between quantification2105

and public announcements in SOPAL. In this respect, we obtain the following key result.

Lemma 5.18. The following validities hold in all classes of frames.

[ψ]∀pφ ↔ ψ → ∀p[ψ]φ (5.9)

⟨ψ⟩∃pφ ↔ ψ ∧ ∃p⟨ψ⟩φ (5.10)

[ψ]∃pφ ↔ ψ → ∃p[ψ]φ (5.11)

⟨ψ⟩∀pφ ↔ ψ ∧ ∀p⟨ψ⟩φ (5.12)

where p does not appear in ψ (without loss of generality bound variables can always be

renamed).

We recall that SOPEL is obtained by removing clause [ψ]ψ from Definition 5.1.2110

From Lemma 5.18 and the standard reduction axioms of public announcement logic

[100], we immediately derive the following expressivity result.

Theorem 5.19. SOPAL is as expressive as SOPEL.
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This result is extremely relevant, as it allows to apply to SOPAL the model theory

and techniques developed for SOPEL in Part I. As an example, the truth preserving2115

bisimulations introduced in Chapter 4 for second-order propositional modal logic apply

to SOPAL as well. Further consequences of Theorem 5.19 regard the decidability of

model checking SOPAL and its axiomatisation.

Corollary 5.20.

� The model checking problem for SOPAL is PSPACE-hard.2120

� SOPAL has sound and complete axiomatisations with respect to classes Kall of

all frame, Kbool of boolean frames, and Kfull of full frames, obtained by adding

validities (5.9)-(5.12) and the reduction axioms of PAL to the corresponding ax-

iomatisations of SOPEL in Chapter 3.

Thus, the fact that SOPAL and SOPEL are equally expressive allows us to transfer2125

to the former many useful results proved in Chapter 3 and 4 about the latter. However,

equal expressivity does not mean that SOPAL and SOPEL are the same, as it will

become apparent in Section 5.4.

5.3.1 Knowability

In this section we analyse the notions of preservation and knowability introduced in2130

Example 5.1, and present successfulness. Such concepts are of interest to understand the

epistemic capabilities of agents in response to different types of public announcements.

We start by introducing the positive fragment L+sopal of SOPAL inductively defined

as

ψ ∶∶= p ∣ ¬p ∣ ψ ∧ ψ ∣ ψ ∨ ψ ∣Kaψ ∣ CAψ ∣ [¬ψ]ψ ∣ ∀pψ

As anticipated in Example 5.1, preserved formulas keep their truth under arbitrary2135

announcements. Given a class K, they are defined semantically as those φ ∈ Lsopal for

which K ⊧ φ → ∀p[p]φ. We immediately extend the following result proved in [9] for

APAL.

Lemma 5.21. Positive formulas are preserved in Keall.

As an immediate consequence of Lemma 5.21, positive formulas are preserved in2140

every class of frames.
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In connection with preserved formulas, in Example 5.1 we introduced the formulas

preserved under arbitrary epistemic announcements (in a class K) as those formulas

φ for which K ⊧ φ → ∀p[Kap]φ. In Example 5.2 we remarked that Moore’s formulas

are not preserved under arbitrary announcements, but they are for epistemic announce-2145

ments. Obviously, positive formulas are also preserved epistemically. So, it would be of

interest to characterize exactly the class of formulas preserved under arbitrary epistemic

announcements, but this is beyond the scope of the present contribution.

Another semantic notion of interest when dealing with public announcements is

that of success. Formally, a formula φ is successful in class K of frames iff [φ]φ is2150

valid in K. Now let φ ∈ Lx, for x ∈ {ap,pl , el ,pal , sopal}, be a preserved formula. In

particula, φ→ ∀p[p]φ is a validity in the corresponding class Kex̂ of frames, and therefore

Kex̂ ⊧ φ → [φ]φ by exemplification Exx, i.e., Kex̂ ⊧ [φ]φ. Hence, we obtain the following

result.

Lemma 5.22. For x ∈ {ap,pl , el ,pal , sopal}, every formula φ ∈ Lx preserved in the2155

corresponding class Kex̂ of frames is also successful in Kex̂.

Finally, we recall that for a given class K of frames, knowable formulas as those

formulas φ for which, for any agent a ∈ Ag, K ⊧ φ → ∃p⟨p⟩Kaφ. Now observe that, for

a preserved formula φ ∈ Lx, Kex̂ ⊧ φ → ∀p[p]φ implies that φ → [φ]φ is a validity in the

class Kex̂ of frames, and therefore Kex̂ ⊧ φ → ⟨φ⟩Kaφ. Finally, Kex̂ ⊧ φ → ∃p⟨p⟩Kaφ by2160

Exx. As a result, the following lemma holds.

Lemma 5.23. Positive formulas are knowable in Keall (always knowable). Formulas

preserved (resp. successful) in the corresponding class Kex̂ of frames are also knowable in

Kex̂.

We clearly see that SOPAL allows for a fine-grained analysis of the dynamic epistemic2165

notions of preservation, successfulness, and knowability.

5.4 Succinctness of SOPAL

The fact that SOPAL and SOPEL are equally expressive does not necessarily mean that

they are ‘the same’. Indeed, we now argue that SOPAL is more succinct than SOPEL,

in the sense described below. We will sketch the argument using techniques from [68],2170

where it was proven that PAL is exponentionally more succinct than epistemic logic.

For the following we define the length ∣φ∣ of a formula φ ∈ Lsopal as standard [47].
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Definition 5.24 (Succinctness). Given two logics L1 and L2 that are equally expressive

on a class K of frames, we say that L1 is exponentially more succinct than L2 on K,

written L1 ⪯exp
K

L2, iff there are sequences ϕn∈N = ϕ1, ϕ2, . . . of formulas in L1 and2175

ψn∈N = ψ1, ψ2, . . . in L2 and a polynomial function f such that, for all n ∈ N,

1. ∣ϕn∣ ≤ f(n);

2. ∣ψn∣ > 2n;

3. ψn is the shortest formula in L2 equivalent to ϕn in K.

In stating the main result below we also consider the class Kall of frames with arbi-2180

trary accessibility relations.

Theorem 5.25.

� SOPAL ⪯exp
Kall

SOPEL if ∣I ∣ ≥ 2

� SOPAL ⪯exp
Ke

all
SOPEL if ∣I ∣ ≥ 4

To prove Theorem 5.25 consider the following sequences ϕn∈N and ψn∈N:2185

ϕ0 = ⊺

ϕn+1 = ⟨ϕn⟩(Map ∨Mbq)

ψ0 = ⊺

ψn = Ma(ψn−1 ∧ p) ∨Mb(ψn−1 ∧ q)

It is easy to see that ∣ϕi∣ ≤ i ⋅ 6 and ∣ψi∣ ≥ 2i. Using PAL equivalences, we also have

that ϕi and ψi are equivalent, for all i. So the first two items for succinctness are easily

checked, what remains to establish is, that even when we allow for quantification, there

are no formulas βi ∈ Lsopel shorter than ψi ∈ Lel equivalent to ϕi ∈ Lpal .

For propositional epistemic logic, the technique that [68] uses to prove that ψi ∈ Lel2190

is the shortest formula equivalent to ϕi ∈ Lpal is that of formula size games. We now

extend such games to deal with quantification.

Definition 5.26 (Formula Size Game). The rules of the one-person formula size game

(FSG) for Spoiler are the following. The game is played on a tree, where each node

is labeled with a pair ⟨M ○ N⟩ such that M and N are finite sets of finite pointed2195

models. At each step of the game, a node is labeled with one of the symbols from the

set Σ = {⊺,�, p,¬,∨,∧,Ma,Ka,CA,CA,∃p,∀p} and either it is closed or at most two new

nodes are added. Let a node ⟨M ○N⟩ be given. Spoiler can make the following moves

at this node:
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⊺-move This can be played only if N = ∅. When Spoiler plays this move, the node is2200

closed and labeled with ⊺.

atomic-move Spoiler chooses an atom p such that every pointed model in M satisfies

p, and no pointed model inN does. After this move, this node is closed and labeled

with p.

not-move Spoiler labels the node with symbol ¬ and adds one new node denoted2205

⟨N ○M⟩ as a successor to ⟨M ○N⟩.

or-move Spoiler labels the node with symbol ∨ and splits M in two sets M =M1 ∪M2.

Two new nodes are added to the tree as successors to ⟨M ○N⟩, i.e., ⟨M1 ○N⟩ and

⟨M2 ○N⟩.

and-move Spoiler labels the node with the symbol ∧ and splits N in two sets N =2210

N1 ∪N2. Two new nodes are added to the tree as successors to ⟨M ○N⟩, namely

⟨M ○N1⟩ and ⟨M ○N2⟩.

Ma-move Spoiler labels the node with symbol Ma and for each pointed model (M,w) ∈

M, he chooses a pointed model (M,w′) such that Ra(w,w
′). All such choices are

collected inM1. A set of modelsN1 is then constructed as follows. For each pointed2215

model (N , v) ∈ N, add to N1 all pointed models (N , v′) such that R′
a(v, v

′). If

for some pointed model (N , v), world v does not have an R′
a-successor, nothing is

added to N1 for (N , v). A new node ⟨M1 ○N1⟩ is added as a successor to ⟨M○N⟩.

Ka-move Spoiler labels the node with symbol Ka and for each pointed model (N , v) ∈

N, he chooses a pointed model (N , v′) such that R′
a(v, v

′). All those choices are2220

collected in N1. A set of models M1 is then constructed as follows. For each

pointed model (M,w) ∈ M, add to M1 all pointed models (M,w′) such that

Ra(w,w
′). If for some pointed model (M,w), world w does not have an Ra-

successor, nothing is added to M1 for (M,w). A new node ⟨M1 ○N1⟩ is added as

a successor to ⟨M ○N⟩.2225

CA-move Spoiler labels the node with symbol CA and for each pointed model (M,w) ∈

M, he chooses a pointed model (M,w′) such that R∗
A(w,w

′). All such choices are

collected inM1. A set of modelsN1 is then constructed as follows. For each pointed

model (N , v) ∈N, add to N1 all pointed models (N , v′) such that R′∗
A (v, v′). If for

some pointed model (N , v), world v does not have a reachable successor, nothing is2230

added to N1 for (N , v). A new node ⟨M1 ○N1⟩ is added as a successor to ⟨M○N⟩.

CA-move Spoiler labels the node with symbol CA and for each pointed model (N , v) ∈

N, he chooses a pointed model (N , v′) such that R′∗
A (v, v′). All such choices are

collected in N1. A set of models M1 is then constructed as follows. For each
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pointed model (M,w) ∈ M, add to M1 all pointed models (M,w′) such that2235

R∗
A(w,w

′). If for some pointed model (M,w), world w does not have a reachable

successor, nothing is added to M1 for (M,w). A new node ⟨M1 ○N1⟩ is added as

a successor to ⟨M ○N⟩.

∃p-move Spoiler labels the node with symbol ∃p and, for each (M,w) ∈M, she chooses

a set U ∈D and replaces (M,w) with (Mp
U ,w). All these choices are collected in2240

M1. A set N1 is then constructed as follows: for each (N , v) ∈N and any U ′ ∈D′,

add (N p
U ′ , v) to N1.

∀p-move Spoiler labels the node with symbol ∀p and, for each (N , v) ∈N, she chooses

a set U ′ ∈ D′ and replaces (N , v) with (N p
U ′ , v). All these choices are collected in

N1. A set M1 is then constructed as follows: for each (M,w) ∈M and any U ∈D,2245

add (Mp
U ,w) to M1.

Notice that the moves for �, and, Ka, CA, and ∀p are derived from the moves for

their dual operators in the following senses: Spoiler acts on N, instead of M. Moves

and and or are called splitting moves, while Ka-, Ma-, CA, and CA-moves are called

agent moves.2250

Definition 5.27. Spoiler wins the FSG starting at ⟨M ○N⟩ in n moves iff there is a

game tree T with root ⟨M ○N⟩ and precisely n nodes such that every leaf of T is closed.

Otherwise, Spoiler loses the game in n moves.

We are now in a position to prove the following result, which extends Theorem 1 in

[68] with the case to deal with quantification.2255

Theorem 5.28. Spoiler can win the FSG starting at ⟨M ○N⟩ in less than k moves iff

there is a SOPEL formula ψ ∈ Lsopel such that M ⊧ ψ, N ⊧ ¬ψ, and ∣ψ∣ < k.

Example 5.4. Consider Fig. 5.3. This is a game tree for pair ⟨M,N⟩ with M =

{(M,w)} and N = {(N ,w)}, respectively depicted on the left and on the right of the root

of the tree. Designated points of the models are black dots, non-designated points are2260

open dots. Leaves are closed nodes and are depicted with thick perimeters. We further

assume that in M and N all atoms are true in all worlds, and there is only one agent

a. Notice that the two initial models are bisimilar, and hence have the same epistemic

theory. This implies that the FSG starting in ⟨M ○N⟩ can only be won if an ∃p or ∀p

move is played. Note that the game displayed ‘corresponds’ to the formula ∃p(Ma¬p∧p).2265

In light of Theorem 5.28, if for every n ∈ N we can find classes Mn and Nn of pointed

models such that the following holds:
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Figure 5.3: The game tree from Example 5.4.

1. Mn ⊧ ψn and Nn ⊧ ¬ψn;

2. it takes Spoiler at least 2n moves to win the FSG starting in ⟨Mn ○Nn⟩;

then we have shown that also item 3 of Definition 5.24 holds for the three step proof,2270

thus settling that SOPAL ⪯exp
Kall

SOPEL:
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Figure 5.4: The starting node ⟨M2 ○N2⟩ for the formula size game.

We show the two items above, first for n = 2 and the class Kall of all frames. Con-

sider ψ2 = Ma(p ∧ (Map ∨ Mbq)) ∨ Mb(q ∧ (Map ∧ Mbq)). We let M2 = {(Maa, ε),

(Mab, ε), (Mba, ε),Mbb, ε)} and N2 = {Naa, ε), (Nab, ε), Nba, ε), Nbb, ε)} as depicted in
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Fig. 5.4. We leave it to the reader to check that M2 ⊧ ψ2 while N2 ⊧ ¬ψ2. Let us call2275

the worlds in Mab, for instance, ε, wa, and wab, and ε, va, vaa those in Naa. Note that

the models in N2 are similar to those in M2, the only difference being that in the final

point, no atom is true. For Spoiler to exploit this (let us initially not consider quantifier

moves), she has to take care that for instance there is a path in the game tree that has

(Maa,waa) at the left of the node, and (Naa, vaa) on the right, after which he can play2280

an atom-move and close that branch. Model pairs of type (Maa, ε) and (Naa, ε) are

called diverging pairs. Note that every diverging pair will generate at least one branch

in the game tree that takes exactly two agent moves and one atom move. Also, when

an agent a-move is played at a certain node, there can be no models at that node in

which the first transition is for agent b: otherwise Spoiler cannot make the move. So,2285

whenever there are models on one side of a node that have an a-transition first together

with models that have a b-transition first, Spoiler needs to play a splitting move. Then,

it is clear that for every diverging pair, there is a terminal node in the game tree that

only contains that pair, and which is closed by an atom-move. This explains that there

are at least 4 moves needed to win the game starting in ⟨M2 ○N2⟩, and at least 2n moves2290

for a game starting in ⟨Mn ○Nn⟩.

So, can Spoiler do any better now that she has quantifier moves available? No,

she cannot: note that Spoiler’s task is to find a ‘difference’ between the models on

the left and those on the right, so in particular he needs to demonstrate a difference

between the models that make up a diverging pair. Note that the difference between2295

the models in such pairs is n steps away from ε (forcing Spoiler to take n agent-moves),

and this difference is then between the truth of one atom, p or q. If Spoiler plays a

quantifier move, he runs the risk of two models of a diverging pair becoming identical

(the valuations could become the same) in which case Spoiler looses the game: having

a model (M,w) appearing both on the left and right of a node in the game is a losing2300

position! In our example, if Spoiler plays an ∃r-move, the effect is that there are still

the same number of diverging pairs, which completely agree on the valuation of r. If

Spoiler plays an ∃p-move in a node within a modelMxa (for x ∈ {a, b}), then as an effect

of this move there will be a model Nxa with a valuation such that the resulting M′
xa

and N ′
xa will be identical models! (for instance, if the valuation in Maa was changed2305

by Spoiler such that p were to be false in wa and true in waa, then this model would

become identical to Naa with the same valuation.) It should be clear that any node in

the game with two identical models, one on each side of the node, is a losing position

for Spoiler. In sum, by playing a quantifier move, Spoiler cannot improve, but possibly

worsen his chances of winning the game in k moves.2310

So, the key idea in [68] can be summarised as follows: pairs ⟨(Maa, ε), (Naa, ε)⟩ and

⟨(Mba, ε), (Nba, ε)⟩ are called diverging pairs, because Spoiler cannot keep them in the
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same branch of the game tree in order to win the game. So the number of diverging

pairs in the starting node of the game is an indicator for the number of splitting moves

that Spoiler needs to play. We then argued that by playing quantifier moves, Spoiler2315

does not change the number of diverging pairs.

For the class Kefull of full (epistemic) frames, we use the models and formulas as

presented in [68]. We now assume I = {a, b, c, d} and introduce four atoms a,b,c and d.

Define ϕn ∈ Lsopal and ψn ∈ Lsopel as follows:

ϕ1 = Mc(c ∧Md(d ∧ (Maa ∨Mbb)))

ϕn+1 = ⟨ϕn⟩ϕ1

and2320

ψ1 = Mc(c ∧Md(d ∧ (Maa ∨Mbb)))

ψn+1 = ψn ∧Mc(ψn ∧ c ∧Md(ψn ∧ d ∧ (Ma(ψn ∧ a) ∨Mb(ψn ∧ b))))

Then, every ϕn and ψn are equivalent (see [68, Proposition 5]). For the sets of models

En and Fn, we refer to [68, Definition 20, Fig. 7 and 8]. Note that here, in the starting

node of the game, the designated points in the models are x̀n and x́n.

Now take, for example, the models (Ecda, x̀1), which will be on the left of the FSG for

n = 1, while (Ecda, x́1) appears on the right. The only difference between the two models2325

is the designated point. But note that in the first model, there is a path c − d − a to a

world labeled with the atom a, while in the second model, there is no such path (starting

in x́1). So, the pairs ⟨(Ecda, x̀1), (Ecda, x́1)⟩ and ⟨(Ecdb, x̀1), (Ecdb, x́1)⟩ is a diverging pair

of models, which Spoiler has to split before winning the game. Can Spoiler get rid of

a diverging pair by playing a quantifier move? She can’t, as we now argue, the reason2330

being that the models on the left and the right of each node are based on the same

frame. Suppose that Spoiler plays a ∃a-move, changing the model (Ecda, x̀1) to some

model with an assignment V ′ that possibly changes the interpretation of a. This will

have the effect that on the right of the node, we will have an assignment V ′ for (Ecda, x́1)

which is exactly the same. It can be seen that the two new pointed models (E′
cda, x̀1)2335

and (E′
cda, x̀1), which will appear each on a side of the next node in the game tree, mean

that this is a losing position for Spoiler: they both verify the same formulas, and every

quantifier move in one of them can be mimicked in the other.

As a result of the discussion above, we conclude that SOPAL is exponentially more

succinct than SOPEL.2340
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5.5 Discussion and Related Literature

In this chapter we introduced second-order propositional announcement logic: a logic

to reason about arbitrary announcements in multi-agent contexts. We presented the

language of SOPAL, which extends public announcement logic by means of proposi-

tional quantification, or equivalently, enriches SOPEL with public announcement op-2345

erators. We endowed SOPAL with a semantics in terms of multi-agent Kripke frames

and models. We illustrated the expressivity of SOPAL by analysing relevant notions

in knowledge reasoning and representation, such as preservation under arbitrary (epis-

temic) announcements, knowability, and successfulness. Further, we compared SOPAL

to arbitrary public announcement logic, a language whose motivation and aim is similar2350

to SOPAL’s, but which follows a completely different philosophy. To compare SOPAL

and APAL we provided two notions of order between logics. Then, we proved that,

while SOPAL and APAL are uncomparable at the model level, the former is strictly

more expressive than the latter at the frame level. Furthermore, we analysed the set of

validities in SOPAL and provided reduction equivalences for quantified formulas, thus2355

showing that SOPAL is exactly as expressive as SOPEL. As a consequence of the results

in Chapter 3, SOPAL has a decidable model checking problem as well as sound and

complete axiomatisations. Moreover, SOPAL is preserved by the (bi)simulation rela-

tions introduced in Chapter 4. Announcements make a difference nonetheless. Indeed,

SOPAL is exponentially more succinct than SOPEL. We conclude that SOPAL is a suc-2360

cinct, rich logic, strictly more expressive than previous proposals in the area, but still

with nice computational properties.

This chapter draws inspiration from a well-established tradition in knowledge reason-

ing and representation: dynamic epistemic logic [122], including public announcement

logic [71, 100]. This line of research is well-studied, with a rich literature. Hence, we2365

only discuss the contributions most closely related to the present work. Arbitrary public

announcement logic has been introduced in [9, 10], with the aim of capturing arbitrary

announcements. We share the same motivation, but the formal analysis through propo-

sitional quantification is novel. In particular, differently from APAL, SOPAL is not

preserved by standard propositional (bi)simulations. To deal with this issue, in Chap-2370

ter 4 we introduced novel notions of (bi)simulation that indeed preserve SOPEL, and

therefore SOPAL by reduction. On the other hand, differently from APAL, SOPAL is

analytic in the sense of Lemma 5.8(3): the truth value of a formula depends only on

the value of atoms appearing therein. Further, quantification (on bisimilar models) has

been analysed in [67]. However, the resulting logic is as expressive as epistemic logic,2375

and therefore strictly weaker than SOPAL.
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Along this line of research it is of great interest to analyse further SOPAL in multi-

agent contexts, for instance, agents performing announcements: which announcements

can an agent perform based on her knowledge? How do such announcements modify

the epistemic state of other agents (including knowability and preservation)? How is the2380

proposed framework to be modified to accommodate private communication? In this

direction contributions such as group announcement logic [3] are certainly relevant. We

partially address some of these questions in the following chapter.



Chapter 6

Global and Local Announcements2385

In this chapter we take a break from propositional quantification and return to a purely

propositional setting. Specifically, we take inspiration from the state-of-the-art in public

announcement logic (PAL) and introduce a logic for global as well as local announce-

ments. Public announcement logic has two key features. First, announcements are

public, in the sense that all agents equally observe the new information, and are (com-2390

monly) aware of all agents equally observing the information. Second, announcements

are global, that is, although for truthful public announcements the truth of the announced

formula in the actual state is a precondition, how the new information is processed does

not depend on the actual state but rather on the model (i.e., public announcements are

model transformers).2395

In the proposed language and framework we carefully distinguish the two, indepen-

dent features of publicity and globality, which are packed together in the announcement

operator [φ], and relax them both. Hence, by weakening publicity, we allow formulas to

be announced to a proper subset A of the set I of all agents. Then, only the agents in A

partake of the new information contained in the announcement. Further, by weakening2400

globality, we distinguish between local announcements, whose meaning depend on the

actual state, and global announcements that depend on general features of the model.

Thus, the language of global and local announcement logic (GLAL) contains two

modalities [φ]+A and [φ]−A, for the global and local announcement of formula φ respec-

tively, each of them indexed to a coalition A of agents. Further, we provide a semantics2405

in terms of model updates that reflects the intuitions illustrated above. Most inter-

estingly, we are able to provide a unified account of global and local announcements,

in which the difference between the two depends on a subtle distinction in the model

update.

91
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The rest of the chapter is structured as follows. In Section 6.1 we introduce the2410

syntax and semantics of GLAL and provide two examples to illustrate the formalism. In

Section 6.2 we analyse the expressivity of GLAL and state the main result of the paper:

differently from PAL, GLAL cannot be reduced to epistemic logic as it is strictly more

expressive. We discuss the meaning and relevance of these results in Section 6.3, where

we also point to directions for future research.2415

6.1 The Logic of Global and Local Announcements

In this section we introduce the syntax and semantics of GLAL. We warn that the term

‘announcement’ is used here with a different meaning with respect to public announce-

ment logic. As discussed in the introduction, the announcements of PAL appear here as

global announcements to all agents. Hence, our notion of announcement is more general2420

as it also covers local announcements and announcement to only a selected subset of all

agents. These distinctions will be clear once the appropriate semantics is introduced.

Given sets AP of atomic propositions and I of indexes for agents in Chapter 3, we

introduce the syntax of GLAL as follows.

Definition 6.1 (GLAL). The formulas in GLAL are defined in BNF as2425

ψ ∶∶= p ∣ ¬ψ ∣ ψ ∧ ψ ∣Ka ∣ CAψ ∣ [ψ]+Aψ ∣ [ψ]−Aψ

where p ∈ AP and A ⊆ I.

The language Lglal of GLAL extends the language Lel of epistemic logic with global

announcement formulas [ψ]+Aφ, whose reading is that “after globally announcing ψ to the

agents in A, φ is true”, as well as local announcements [ψ]−Aφ, whose intuitive meaning

is that “after locally announcing ψ to the agents in A, φ is true”. We will illustrate and2430

discuss, using our semantics, the different interpretations of operators [ψ]+A and [ψ]−A,

particularly with respect to the logic of semi-private announcements [13, 71, 112, 114].

The dual operators ⟨ψ⟩−A and ⟨ψ⟩+A can be defined as ¬[ψ]−A¬ and ¬[ψ]+A¬ respectively.

As usual, the “everybody knows” formula EAφ is a shorthand for ⋀a∈AKaφ, and we

omit subscript A from EAφ and CAφ whenever A is the grand coalition I, then simply2435

write Eφ and Cφ.

Global and local announcement logic extends a number of well-known formalisms.

We mentioned that the language Lel without clauses [ψ]−Aψ and [ψ]+Aψ is epistemic

logic (with common knowledge), and language Lpl without clauses Kaψ and CAψ as



Global and Local Announcements 93

well is propositional logic. These (syntactic) language inclusions, also with respect to2440

the languages introduced in Chapter 3-5, can be summarised as follows:

Lap ⊆ Lpl
⊆

⊆

Lel

Lqbf

⊆
⊆

⊆

⊆

Lglal

Lpal

Lsopel

⊆
⊆

⊆

Lapal

Lsopal

We interpret formulas in GLAL on propositional Kripke frames and models, ob-

tained by removing the interpretation domain D from Definition 3.5. Then, we define

appropriate update mechanisms for global and local announcements.2445

Definition 6.2 (Frame). A Kripke frame is a tuple F = ⟨W,{Ra}a∈I⟩ where

� W is a set of possible worlds;

� for every agent index a ∈ I, Ra ⊆ 2W×W is an equivalence relation on W .

As customary in epistemic logic [47, 95], for every agent a ∈ I, Ra is the corresponding

indistinguishability relation between worlds in W . We recall that, whenever A is a2450

singleton {a}, we have that R∗
A(w) = {w′ ∣ R{a}(w,w

′)} = Ra(w) is the equivalence class

of w ∈W , and R∗
A can be represented as the set EA = {R∗

A(w) ∣ w ∈W} of its equivalence

classes.

To assign a meaning to formulas in GLAL we introduce assignments as functions

V ∶ AP → 2W . A (Kripke) model is then defined as a pair M = ⟨F , V ⟩. Finally, we2455

introduce the notion of satisfaction in a model.

Definition 6.3 (Satisfaction). We define the satisfaction set [[ϕ]]M ⊆W of formula ϕ

in model M = ⟨F , V ⟩ as follows:

[[p]]M = V (p)

[[¬ψ]]M = W ∖ [[ψ]]M

[[ψ ∧ ψ′]]M = [[ψ]]M ∩ [[ψ′]]M

[[CAψ]]M = {w ∈W ∣ for all w′ ∈ R∗
A(w),w′ ∈ [[ψ]]M}

[[[ψ]−Aψ
′]]M = {w ∈W ∣ if w ∈ [[ψ]]M then w ∈ [[ψ′]]M−

(w,ψ,A)
}

[[[ψ]+Aψ
′]]M = {w ∈W ∣ if w ∈ [[ψ]]M then w ∈ [[ψ′]]M+

(w,ψ,A)
}

where refinements M−
(w,ψ,A)

= ⟨W −,{R−
a}a∈I , V

−⟩ and M+
(w,ψ,A)

= ⟨W +,{R+
a}a∈I , V

+⟩ of

model M with respect to world w, formula ψ, and coalition A, are defined so that2460
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� W − =W + =W and V − = V + = V ;

� for every agent b ∉ A, R−
b = R

+
b = Rb; while for a ∈ A,

R−
a(v) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ra(v) ∩ [[ψ]]M if v ∈ Ra(w) ∩ [[ψ]]M

Ra(v) ∩ [[¬ψ]]M if v ∈ Ra(w) ∩ [[¬ψ]]M

Ra(v) otherwise

R+
a(v) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ra(v) ∩ [[ψ]]M if v ∈ R∗
A(w) ∩ [[ψ]]M

Ra(v) ∩ [[¬ψ]]M if v ∈ R∗
A(w) ∩ [[¬ψ]]M

Ra(v) otherwise

By Definition 6.3 the refinement M−
(w,ψ,A)

only affects worlds that are accessible by

each agent in A separately, whileM+
(w,ψ,A)

involves all worlds reachable through relation2465

R∗
A. In all these worlds the accessibility relation is updated according to whether the

world in question satisfies the announcement, that is, the announcement refines the

equivalence class of each such world. In Example 6.1 we illustrate the differences between

the two types of refinement. Notice that in the case of single agents, the refinements

M−
(w,ψ,a) and M+

(w,ψ,a) coincide, hence we omit superscripts − and + from single-agent2470

refinements and modalities. Indeed, globally or locally announcing a fact to a single

agent is tantamount, as she is the only one to witness the announcement. For instance,

an announcement to a single agent by telephone or in a face-to-face meeting have the

same outcome (as long as we are not concerned with issues pertaining to other agents

being aware of the communication act.) In such a case, model refinement M(w,ψ,a) can2475

be interpreted as “in Ra(w), agent a learns whether ψ”. As a consequence, formula

[ψ]aφ then becomes: if ψ holds and a learns whether ψ, then φ holds as well. Also,

the updated set E ′a of equivalence classes in M(w,ψ,a) can be shown to be equal to

(Ea ∖ {Ra(w)}) ∪ {Ra(w) ∩ [[ψ]],Ra(w) ∩ [[¬ψ]]}.

We introduce standard notions of truth and validity. A formula φ is satisfied at w,2480

or (M,w) ⊧ φ, iff w ∈ [[φ]]M; φ is true at w, or (F ,w) ⊧ φ, iff (⟨F , V ⟩,w) ⊧ φ for every

assignment V ; φ is valid in a frame F , or F ⊧ φ, iff (F ,w) ⊧ φ for every world w in F ;

φ is valid in a class K of frames, or K ⊧ φ, iff F ⊧ φ for every F ∈ K. We often omit the

subscript M from the satisfaction set [[ψ]]M whenever clear by the context.

We now prove that our model refinements in Definition 6.3 are well-defined as both2485

R−
a and R+

a are actually equivalence relations.

Lemma 6.4. Let M be a model with refinements M−
(w,ψ,A)

and M+
(w,ψ,A)

. For every

agent a ∈ I, if Ra is an equivalence relation, then also R−
a and R+

a are such.
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We observe that the semantics of global and local announcements given in Defini-

tion 6.3 differs from semi-private announcements in [13, 71, 112, 114]. Specifically, after2490

announcing semi-privately φ to coalition A, all agents in A know φ, and the agents in

I ∖A know that all agents in A know whether φ. None of the above is the case here in

general. Nonetheless, the framework provided above is flexible enough to accommodate

a further model refinementMsp
(w,ψ,a)

suitable for semi-private announcement, according

to which W sp =W , V sp = V , and for a ∈ A,12495

Rspa (v) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ra(v) ∩ [[ψ]]M if v ∈ R∗
I (w) ∩ [[ψ]]M

Ra(v) ∩ [[¬ψ]]M if v ∈ R∗
I (w) ∩ [[¬ψ]]M

Ra(v) otherwise

We do not provide a detailed discussion of semi-private announcements here, as it is

beyond the scope of this work. We only remark the adaptability of the present account.

We now illustrate the difference between global and local announcements by means

of two examples drawn from the literature on multi-agent systems and dynamic logic

[64, 122]. Hereafter we often represent a set as some sequence of its elements.2500

Example 6.1. We first consider the well-known puzzle of muddy children. We assume

familiarity with this scenario and refer to [64, 117] for a detailed presentation. The

initial model M for 3 children (red, blue, and green), where no child knows whether she

is muddy, can be represented as follows:

(0, 0, 0)

(1, 0, 0)

(1,1,0)

(0,1,0)

(0,0,1)

(0,1,1)

(1,0,1)

(1,1,1)

r

r

r

r

b

b

b

b

g

g

g

g

2505

1The standard way to define this semantics is as Rspa = Ra for a /∈ A, whereas Rspa = Ra ∩ ([[ψ]]2M ∪

[[¬ψ]]2M)) for a ∈ A. In the submodel generated by the actual state the result is identical to the semantics
here defined.
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Now suppose that only red is muddy, i.e., the actual world is (1,0,0), and the father

locally announces to red and blue that at least one child is muddy, that is, formula

α ∶=mr ∨mb ∨mg is true. The refined model M−
(100,α,rb) is then given as follows:

(0, 0, 0)

(1, 0, 0)

(1,1,0)

(0,1,0)

(0,0,1)

(0,1,1)

(1,0,1)

(1,1,1)

r

r

r

b

b

b

b

g

g

g

g

Notice that only the indistinguishability relation for red is updated, as in all worlds2510

that blue considers possible from (1,0,0), formula α is indeed true. Hence, after the

father’s local announcement, in (1,0,0) all children know that at least one child is

muddy, i.e., (1,0,0) ⊧ [α]−rbEα. Moreover, red learns that she is muddy, i.e., (1,0,0) ⊧

[α]−rbKrmr. This is in line with the classic version of the muddy children puzzle.

On the other hand, the father’s local announcement is not enough to make α com-2515

mon knowledge for red and blue, that is, (1,0,0) /⊧ [α]−rbCrbα, as blue considers possible

that red considers possible that blue considers possible that no child is muddy, that is,

(1,0,0) ⊧ [α]−rbMbMrMb¬α via epistemic path (1,0,0) ∼b (1,0,1) ∼r (0,0,1) ∼b (0,0,0).

This is in contrast with the classic version of the muddy children puzzle with public an-

nouncements, where the father global and public announcement entail common knowledge2520

of α.

Now suppose that at the beginning, again in world (1,0,0), the father globally an-

nounces to red and blue that at least one child is muddy. The refined model M+
(100,α,rb)

is indeed different from M−
(100,α,rb), as shown below.
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(0, 0, 0)

(1, 0, 0)

(1,1,0)

(0,1,0)

(0,0,1)

(0,1,1)

(1,0,1)

(1,1,1)

r

r

r

b

b

b

g

g

g

g

2525

Specifically, in M+
(100,α,rb) the indistinguishability relations are refined for both red

and blue, and as a result, after the father’s global announcement, in (1,0,0) red and

blue have common knowledge that at least one child is muddy: (1,0,0) ⊧ [α]+rbCrbα.

However, also in this case the father’s global announcement is not enough to make

α common knowledge amongst all children, that is, (1,0,0) /⊧ [α]+rbCα, as (1,0,0) ⊧2530

[α]+rbMgMrMg¬α via epistemic path (1,0,0) ∼g (1,1,0) ∼r (0,1,0) ∼g (0,0,0).

Example 6.2. We now consider a scenario of coordinated attack. General a and b are

planning to jointly attack the enemy, but each of them will attack only if the other is

also attacking, also none of them is sure about whether the other will actually attack. As

customary in such scenarios [64], we suppose that they attack simultaneously or not at2535

all, and they actually attack simultaneously iff they reach common knowledge of the fact

that they are both attacking, that is, C(atta ∧ attb). This scenario can be represented

intuitively as model N in Fig. 6.1.

Further, we model communication between the two generals as an exchange of mes-

sages atta → attb from a to b, and attb → atta from b to a, that is, each general commu-2540

nicates that he is attacking only if the other is also attacking. Since communication is

between individuals, here we can omit the distinction between global and local announce-

ments.

Then we can check that, even though both generals intend to attack in world (atta, attb),

they will never attain common knowledge of this fact, independently from the number of2545
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atta, attb

atta, attbatta, attb

atta, attb

ab

ba

Figure 6.1: The model N for the coordinated attack scenario (reflexive edges are
omitted for clarity).

messages they exchange. Specifically, in N we have

(atta, attb) /⊧ [atta → attb]bC(atta ∧ attb)

(atta, attb) /⊧ [attb → atta]aC(atta ∧ attb)

Indeed, we can verify that N((atta,attb),atta→attb,b) = N((atta,attb),attb→atta,a) = N . As a

result, no matter how many messages general a and b exchange, common knowledge that

they are both attacking will never be attained. Hence, as a particular instance we have

(atta, attb) /⊧ [atta → attb]b[attb → atta]a[atta → attb]bC(atta ∧ attb)

Then, we might think of stronger messages to be exchanged by the generals, for2550

instance, each general might communicate that the other general attacking is a sufficient,

rather than necessary, condition for his own attack, that is, general a sends message

attb → atta to b, and b sends message atta → attb to a. Now, we can see that the

following exchange is sufficient to achieve common knowledge:

(atta, attb) ⊧ [attb → atta]b[atta → attb]aC(atta ∧ attb)

On the other hand, this protocol is not robust against deviant behaviours. Indeed, each2555

general is uncertain as to whether the other general is attacking. Hence, for instance,

general a considers world (atta, attb), where we have the following:

(atta, attb) /⊧ [attb → atta]b(atta ∧ attb)
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and as a consequence,

(atta, attb) /⊧ Ka[attb → atta]b[atta → attb]aC(atta ∧ attb)

and similarly for general b.

Thus, even though the protocol is correct, no general knows this fact, and if we con-2560

sider knowledge as a prerequisite for action, no general will actually follow the protocol.

Hence, we investigate a protocol that is robust against deviant behaviours and con-

sider messages Kaattb → atta from a to b, and Kbatta → attb from b to a, which weaken

the second pair of messages by requiring knowledge of the fact that the other agent is

attacking as sufficient condition for attacking. Then, we can check that2565

(atta, attb) ⊧ Ka[Kaattb → atta]bKb(atta ∧ attb)

(atta, attb) ⊧ Kb[Kbatta → attb]aKa(atta ∧ attb)

In particular, we have the following

(atta, attb) ⊧ C[Kaattb → atta]b[Kbatta → attb]aC(atta ∧ attb)

that is, both generals have common knowledge that if they tell each other that they are

attacking if they know that the other general is attacking as well, then they will be able

to coordinate for an attack.

These examples are intended to illustrate the formal features of GLAL to represent2570

global and local communication, as well as message exchanges in coordination problems.

In particular, GLAL allows to express local communication that cannot be captured in

PAL. In the following section we analyse the expressivity of GLAL and provide a formal

proof of the fact that it is strictly more powerful than PAL.

6.2 Expressivity and Validities2575

This section is devoted to explore the expressive power of GLAL through its validities.

The main result is that GLAL, differently from PAL, is not reducible to epistemic logic,

and therefore strictly more expressive than both.

As a preliminary result, we show that after announcing (truthfully) a propositional

formula φ to the agents in A, they know φ.2580
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Lemma 6.5. For every propositional formula φ ∈ Lpl,

⊧ [φ]−AEAφ (6.1)

⊧ [φ]+ACAφ (6.2)

According to Lemma 6.5, if a propositional formula φ is announced locally, then all

agents involved in the announcement know φ; while if φ is announced globally, then it

also becomes common knowledge amongst those agents. Note that global announcements

imply group knowledge in particular: ⊧ [φ]+AEAφ, but local announcements normally2585

do not entail common knowledge. For instance, in the muddy children puzzle above,

we had that (1,0,0) /⊧ [α]−rbCrbα. As a consequence, the notions of global and local

announcement as described by operators [φ]−A and [φ]+A are indeed different.

Lemma 6.5 does not hold for general formulas φ ∈ Lglal. As a counterexample,

take a model M with W = {w, v}, Ra = W 2, and p only true in w. Then we have2590

(M,w) ⊧ (p ∧ ¬Kap), but a (either global or local) truthful announcement of p ∧ ¬Kap

to agent a does entail that a knows p: in the refined model M(w,p∧¬Kap,a) we have

R−
a = R

+
a = {(w,w), (v, v)}, and therefore (M,w) /⊧ [p ∧ ¬Kap]a(p ∧ ¬Kap).

Further, GLAL is provably at least as expressive as public announcement logic.

Indeed, we show that the global announcement modality [φ]+I for the grand coalition2595

mimicks operator [φ] from PAL. We refer to [100] for a formal presentation of PAL.

Here we only recall the satisfaction clause for [φ]-formulas.

[[[ψ]ψ′]]M = {w ∈W ∣ if w ∈ [[ψ]]M then w ∈ [[ψ′]]Mψ
}

where the refinementMψ = ⟨Wψ,{Rψ,a}a∈, Vψ⟩ of modelM with respect to formula ψ is

defined as (i) Wψ =W ∩ [[ψ]]M; (ii) for every agent a ∈ I, Rψ,a = Ra ∩ ([[ψ]]M × [[ψ]]M);

and (iii) for every p ∈ AP , Vψ(p) = V (p) ∩ [[ψ]]M. Intuitively, Mψ is the restriction of2600

M to the worlds satisfying ψ.

Now consider the mapping tr ∶ Lpal → Lglal recursively defined as follows:

tr(p) = p

tr(¬φ) = ¬tr(φ)

tr(φ ∧ φ′) = tr(φ) ∧ tr(φ′)

tr(Kaφ) = Katr(φ)

tr(CAφ) = CAtr(φ)

tr([φ]φ′) = [tr(φ)]+I tr(φ
′)

Then, we are able to prove the following equivalence result.



Global and Local Announcements 101

Proposition 6.6. For all formulas ψ in PAL,

(M,w) ⊧ ψ iff (M,w) ⊧ tr(ψ)

An immediate corollary of Proposition 6.6 is that public announcements in PAL2605

really correspond in GLAL to global announcements to all agents.

Corollary 6.7. For all formulas φ,ψ in PAL,

(M,w) ⊧ [φ]+Iψ iff (M,w) ⊧ [φ]ψ

In agreement with intuition, by Definition 6.7 public announcements in PAL are

really global announcements to all agents in GLAL. As a consequence, GLAL is at least

as expressive as PAL.2610

Next we prove that GLAL is strictly more expressive than epistemic logic. Since

epistemic logic and PAL are equally expressive [100], it immediately follows that GLAL is

strictly more expressive than PAL as well. The result is shown by providing two bisimilar

models, that therefore satisfy the same epistemic formulas, but satisfy different formulas

in GLAL. To this end, consider models M = ⟨W,Ra,Rb, V ⟩ and M′ = ⟨W ′,R′
a,R

′
b, V

′⟩,2615

depicted in Fig. 6.2, such that

� W = {ve, vo};

� Ra = Rb =W
2;

� V (p) = {ve};

� W ′ is the set Z of the integers;2620

� for all n ∈ Z, R′
a(n,n), R

′
b(n,n), R

′
a(2n,2n + 1), and R′

b(2n + 1,2n);

� V ′(p) = {n ∈ Z ∣ n is even}.

Define a relation B such that B(ve, n) iff n is even, and B(vo, n) iff n is odd. It

is easy to check that the B is a bisimulation between pointed models (M, ve) and

(M′,0). In particular, the same epistemic formulas are satisfied at states ve and 0.2625

However, for Kwaφ ∶= Kaφ ∨Ka¬φ, we can check that (M, ve) ⊧ [p]aKbKwap; while

(M′,0) /⊧ [p]aKbKwap. Hence, GLAL is capable of distinguishing between models that

satisfy the same epistemic formulas, and we obtain the following result.

Theorem 6.8. GLAL is strictly more expressive than epistemic logic.
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ve

p

vo
a, b

0

p

1 2

p

. . .−1−2

p

. . . a b abab

Figure 6.2: Models M and M′ for the proof of Theorem 6.8 (reflexive edges are
omitted for clarity).

By Theorem 6.8 and the equi-expressivity of epistemic logic and PAL [100], we2630

immediately obtain the following result.

Corollary 6.9. GLAL is strictly more expressive than PAL.

By the proof of Theorem 6.8 we can see that not even announcements to single

agents are reducible to epistemic formulas. Hence, it looks as if the reducibility of PAL

to epistemic logic is a fortuitous accident. Also, the same proof points out that a more2635

robust notion of bisimulation is needed to preserve formulas in GLAL.

A further consequence of Theorem 6.8 is that, differently from PAL, there is no

set of validities in GLAL to rewrite any announcement in terms of simpler formulas.

Nonetheless we state without proof the validity of the following equivalences.

Lemma 6.10. The following formulas are validities in GLAL:2640

[φ]−Ap↔ φ→ p [φ]+A p↔ φ→ p

[φ]−A ¬ψ↔ φ→ ¬[φ]−Aψ [φ]+A ¬ψ↔ φ→ ¬[φ]+Aψ

[φ]−A (ψ ∧ ψ′)↔ [φ]−Aψ ∧ [φ]−Aψ
′ [φ]+A (ψ ∧ ψ′)↔ [φ]+Aψ ∧ [φ]+Aψ

′

Thus, both announcement operators commute with propositional connectives.

Moreover, the announcement and common knowledge operators commute if they

both refer to the same agent or the same coalition.

Lemma 6.11. The following are GLAL validities:

[φ]+ACAψ ↔ φ→ CA[φ]
+
Aψ (6.3)

[φ]aKaψ ↔ φ→Ka[φ]aψ (6.4)

On the other hand, (6.3) and (6.4) do not hold for arbitrary agents and coalitions.2645

As an example of this, consider model M′ in Fig. 6.2: we remarked that (M′,0) /⊧
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[p]aKbKwap, but we have (M′,0) ⊧ Kb[p]aKwap. Hence, (φ → Kb[φ]aψ) → [φ]aKbψ

do not hold in general, and we can find counterexamples for the opposite direction as

well.

As regards nested announcements, again we have that operators commute iff they2650

are indexed by the same coalitions

Lemma 6.12. The following formulas are validities in GLAL:

[φ]−A [φ′]
−

A
ψ ↔ [φ ∧ [φ]−A φ

′]
−

A
ψ (6.5)

[φ]+A [φ′]
+

A
ψ ↔ [φ ∧ [φ]+A φ

′]
+

A
ψ (6.6)

Also for formulas (6.5) and (6.6) we can check that they do not hold for arbitrary

coalitions and agents. As an example, consider model M in Fig. 6.2: we have that

(M, ve) ⊧ [p]a[KbKwa]bKbKwa, but (M, ve) /⊧ [p∧[p]aKbKwa]bKbKwa. In particular,2655

[φ]a [φ
′]bψ↔ [φ ∧ [φ]a φ

′]bψ fails for agents a ≠ b.

Given that operators [φ]−A and [φ]+A are not reducible, it is of interest to investigate

what kind of modalities they are, specifically what modal principles their semantics

validates. First, it is easy to see that both axiom K and rule Nec of necessitation are

valid:2660

[φ]−A(ψ → ψ′)→ ([φ]−Aψ → [φ]−Aψ
′) [φ]+A (ψ → ψ′)→ ([φ]+Aψ → [φ]+Aψ

′)

ψ⇒ [φ]−Aψ ψ⇒ [φ]+Aψ

On the other hand, all axioms T, 4 and B fail. As regards T, if φ is false, then

[φ]aψ holds for any formula ψ, but it does not follow that ψ holds whenever it is

false itself. As to axiom 4, notice that in the muddy children puzzle a child not step-

ping forward is tantamount to globally stating that she does not know whether she

is muddy, or [no step] ∶= [⋀a∈I ¬Kwama]
+
I . Hence, after the father’s announcement, in2665

state (1,1,0) we have that no child knows whether she is muddy after the first round, that

is, (1,1,0) ⊧ [no step]⋀a∈I ¬Kwama. However, at the second round all muddy children

know that they are muddy: (1,1,0) ⊧ [no step][no step]⋀a∈I(ma → Kwama). In par-

ticular, (1,1,0) /⊧ [no step][no step]⋀a∈I ¬Kwama, thus invalidating 4. As regards B,

consider again modelM appearing after Lemma 6.5. We have that (M,w) ⊧ p∧¬Kap,2670

and if p is announced to a, then p still holds but is no longer the case that a does not

know p, that is, (M,w) ⊧ p ∧ ¬Kap but (M,w) /⊧ [p]a⟨p⟩a(p ∧ ¬Kap).
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6.3 Discussion and Related Literature

In this chapter we introduced a unified account to formalise both global and local an-

nouncements in GLAL, an extension of public announcement logic that is strictly more2675

expressive. The key feature of the semantics of GLAL is that the refinement of the indis-

tinguishability relations is defined in the same way for public and private announcements,

i.e., as the refinement of the equivalence classes to the worlds satisfying or not the given

announcement. Then, the crucial difference between global and local announcements

is the domain of application of such updates: for local announcements the updates are2680

refined to worlds accessible in one step through the indistinguishability relation of each

given agent; while in global announcements we consider all worlds epistemically reach-

able. In Example 6.1 and 6.2 we showed how these formal notions capture our intuitions

about global and local announcements.

The present framework can be extended in several directions Firstly, since differently2685

from PAL announcements are not necessarily broadcast to all agents (so that only one

such announcement can be broadcast at any given time), we can think about global

and local announcements communicated simultaneously and introduce formulas ([φ]A ○

[φ′]B)ψ with the intended meaning that if φ is (truthfully) announced to coalition A

and simultaneously φ′ is announced to coalition B, then ψ holds. This is of interest2690

to model synchronous communication. Particular care has to be taken in defining the

semantics of operator [φ]A ○ [φ′]B whenever the intersection of coalitions A and B is

non-empty. Secondly, as the receiver of the announcement can be a subset A ⊆ I of

the set of all agents, we can think that the announcement originates from some other

coalition B and introduce GLAL operators [φ]B,A indexed to both A and B. Such2695

an extension would provide a finer-grained analysis of scenario such as the coordinated

attack in Example 6.2. Indeed, if we assume reliable communication channels, the truth

of [φ]B,Aψ does imply that A knows φ, but also that B knows that A knows φ, and so

on. On the other hand, if communication is not reliable, a different, weaker semantics

has to be taken into account.2700

Related to GLAL, public announcement logics have witnessed a steady growth and

a wealth of contributions in recent years [11, 100, 111, 115, 118], thus making virtually

impossible to give an exhaustive account of this research area. Here we mention the

references most closely related to the present work, as well as some surveys on PAL.

In [71] a logic of fully private announcements was proposed, while [13, 71, 112, 114]2705

put forward logics of semi-private announcements, which relax the publicity assumption

of PAL in various directions. Such private or semi-private announcements have also

been modelled as action models [11]. Differently from our proposal, in semi-private

announcements the agents that do not observe the announcement of φ learn at least
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that the other agents have learnt whether φ. No such assumption holds in the present2710

context. On the othe hand, in fully private announcements the other agents learn nothing

at all about the agents learning φ (which is typically interpreted as the other agents not

even being aware of the announcement having taken place). This is also different from

our setting, wherein these other agents learn something about φ with respect to the

actual state.2715

Modal logics based on model transformation have also been proposed in [5, 6, 65,

110]. These accounts share the aspect of locality (dependence of the model transforming

operation on the actual state) that also characterizes our approach. However, differently

from our proposal, these are very expressive formalisms (typically undecidable, or non-

axiomatizable) that allow to add or remove individual pairs of states from an agent’s2720

accessibility relation; thus operating on a purely semantic level. On the contrary, in

GLAL the model transformation is determined by the announced formula, so that only

pairs satisfying a condition relative to this formula can be removed. This gives less

opportunity to separate non-bisimilar states. Although we did not prove such theoretical

results here, our operators may therefore be more promising to obtain decidability and2725

axiomatizability.





Chapter 7

Conclusions2730

In this work we aimed at developing formal methods to represent and reason about in-

dividual and group knowledge in multi-agent contexts, particularly by means of propo-

sitional quantification. In Chapter 3 we introduced second-order propositional modal

logic and analysed its features to express local properties in Kripke frames. Specifically,

we compared SOPML to the language of local properties in modal logic [119–121], and2735

showed that the former is as expressive as the latter. Furthermore, we considered second-

order propositional epistemic logic, an epistemic version of SOPML, and observed that

this language is suitable to represent higher-order knowledge of agents and coalitions,

namely the knowledge agents have of other agents’ and coalitions’ knowledge, including

truthfulness of knowledge, inclusion of one agent’s knowledge in another’s, etc. As an2740

example, we showed that SOPEL is capable of capturing comparative epistemic logic

[121]. In the same chapter we presented theoretical results that are crucial to assess the

computational properties of the formal framework. Specifically, we proved that for the

classes of all frames and propositional frames, we are able to provide sound and com-

plete axiomatisations with respect to all normal modalities. As regards the class of full2745

frames, we gave an axiomatisation only for the normal modality S5, the standard logic

for knowledge. We highlighted the essential use of the common knowledge operator in

obtaining such a result. Moreover, we remarked that no complete axiomatisation exists

for weaker modalities, while we left the same question for modal frames as an open

problem.2750

To assess the expressive power of SOPML, in Chapter 4 we introduced (bi)simulation

relations, which are well-known to be a useful tool in modal logic [47]. Then, we proved

that (bi)simulations preserve the interpretation of formulas in (the universal fragment

of) SOPML. We also defined (bi)simulation games played by Spoiler and Duplicator,

and proved that the existence of a winning strategy for Duplicator is tantamount to2755
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the existence of a (bi)simulation. These results have then been applied to analyse the

expressivity of SOPML in reasoning about spatial and temporal properties. In partic-

ular, we showed that while 3-colorability and Dedekind-completeness are expressible in

SOPML, having a Hamiltonian path or being (in)finite are not. Results along this line

are key to assess the expressive power of SOPML.2760

In Part II we moved to analyse the dynamics of knowledge, by extending the frame-

work of SOPEL with announcement operators, in the spirit of public announcement logic

[100]. The motivation for doing so comes from arbitrary public announcement logic, in

which implicit quantification is used to express epistemic properties such as knowabil-

ity, preservation, and successfulness of announcements. In Chapter 5 we introduced the2765

syntax and semantics of SOPAL, compared it thoroughly with APAL, and showed that

the former is more expressive than the latter at the frame level. Moreover, we proved

that SOPAL is as expressive as SOPEL, but exponentially more succint.

Finally, in Chapter 6 we relaxed the assumptions of globality and publicity of public

announcement logic and introduced the logic of global and local announcements. Techni-2770

cally, GLAL includes announcement operators for both global and local announcements,

indexed to coalitions of agents. This language is shown to be suitable to describe multi-

agent scenarios such as variants of the muddy children puzzle, as well as coordinated

attacks. Differently from PAL, we proved that GLAL is strictly more expressive than

epistemic logic.2775

To conclude, in this work we introduced a wealth of expressive epistemic langugages

enjoying different features: quantified v. purely propositional, static v. dynamic. We

applied them to represent a number of multi-agents scenarios, and analysed their the-

oretical properties. We reckon that a lot is left to be done in the area of knowledge

representation, particularly with respect to agent communication. We leave these topics2780

for future developments.



Chapter 8

Perspectives

We conclude this work by discussing some perspectives for future developments in the ar-

eas of knowledge representation and reasoning, as well as logics for multi-agent systems.2785

In particular, our research efforts in the coming years will be directed to the realisation

of the SVeDaS project, funded by the Jeunes Chercheuses/Jeunes Chercheurs scheme of

the ANR. The SVeDaS project is intended to leverage on the techniques and results ob-

tained thus far in the specification and verification of multi-agent systems, and to extend

and to apply these to the novel class of data-aware systems. In Chapter 1 we saw that2790

data-aware systems have emerged in the last decade as the leading paradigm to analyse

use cases in which data play an essential role in the system’s execution [46, 60, 86].

Data-aware systems are focused on the combined perspective of data models and system

processes. Data are visible and accessible to agents, possibly in a controlled way through

some permission restrictions; they directly account for the system’s evolution and can2795

be exhibited explicitly in the system’s specification. These considerations apply to auc-

tioning processes as well: one original tenet of the SVeDaS is to model auction-based

mechanisms as data-aware systems. For the effective deployment of DaS, including auc-

tion in e-markets, verification and validation methodologies are essential. The SVeDaS

project takes inspiration from the state-of-the-art in the application of formal meth-2800

ods to data-aware systems, and aims at developing a tailored methodology for their

modelling, analysis and verification, then to apply these techniques to the formal cer-

tification of auctions. However, the enhanced expressivity provided by DaS comes at a

computational price. In particular, we identify two main shortcomings in the present

state-of-the-art.2805

1. Most of the literature on DaS [60, 61, 86, 97] focuses almost exclusively on the data

model of business processes, while neglecting the software agents implementing the

service infrastructure. These software agents might have only a partial view of the
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relevant data, or, in the terminology of multi-agent systems, they have imperfect

information of the global state of the system [127]. This (lack of) information2810

shapes the capabilities of the software agents to interact and bring about change,

which in turn has an impact on the overall behaviour and performance of the

data-aware system. Thus, modelling both the information state and the strategic

abilities of agents operating on DaS are key to describe and predict the evolution

of the system.2815

2. The actual deployment of DaS in concrete, safety- and security-critical scenar-

ios demands for the development of automated verification techniques, including

by model checking [8, 55]. However, while formal methods are relatively well-

understood in plain process-based modelling, the presence of data makes the typi-

cal verification questions much harder to answer and only partially explored. No-2820

tably, the common assumption of a possibly infinite data domain in the underly-

ing system leads to an infinite state-space and undecidability of the corresponding

model checking problem in the general case. Hence, the verification of DaS is

highly non-trivial and it cannot be immediately handled by standard techniques

for finite-state systems. Data-driven, tailored solutions need to be developed and2825

deployed in an up-to-date model checking tool.

These are among the main challenges faced by the application of the data-centric

paradigm in modelling concrete multi-agent systems. In the SVeDaS project we envisage

to tackle these issues by

(i) developing an agent-oriented approach to DaS modelling, in order to account also2830

for the imperfect information in the system;

(ii) investigating verification techniques based on (bi)simulations and abstraction for

contexts of imperfect information;

(iii) implementing the relevant techniques in a model checking tool to certify auctioning

mechanisms represented as data-aware systems.2835

The overall proposed solution is enbodied in a series of (partial) objectives that can

be summarized as follows:

1. To introduce agent-based, computationally-grounded models for data-aware sys-

tems, that are capable of expressing rich business workflows, including auction-

based mechanisms in e-markets (e.g., English, Dutch, and Vickrey auctions, real-2840

time bidding). On this point we published preliminaries results for specific types

of auctions [14, 35, 42].
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2. To explore logic-based formal languages for the specification of strategic behaviours

of autonomous agents (including robustness against malicious behaviours, as well

as manipulability and collusion in auctions) pertaining to business processes and2845

agents operating on them. Rich specification languages for knowledge representa-

tion and reasoning, such as those considered in this work, are of utmost importance

with respect to this task. We envisage to make use of our results in [43–45] to ex-

press strategic reasoning of agents in auction-based mechanisms.

3. To analyse the formal properties of these data-aware models, particularly the is-2850

sues concerning formal verification by model checking in a setting with imperfect

information. This task will benefit from results on MAS verification in contexts of

imperfect information we obtained in [15, 18, 37].

4. To find classes of data-aware systems and expressive language fragments relevant

for auction-driven applications, which have a decidable model checking problem2855

and possibly are also amenable to practical verification. Of particular interest for

this objective are the notions of uniformity and boundedness developed within the

ACSI project. However, the restrictions imposed by these conditions needs to be

overcome, as we attempted to do in [17, 19].

5. To develop the SVeDaS model checker for the verification and validation of data-2860

aware systems in multi-agent scenarios. This tool will leverage on model checking

methodologies and techniques we explored in [20, 25, 41].

6. To evaluate the performance of the SVeDaS tool in the influential auctioning mech-

anisms mentioned above, and to release it as open-source software.

We anticipate that the research envisaged in the SVeDaS project will impact on2865

the application of formal methods to data-aware systems in general, and auction-based

mechanisms in particular. The certification against deviant behaviours guaranteed by

formal verification will contribute to design more robust and reliable auctions in e-

commerce. Society as a whole will benefit from the findings and results of the SVeDaS

project.2870





Appendix A

Proofs

A.1 Chapter 32875

Lemma 3.8. All proofs are by induction on the structure of φ.

1. If φ = p, then fr(φ) = {p} and (M,w) ⊧ φ iff w ∈ V (p) = V ′(p), iff (M′,w) ⊧ φ.

The inductive cases for the propositional connectives are immediate.

If φ = ◻aψ, then (M,w) ⊧ φ iff for all w′ ∈ Ra(w), (M,w′) ⊧ ψ. Since fr(φ) =

fr(ψ), V and V ′ coincide on fr(ψ) as well, and by induction hypothesis for all2880

w′ ∈ Ra(w), (M′,w′) ⊧ ψ, i.e., (M′,w) ⊧ φ. The case for φ = ◻∗Aψ is similar.

If φ = ∀pψ, then (M,w) ⊧ φ iff for any U ∈D, (Mp
U ,w) ⊧ ψ. Since fr(φ) = fr(ψ)∖

{p}, V p
U and V ′p

U coincide on fr(ψ), and by induction hypothesis (M′p
U ,w) ⊧ ψ. By

the arbitrariness of U , this is the case iff (M′,w) ⊧ φ.

2a The case for x = ap is immediate, as assignments are functions in D. Hence,2885

V (p) ∈D for every p ∈ AP .

The case for x = pl , follows from identities ⟦¬ψ⟧ =W ∖ ⟦ψ⟧, ⟦ψ ∧ ψ′⟧ = ⟦ψ⟧ ∩ ⟦ψ′⟧,

⟦ψ ∨ ψ′⟧ = ⟦ψ⟧ ∪ ⟦ψ′⟧ and the fact that D is a boolean algebra.

As for x = ml , notice that ⟦◻aψ⟧ = [a](⟦ψ⟧), ⟦◻∗Aψ⟧ = [A]∗(⟦ψ⟧), and D is a

boolean algebra closed under operators [a] and [A]∗.2890

The case for x = sopml , is immediate, as ⟦ψ⟧ ⊆W for every ψ ∈ Lsopml .

2b Let us first consider x = ap. If φ is an atom r, (Mp
V (q)

,w) ⊧ φ iff w ∈ V p
V (q)

(r), iff

w ∈ V (r) whenever r ≠ p or w ∈ V (q) for r = p. In both cases (M,w) ⊧ φ[p/q].

The inductive cases for propositional connectives and modal operators are imme-

diate, as these simply commute with substitution.2895
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If φ = ∀rϕ for r ≠ p, then (Mp
V (q)

,w) ⊧ φ iff for every U ∈ D, ((Mp
V (q)

)rU ,w) ⊧ ϕ.

Since r ≠ p and q is free for p in φ, q ≠ r and assignment (V p
V (q)

)rU is equal to

(V r
U)

p
V rU (q)

. As a consequence, we obtain ((Mr
U)

p
V rU (q)

,w) ⊧ ϕ, i.e., (Mr
U ,w) ⊧

ϕ[p/q] by induction hypothesis. But this means that (M,w) ⊧ ∀r(ϕ[p/q]) =

(∀rϕ)[p/q].2900

As regards cases x = pl ,ml , sopml , we make use of (1). We only prove the inductive

step for φ = ∀rϕ, with r ≠ p, the other cases being similar to the case for x = ap

above. Observe that (Mp
⟦ψ⟧
,w) ⊧ φ iff for every U ∈ D, ((Mp

⟦ψ⟧
)rU ,w) ⊧ ϕ. Since

r ≠ p and ψ is free for p in φ, r ∉ fr(ψ), and by (1) above, ⟦ψ⟧M = ⟦ψ⟧Mr
U

. Therefore

assignment (V p
⟦ψ⟧

)rU is equal to (V r
U)

p
⟦ψ⟧Mr

U

. Hence, we obtain ((Mr
U)

p
⟦ψ⟧Mr

U

,w) ⊧2905

ϕ, i.e., (Mr
U ,w) ⊧ ϕ[p/ψ] by induction hypothesis. But this means that (M,w) ⊧

∀r(ϕ[p/ψ]) = (∀rϕ)[p/ψ].

Proposition 3.10. The proof for full frames is immediate, as for every U ⊆ Ww, U ⊆ W

and then U ∈D. Hence, Uw = U ∈Dw.2910

The proof for boolean frames follows from the following identities:

Uw ∩U
′
w = (U ∩U ′)w

Uw ∪U
′
w = (U ∪U ′)w

∖(Uw) = (∖U)w

As for modal frames, we remark that

[a](Uw) = ([a]U)w

(observe that here [a] denotes two different operations, the former onMw and the latter

on M.) Indeed, v ∈ [a](Uw) iff Rw,a(v) ⊆ Uw. Since, Rw,a(v) = Ra(v) ∩W
2
w, this is the

case iff v is reachable from w and for every v′ ∈ Ra(v), if v′ is reachable from w then2915

v′ ∈ U , iff v is reachable from w and for every v′ ∈ Ra(v), v
′ ∈ U , iff v ∈ ([a]U)w. The

proof for operator [A]∗ is similar.

Finally, since reflexivity, symmetry, and transitivity are all universal properties, they

are preserved under taking subsets, and therefore, if Ra satisfies any of them, then for

any Ww ⊆W , the relation Rw,a = Ra∩W
2
w also satisfies the same property. In particular,2920

the generated submodel of an epistemic model with equivalence relations is still a model

with equivalence relations.
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Lemma 3.11. The proof is by induction on the structure of φ. For φ = p, (M, v) ⊧ φ

iff v ∈ V (p), iff v ∈ Vw(p) = V (p) ∩Ww, iff (Mw, v) ⊧ φ. The cases for propositional

connectives are immediate. As to φ = ◻aψ, if (M, v) /⊧ φ then for some v′ ∈ Ra(v),2925

(M, v′) /⊧ ψ. In particular, v′ is reachable from v and therefore from w, thus v′ ∈

Ww. Hence, the induction hypothesis holds for v′ ∈ Rw,a(v) and (Mw, v
′) /⊧ ψ, that

is, (Mw, v) /⊧ φ. The case for φ = ◻∗Aψ is similar. Finally, for φ = ∀pψ, if (M, v) /⊧ φ

then for some U ∈ D, (Mp
U , v) /⊧ ψ. Consider Uw = U ∩Ww. We have that for every

q ∈ AP , (V p
U )w(q) = V

p
U (q)∩Ww = V p

Uw
(q)∩Ww = (Vw)

p
Uw

(q), and by induction hypothesis2930

((Mw)
p
Uw
, v) /⊧ ψ. That is, (Mw, v) /⊧ φ.

Corollary 3.12. Obviously, Th(Key) ⊆ Th(Key ∩Kuniv). As to the converse, suppose that

(F , V,w) /⊧ φ for some F ∈ Key, and consider the generated submodel Mw = ⟨Fw, Vw⟩.

Clearly, Fw ∈ Kuniv is universal. Moreover, by Proposition 3.10 Fw belongs to the

relevant class Key of frames, and by Lemma 3.11 we have that (Mw,w) /⊧ φ for Fw ∈2935

Kuniv ∩K
e
y.

Theorem 3.16. We prove the theorem in general, but first we show what it means for

the following specific case: θ(a, b, p) = ◻ap → ◻bp, ⊡(a, b) = Sup(a, b), and Θ(a, b, x) =

∀y(Rb(x, y)→ Ra(x, y)), also written as Rb(x) ⊆ Ra(x).

⇐ Since (M,w) ⊧ Sup(a, b), we have that Rb(x) ⊆ Ra(x) holds in (M,w), and hence2940

in (F ,w). Since ◻ap→ ◻bp locally defines Rb(x) ⊆ Ra(x), we have (F ,w) ⊧ (◻ap→ ◻bp),

and in particular (F ,w) ⊧ ∀p(◻ap → ◻bp). Since ∀p(◻ap → ◻bp) is a sentence, we

obtain (M,w) ⊧ ∀p(◻ap → ◻bp). ⇒ Now suppose that (M,w) /⊧ Sup(a, b). Then

(F ,w) /⊧ Sup(a, b). Since ◻ap → ◻bp locally defines Rb(x) ⊆ Ra(x), we know that

(F ,w) /⊧ ◻ap → ◻bp, and since F is full, for some assignment V ′, we have (F , V ′,w) /⊧2945

◻ap→ ◻bp, that is, (M,w) /⊧ ∀p(◻ap→ ◻bp).

As for the general case: ⇐ Since (M,w) ⊧ ⊡(a⃗), we have that Θ(a⃗, x) holds in

(M,w), and hence in (F ,w) (note that Θ ∈ L1fo only talks about what is accessible from

what). Since θ(a⃗, p⃗) locally defines Θ(a⃗, x), we have (F ,w) ⊧ θ(a⃗, p⃗), and in particular

(F ,w) ⊧ ∀p⃗θ(a⃗, p⃗). Since ∀p⃗θ(a⃗, p⃗) is a sentence, (M,w) ⊧ ∀pθ(a⃗, p⃗). ⇒ Suppose that2950

(M,w) /⊧ ⊡(a⃗). Then, (F ,w) /⊧ ⊡(a⃗), and therefore (F ,w) /⊧ Θ(a⃗, x). Since θ(a⃗, p⃗)

locally defines Θ(a⃗, x), we know that (F ,w) /⊧ θ(a⃗, p⃗), and since F is full, for some

assignment V ′, we have (F , V ′,w) /⊧ θ(a⃗, p⃗), that is, (M,w) /⊧ ∀p⃗θ(a⃗, p⃗).

Lemma 3.17. 1. If F is full and irreflexive, that is, for all w ∈ W , ¬Ra(w,w), then

clearly (F ,w) ⊧ ∃p(◻ap ∧ ¬p) for all w ∈ W , by considering assignment V (p) =2955

Ra(w) for which w ∉ V (p). As to the converse, suppose that F ⊧ ∃p(◻ap ∧ ¬p).
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Hence, for every model M based on F and w ∈ W , (M,w) ⊧ ∃p(◻ap ∧ ¬p),

i.e., (M,w) /⊧ ∀p(◻ap → p). However, by Lemma 3.19 below, this is the case iff

Ra(w,w) does not hold. As a result, F is irreflexive.

2. Define ψi as (pi∧⋀j≤n,j≠i ¬pj)): ψi says that of all atoms p1, . . . , pn, only pi is true.2960

If w has at least n Ra-successors, it is easy to find a valuation such that each one

of the ψi’s becomes true in one of those successors. Conversely, if w has less than

n Ra-successors, it is easy to see that we cannot make all the ψi’s true at the same

time for all of w’s successors.

3. Suppose that F is full and anti-symmetric. Further, for any world w, consider Vw2965

such that Vw(p) = {w}. We then have (F , Vw,w) ⊧ (p∧∀q(◇a(q ∧◇ap)→ q)). To

see this, take any subset U ⊆W and suppose (F , (Vw)
q
U ,w) ⊧ ◇a(q ∧◇ap). This

means that for some v ∈ Ra(w), (F , (Vw)
q
U , v) ⊧ q ∧◇ap holds. Since ◇ap is true

in v and w is the only p-world, we have Ra(v,w). Further, Ra is anti-symmetric,

and therefore w = v. Hence, (F , (Vw)
q
U ,w) ⊧ q. Conversely, suppose that F is2970

full but not anti-symmetric. That is, for some w, v ∈ W , we have Ra(w, v) and

R(v,w), but w ≠ v. We show that ϕ3 is false in (F ,w), i.e., (F ,w) ⊧ ∀p(p →

∃q(◇a(q ∧◇ap) ∧ ¬q)). To prove this, let V be such that (F , V,w) ⊧ p. Then, for

V q
{v}

we have (F , V q
{v}
,w) ⊧◇a(q ∧◇ap) ∧ ¬q.

4. Suppose that F is full and that Ra and Rb have an empty intersection. Then,2975

(F , V p
Ra(w)

,w) ⊧ ◻ap∧◻b¬p, which shows that (F ,w) ⊧ ∃p(◻ap∧◻b¬p). Conversely,

suppose that Θ4 does not hold for w, that is, for some v ∈W , we have both Ra(w, v)

and Rb(w, v). It follows immediately that ∃p(◻ap ∧ ◻b¬p) is then false in w.

5. Suppose that Θ5 holds in F , and let V and w be such that (F , V,w) ⊧ ◻cp. It

is easy to check that (F , V q
Ra(w)

,w) ⊧ ◻aq ∧ ◻b(q → p). In words, if we modify2980

V in such a way that q becomes true in exactly w’s a-successors, then for every

b-successor of w that satisfies q (note that this successor must then also be an

a-successor), p must be true. Conversely, suppose that Θ5 does not hold, i.e., for

some w, v ∈ W , we have Ra(w, v) and Rb(w, v), but not Rc(w, v). We now show

that (F ,w) ⊧ ¬ϕ5 = ∃p(◻cp∧∀q(◻aq →◇b(q∧¬p))). The assignment V such that2985

V (p) = Rc(w) is a witness for this: if p is exactly true in the c-successors of w,

then it is false in v, so whenever ◻aq is true in w, we have that q ∧ ¬p holds in v,

and hence ◇b(q ∧ ¬p) holds in w.

Lemma 3.19. The proof is by induction on the structure of ψ. As regards the base2990

of induction for ψ = p, (F , ρ) ⊧ STx(ψ) iff ρ(x) ∈ ρ(P ), iff w ∈ V (p), iff (M,w) ⊧
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p. The inductive steps for propositional connectives are immediate. For ψ = ◻aφ,

(M,w) ⊧ ψ iff for all w′ ∈ Ra(w), (M,w′) ⊧ φ, that is, (F , ρ′) ⊧ STy(φ) for ρ′(y) = w′

by induction hypothesis. In particular, for all w′ ∈ Ra(w), (F , ρyw′) ⊧ STy(φ), i.e.,

(F , ρ) ⊧ ∀y(Ra(x, y) → STy(φ)) = STx(ψ). The case for ψ = ◻∗Aφ is similar. Finally,2995

for ψ = ∀pφ, (M,w) ⊧ ψ iff for all U ∈ D, (Mp
U ,w) ⊧ φ, that is, (F , ρ′) ⊧ STx(φ) by

induction hypothesis, for ρ′ that coincides with ρ but ρ′(P ) = U . However, this means

that (F , ρPU) ⊧ STx(φ), i.e., (F , ρ) ⊧ ∀P (STx(φ)) = STx(ψ).

Theorem 3.22. As customary, the axioms of each logic Lx are shown to be validities in

the corresponding class K
τ(Lx)
x̂ of frames, and that inference rules preserve validity in3000

K
τ(Lx)
x̂ . Specifically, axioms Prop, K, C1, C2, MP, and Nec are valid in any frame,

in which operators ◻∗A are interpreted on the reflexive and transitive closure of ⋃a∈ARa.

The validity of axioms T, 4, and B in specific classes of frames follows as in standard

propositional modal logics [47]. The validity of axioms Exx in each corresponding class

of frames follows by Lemma 3.8(2); while the validity of Gen follows by Lemma 3.8(1).3005

We provide a proof for Exsopml: suppose that (M,w) ⊧ ∀pφ, that is, for every U ∈ D,

(Mp
U ,w) ⊧ φ. By Lemma 3.8(2a), ⟦ψ⟧ ∈ D, hence in particular (Mp

⟦ψ⟧
,w) ⊧ φ. Then,

by Lemma 3.8(2b), (M,w) ⊧ φ[p/ψ]. As regards Gen, suppose that (M,w) ⊧ φ and

p ∉ fr(φ). In particular, for every U ∈ D, V (fr(φ)) = V p
U (fr(φ)), and by Lemma 3.8(1),

we have (Mp
U ,w) ⊧ φ as well. By MP we obtain that (Mp

U ,w) ⊧ ψ, and since U is3010

arbitrary, (M,w) ⊧ ∀pψ.

Moreover, the Barcan formula BF is valid as in any frame all worlds have the same

domain of quantification, namely D ⊆ 2W . Indeed, (M,w) ⊧ ∀p ◻a φ iff for all U ∈ D,

(Mp
U ,w) ⊧ ◻aφ, iff for every w′ ∈ Ra(w), (Mp

U ,w
′) ⊧ φ. But this means that for every

w′ ∈ Ra(w), (M,w′) ⊧ ∀pφ, that is, (M,w) ⊧ ◻a∀pφ. The case for ◻∗A is similar.3015

As for axiom At, note this only appears in Ksopml so we can assume that F ∈ Kfull .

For every w ∈ W , {w} is an atom in D = 2W . That is, (i) (Mp
{w}

,w) ⊧ p; (ii) for all

U ∈ D, ((Mp
{w}

)qU ,w) ⊧ q → ◻∗(p → q), since w ∈ U implies {w} ⊆ U ; and (iii) for all

U ∈ D, a ∈ I, if ((Mp
{w}

)rU ,w) ⊧ ◇ar then it is indeed the case that for every w′ ∈W , if

w′ = w then ((Mp
{w}

)rU ,w
′) ⊧ ◇ar. Hence, (M,w) ⊧At whenever M is based on a full3020

frame.
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Lemma 3.26. Let θ0, θ1, . . . be an enumeration of the formulas in Σ. We define by

induction a sequence Φ0,Φ1, . . . of subsets of Σ as follows.

Φ0 = ∆

Φn+1 =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Φn ∪ {θn} if Φn ∪ {θn} is consistent;

Φn ∪ {∼ θn} otherwise.

Note that ∼ θn ∈ Σ, since Σ is closed under single negation. Also note that ⊢Lx

¬θn ↔ ∼ θn. Now we prove by induction on n that every Φn is consistent. First of3025

all, Φ0 = ∆ is consistent by hypothesis. As to the inductive step, suppose that Φn is

consistent, we consider the various cases. If Φn+1 = Φn ∪ {θn}, then Φn ∪ {θn} = Φn+1

has to be consistent by construction. Further, Φn+1 = Φn ∪ {∼ θn} only if Φn ∪ {θn} is

not consistent. Indeed, if Φn is consistent, Φn ∪ {θn} and Φn ∪ {∼ θn} cannot be both

inconsistent, since otherwise for some ϕ0, . . . , ϕm, ϕ
′
0, . . . , ϕ

′
m′ ∈ Φn,3030

⊢ ⋀
i≤m

ϕi → ¬θn

⊢ ⋀
i≤m′

ϕ′i → ¬¬θn

and by propositional reasoning,

⊢ ⋀
i≤m

ϕi ∧ ⋀
i≤m′

ϕ′i → (¬θn ∧ ¬¬θn)

that is, Φn itself is inconsistent. Hence, Φn ∪ {∼ θn} = Φn+1 is indeed consistent.

Finally, let Φ = ⋃n∈N Φn: Φ is a consistent subset of Σ as each Φn is so, and it extends

∆. Moreover, Φ is Σ-maximal by construction.

Lemma 3.27. Let Y be an infinite denumerable set of new atoms. We define an infinite3035

sequence of tuples

Υi = ⟨Γpre
i ,Ωpre

i ,Γi,Ωi,Qi, Yi⟩

in such a way that each Υi has the following properties:

1. Γpre
i and Γi are consistent;

2. Ωpre
i and Ωi are closed under negation;

3. Γi is well-defined and Ωi-maximal.3040

For the base case, define Γpre
0 = Ωpre

0 = ∅, Γi = Φ, Ω0 = Σ, Q0 = ∅, and Y0 = Y . It is

then easy to see that claims 1-3 above all hold for i = 0.
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Now suppose Υi = ⟨Γpre
i ,Ωpre

i ,Γi,Ωi,Qi, Yi⟩ has been defined. Let ∃p0θ0,∃p1θ1, . . . be

an enumeration of the existential formulas in Γi. Since Yi is denumerable, we can write

it as Yi = {qn ∣ ∃pnθn ∈ Γi} ∪ {r0, r1, . . .}. Then, define Υi+1 as follows:3045

Γpre
i+1 ∶ Γi ∪⋃n∈N{θn[pn/qn]}

Ωpre
i+1: Ωi ∪⋃n∈N Sub¬(θn[pn/qn])

Ωi+1: Ωpre
i+1 ∪⋃{Sub¬(θ′[p′/q]) ∣ ∀p′θ′ ∈ Γpre

i+1 and q ∈ Qi+1}

Γi+1: a Ωi+1-maximal extension of Γpre
i+1

Qi+1: Qi ∪ {q0, q1, . . .}3050

Yi+1: {r0, r1, . . .}

We verify that items 1-3 do apply to Υi+1, given that they hold for Υi.

1. For Γpre
i+1 = Γi ∪⋃n∈N{θn[pn/qn]}, suppose for reduction that Γpre

i+1 is not consistent,

this means that for some ϕ0, . . . , ϕk,∃p0θ0, . . . ,∃pmθm ∈ Γi,

⊢ ⋀
i≤k

ϕi ∧ ⋀
i≤m

∃piθi → ⋁
i≤m

¬θi[pi/qi]

Since no qi appears in any ϕi nor in any ∃piφi, by repeated applications of Gen

we obtain that

⊢ ⋀
i≤k

ϕi ∧ ⋀
i≤m

∃piθi → ∀q0 . . . qm(⋁
i≤m

¬θi[pi/qi])

Further, each qi appears in θi[pi/qi] only, hence we can distribute universal quan-

tification on disjunction:

⊢ ⋀
i≤k

ϕi ∧ ⋀
i≤m

∃piθi → ⋁
i≤m

∀qi¬θi[pi/qi]

Finally, by renaming bound variables and propositional reasoning we obtain,

⊢ ⋀
i≤k

ϕi ∧ ⋀
i≤m

∃piθi → (⋀
i≤m

∃qiθi[pi/qi] ∧ ⋁
i≤m

¬∃qiθi[pi/qi])

and this contradicts the consistency of Γi.

As regards Γi+1, it is consistent by Lemma 3.26.
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2. It is clear that if a set X is closed under single negation, then X ∪Sub¬(α) is also3055

closed under single negation, for any formula α.

3. Since Ωi+1 is closed under single negation and Γpre
i+1 ⊆ Ωi+1 is consistent, we can

apply Lemma 3.26 to conclude that Γi+1 is well-defined.

Finally, define Γ = ⋃n∈N Γn, Q = ⋃n∈NQn and Ω = ⋃n∈N Ωn. Then Γ is a consistent

set of formulas over AP ∪Q, and Γ ⊇ Φ. Γ is also Ω-complete: if ω ∈ Ω, then this formula3060

was introduced at some Ωi, and since Γi is Ωi-maximal, we have that exactly one of ω

and ∼ ω is in Γi ⊆ Γ. We finally claim that Γ is Q-rich and Q-universal. As to richness,

observe that every existential formula ∃pθ introduced at level i in Γi is taken care of at

level i + 1 through formula θ[p/q] for some witness q ∈ Q. As to universality, suppose

that q ∈ Q and ∀p′θ′ ∈ Γ. In particular, assume that ∀p′θ′ was introduced at some Γk,3065

while q was added at step k′. Let i = max{k, k′}, then at step i + 1 we can verify that

θ′[p′/q] is added to Ωi+1. Moreover, by axiom Exap and the maximality of Γi+1, we see

that θ′[p′/q] belongs to Γi+1, and therefore to Γ. Thus, Γ is Ω-saturated.

Lemma 3.30. The proof is by induction on the length of ψ. As to the base case for

ψ = p, by definition of satisfaction, (MLap ,w) ⊧ p iff w ∈ V (p), iff p ∈ w.3070

For ψ = ¬χ, (MLap ,w) ⊧ ψ iff (MLap ,w) /⊧ χ, iff by induction hypothesis χ ∉ w.

Since w is maximal in Ω, this is the case iff ψ ∈ w.

For ψ = χ → χ′, (MLap ,w) ⊧ ψ iff (MLap ,w) /⊧ χ or (MLap ,w) ⊧ χ′. By induction

hypothesis this is the case iff χ ∉ w or χ′ ∈ w; in both cases we have that ψ ∈ w, as w is

maximal in Ω.3075

Suppose that ψ = ∀pχ. ⇐ Let ψ ∈ w. Since w is Q-universal, we have that χ[p/q] ∈ w

for every q ∈ Q. By induction hypothesis (MLap ,w) ⊧ χ[p/q]. Now consider the set

V (q) = {w ∈ W ∣ q ∈ w} = Uq ∈ D. By Lemma 3.8(2b), ((MLap)
p
Uq
,w) ⊧ χ, and by

the arbitrariness of variant V p
Uq

we obtain that (MLap ,w) ⊧ ψ. ⇒ Assume that ψ ∉ w.

Since w is maximal in Ω, ∃p¬χ ∈ w, and w is Q-rich, so ¬χ[p/q] ∈ w for some atom3080

q ∈ Q. Then, by induction hypothesis, (MLap ,w) /⊧ χ[p/q], and by Lemma 3.8(2b),

((MLap)
p
V (q)

,w) /⊧ χ. In particular, for Uq = V (q) = {v ∈W ∣ q ∈ v} ∈D, ((MLap)
p
Uq
,w) /⊧

χ, i.e., (MLap ,w) /⊧ ψ.

Suppose that ψ = ◻aχ. ⇐ Assume that ψ ∈ w and v ∈ Ra(w). By definition of

Ra, χ ∈ v; therefore by induction hypothesis (MLap , v) ⊧ χ. Thus, (MLap ,w) ⊧ ψ.3085

⇒ Assume that ψ ∉ w and consider set {φ ∣ ◻aφ ∈ w} ∪ {¬χ}. This set is consistent,

for if not, then for some φ1, . . . , φn ∈ {φ ∣ ◻aφ ∈ w}, ⊢ ⋀φ → χ. Then, by axiom K,

⊢ ⋀◻aφ→ ◻aχ and since ⋀◻aφ ∈ w, also ◻aχ ∈ w against hypothesis. Apply Lemma 3.27
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for ∆ = {φ ∣ ◻aφ ∈ w} ∪ {¬χ} and obtain a saturated set v ∈W . In particular, v ∈ Ra(w)

by construction. By induction hypothesis (MLap , v) /⊧ χ. Since v ∈ Ra(w), we have that3090

(MLap ,w) /⊧ ψ.

Suppose that ψ = ◻∗Aχ. ⇐ if ψ ∈ w then we show by induction on k that if v is

reachable from w in k steps, then both χ and ψ belong to v. For k = 1, observe that by

axiom C1, ψ ∈ w implies ◻a(χ ∧ ◻
∗χ) ∈ w for every a ∈ A, as w is maximal in Sub¬(φ).

So, if v is reachable in one step (i.e., Ra(w, v) for some a ∈ A), then χ ∧ ◻∗Aχ ∈ v, that3095

is, both χ and ψ belong to v. As for the inductive step, suppose that v is reachable

from w in k steps and v′ is reachable from v in one step. By the induction hypothesis,

both χ and ◻∗Aχ belong to v. Similarly to the base case, we can show that χ,◻∗Aχ ∈ v′.

As a result, χ belongs to v for all states v that are reachable from w and by induction

hypothesis, (MLap , v) ⊧ χ. Thus, we obtain that (MLap ,w) ⊧ ψ.3100

⇒ Assume that (MLap ,w) ⊧ ψ and consider the finite set Sub¬(ψ)∩w, which can be

described by the conjunction ψw of all its formulas. Also, consider the set U = {v ∈W ∣

(MLap , v) ⊧ ψ} of worlds satisfying ψ: in general U is infinite; however, since Sub¬(ψ)

is finite, there are only finitely many different ψv. Hence, the disjunction ψU of all such

ψv is well-defined.3105

Next we prove that for every v ∈ U and a ∈ A, ⊢ ψv → ◻aχ. Indeed, (MLap , v) ⊧ ◻
∗
Aχ

implies (MLap , v) ⊧ ◻aχ in particular. Then, we use an argument similar to the case for

ψ = ◻aχ. Indeed, if (MLap , v) ⊧ ◻aχ then the set {φ ∣ ◻aφ ∈ v}∪{¬χ} is not consistent, for

otherwise, by Lemma 3.27 we would have a saturated extension v′ such that Ra(v, v
′) by

construction and (MLap , v
′) ⊧ ¬χ by induction hypothesis. But then (MLap , v) /⊧ ◻aχ,

against hypothesis. As a consequence, for some finite set {φ1, . . . , φk} ⊆ {φ ∣ ◻aφ ∈ v},

⊢ ⋀
i≤k

φi → χ

and by axioms K and Nec,

⊢ ⋀
i≤k

◻aφi → ◻aχ

However, not all ◻aφi necessarily belong to Sub¬(ψ)∩v. However, all ◻aφi have been

introduced either to witness an existential formula or to exemplify a universal one. In

the former case, by axiom Exap we obtain

⊢ ⋀
i≤k

∃pi ◻a φi → ◻aχ
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In the latter, by rule Gen we have

⊢ ∀q⃗ (⋀
i≤k

∃pi ◻a φi → ◻aχ)

where q⃗ are all the free atoms appearing in ∃p1φ1, . . . ,∃pkφk, but not in χ.

Finally, for an appropriate substitution [q⃗/p⃗] of atoms q⃗ with atoms p⃗ appearing in

χ, we can rename the bounded atoms ∀q⃗ with atoms belonging to Sub¬(ψ) ∩ v, so that

all ∃pi ◻a φi[q⃗/p⃗] belong to Sub¬(ψ) and appear in v. Then, again by axiom Exap,

⊢ ⋀
i≤k

∃pi ◻a φi[q⃗/p⃗]→ ◻aχ (A.1)

and therefore,3110

⊢ ψv → ◻aχ (A.2)

Furthermore, we show that for v ∈ U and v′ ∈ U , ⊢ ψv → ◻a¬ψv′ for every a ∈ A.

Indeed, by definition of U we have that (MLap , v) ⊧ ◻
∗
Aχ, while (MLap , v

′) /⊧ ◻∗Aχ. As a

consequence, v′ is not reachable from v and in particular it is not the case that Ra(v, v
′).

By definition of Ra, we have that {φ ∣ ◻aφ ∈ v} /⊆ v′. So, for some formula θ, ◻aθ ∈ v but

θ ∉ v′. Since θ ∉ v′, we have that

⊢ θ → ¬ψv′

Again it is not necessarily the case that θ ∈ Sub¬(ψ) ∩ v. Nonetheless, by reasoning

as above, by axioms Gen, K, and Nec we can derive

⊢ ∃r ◻a θ[q⃗/p⃗]→ ◻a¬ψv′

for an appropriate substitution [q⃗/p⃗] such that ∃r ◻a θ[q⃗/p⃗] appears in Sub¬(ψ) ∩ v.

Hence, we obtain

⊢ ψv → ◻a¬ψv′ (A.3)

Now, from formulas (A.2) and (A.3) we derive that

⊢ ψv → ◻a
⎛

⎝
χ ∧ ⋀

v′∈U

¬ψv′
⎞

⎠

Since ⊢ ψU ↔ ⋀v′∈U ¬ψv′ , we obtain

⊢ ψv → ◻a (χ ∧ ¬ψU)
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and by definition of ψU we conclude that

⊢ ψU → ⋀
a∈A

◻a(χ ∧ ψU)

Then, by applying axiom C2 we have

⊢ ψU → ◻∗Aχ

In particular, since ⊢ ψw → ψU we obtain

⊢ ψw → ψ

Finally, since w is maximal, we derive that ψ ∈ w.

Lemma 3.31. Also in the present case we let Y be an infinite denumerable set of new

atoms, and define an infinite sequence of tuples3115

Υi = ⟨Γpre
i ,Ωpre

i ,Γi,Ωi,Qi, Yi⟩

such that each Υi satisfies conditions 1-3 in Lemma 3.27.

The base case for i = 0 is given as in Lemma 3.27, and again properties 1-3 hold. As

to the inductive step, let ∃p0θ0,∃p1θ1, . . . be an enumeration of the existential formulas

in Γi, and define Υi+1 as in Lemma 3.27, but for Ωi+1, which goes as follows:

Ωi+1: Ωpre
i+1 ∪⋃{Sub¬(θ′[p′/ψ]) ∣ ∀p′θ′ ∈ Γpre

i+1 and ψ ∈ Lpl is a propositional formula over Qi+1}3120

We can verify that 1-3 hold for Υi+1, provided that they hold for Υi. In particular,

Ωi is closed under negation; and Γi is well-defined and Ωi-maximal by Lemma 3.26.

Finally, define Γ = ⋃n∈N Γn, Q = ⋃n∈NQn and Ω = ⋃n∈N Ωn. Then Γ is a consistent

set of formulas over AP ∪Q, and Γ ⊇ Φ is also Ω-complete and Q-rich by construction.

As to Q-universality, suppose that ψ ∈ Lpl is propositional formula over Q and ∀p′θ′ ∈ Γ.3125

In particular, assume that ∀p′θ′ was introduced at some Γk, while ψ was added at step

k′. Let i = max{k, k′}, then at step i + 1, we can verify that θ′[p′/ψ] is added to Ωi+1.

Moreover, by axiom Expl and the maximality of Γi+1, we see that θ′[p′/ψ] belongs to

Γi+1, and therefore to Γ. Thus, Γ is Ω-saturated.
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Lemma 3.33. We have to prove that domain D is closed under boolean operations. Let3130

Uφ and Uφ′ be sets in D, we show that Uφ ∩ Uφ′ = Uφ∧φ′ ∈ D. Clearly, w ∈ Uφ ∩ Uφ′ iff

φ ∈ w and φ′ ∈ w, and by maximality, this is the case iff φ∧φ′ ∈ w as well. Closure under

disjunction is proved similarly. As to taking complement, we show thatW∖Uφ = U¬φ ∈D.

Again, w ∉ Uφ iff φ ∉ w, and by maximality, this is the case iff ¬φ ∈ w.

Lemma 3.34. To prove the truth lemma for Lpl we have to modify the induction hypoth-3135

esis, so that the proof is also on the modal depth of formulas. Then, for every boolean

formula ϕ of modal depth 0, the proof goes as in Lemma 3.30. Hence, we have that

Uϕ = ⟦ϕ⟧M = {w ∈W ∣ (MLap ,w) ⊧ ϕ} ∈ D. Then, for ψ = ∀pχ, if ψ ∈ w then by axiom

Expl we have that χ[p/ϕ] ∈ w. By induction hypothesis, (M,w) ⊧ χ[p/ϕ]. Now con-

sider the set Uϕ = ⟦ϕ⟧M ∈D. By Lemma 3.8(2b), it is the case that (Mp
Uϕ
,w) ⊧ χ, and3140

by the arbitrariness of variant V p
Uϕ

we obtain that (M,w) ⊧ ∀pχ. As to the implication

from left to right, the proof is the same as in Lemma 3.30, as each w is maximal and

rich. Finally, the case for modal operators also goes as in Lemma 3.30. Here the crucial

remark is that, since we assume a canonical representation for propositional formulas

(e.g., conjunctive normal form), the restriction of any world w in the canonical model3145

to formulas in Sub¬(ψ) is indeed finite and can be described by the conjunction ψw.

Lemma 3.37. Since Th(Kebool ,at ,com) ⊆ Th(Kefull), we prove the converse inclusion. To

do so, suppose that (M,w) /⊧ φ for some models M = ⟨F , V ⟩, based on frame F ∈

Kebool ,at ,com , and w ∈W . The proof of Theorem 3.36 makes use of a function f from D to

the power set 2A of the set A ⊆D of atoms such that for U ∈D, f(U) = {U ′ ∈ A ∣ U ′ ⊆ U}.3150

Now, define M′ = ⟨A,2A,R′, V ′⟩ where (i) R′
a(U,U

′) iff Ra(u,u
′) for some u ∈ U and

u′ ∈ U ′, and (ii) V ′(p) = f(V (p)). Notice that R′
a is well-defined by the definition of

atomicity. Indeed, if R′
a(U,U

′) then Ra(u,u
′) for some u ∈ U and u′ ∈ U ′. Then, by

atomicity, if v ∈ U then Ra(v, v
′) for some v′ ∈ U ′ as well. Hence, the definition of R′

a

is independent from the particular witnesses u,u′. Also, R′
a is an equivalence relation,3155

whenever Ra is.

By induction on the structure of ψ we prove that for every formula ψ ∈ Lsopml ,

(M,w) ⊧ ψ iff (M′, U) ⊧ ψ, where U is any atom containing w. The base case for ψ ∈ AP

is immediate as (M,w) ⊧ ψ, iff w ∈ V (p), iff U ∈ f(V (p)), iff (M′, U) ⊧ ψ. The inductive

cases for propositional connectives are immediate. For ψ = ◻aθ, (M,w) /⊧ ψ iff for some3160

w′ ∈ Ra(w), (M,w′) /⊧ θ. By induction hypothesis we have (M′, U ′) /⊧ θ for atom U ′ ∈ A

such that w′ ∈ U ′. Also, R′
a(U,U

′) by definition, and therefore (M′, U) /⊧ ψ. As to the

other direction, if (M′, U) /⊧ ψ then for some U ′ ∈ A, R′
a(U,U

′) and (M′, U ′) /⊧ θ, and

therefore (M,w′) /⊧ θ for w′ ∈ U ′ by induction hypothesis. Finally, by definition of

atomicity Ra(w,w
′), i.e., (M,w) /⊧ ψ. The case for ψ = ◻∗Aθ is dealt with similarly.3165
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Specifically, (M,w) ⊧ ψ iff for all w-reachable states w′, (M,w′) ⊧ θ, iff for all U -

reachable states U ′, (M′, U ′) ⊧ θ, iff (M, U) ⊧ ψ. We can prove that for every w-

reachable states w′ and atom U ′ containing w′, (M,w′) ⊧ θ iff (M′, U ′) ⊧ θ, by induction

on the length of the path from w to w′, by using the case for ◻a-formulas in the inductive

step. Finally, for ψ = ∀pθ, (M,w) /⊧ ψ iff for some T ∈ D, (Mp
T ,w) /⊧ θ. By induction3170

hypothesis we have (M′p
f(T )

, U) /⊧ θ for f(T ) ∈ 2A, and therefore (M′, U) /⊧ ψ. On the

other hand, if (M′, U) /⊧ ψ then for some T ′ ∈ 2A, (M′p
T ′ , U) /⊧ θ. Clearly, there exists

some set T ∈ D that contains all world corresponding to atoms in T ′ and f(T ) = T ′.

Hence, by induction hypothesis (Mp
T ,w) /⊧ θ, i.e., (M,w) /⊧ ψ. As a result, we have

that (M′, U) /⊧ φ, that is, Th(Kefull) ⊆ Th(Kebool ,at ,com)3175

Lemma 3.38. Clearly, Th(Kebool ,at) ⊆ Th(Kebool ,at ,com). So, suppose that (M,w) /⊧ φ for

some atomic boolean frame F . Then, consider its completion F+ and model M+ such

that V +(p) = {U ∈ D ∣ U ⊆ V (p) is an atom}. The submodels Mu and M+
U generated

respectively by u and corresponding atom U are isomorphic by the isomorphism that

maps each world to its atom. Hence, by applying Lemma 3.11 we obtain that (M, u) /⊧ φ3180

iff (Mu, u) /⊧ φ, iff (M+
U , U) /⊧ φ, iff (M+, U) /⊧ φ. Thus, Th(Kebool ,at ,com) ⊆ Th(Kebool ,at).

Lemma 3.40. The proof that MS5sopml is boolean goes as in Lemma 3.33. As regards

atomicity, if At ∈ w, then (pn∧∀q(q → C(pn → q))∧⋀a∈I ∀r(Mar → C(pn →Mar))) ∈ w,

for some witness pn ∈ AP ∪Y . Hence, for Un = {v ∈W ∣ pn ∈ v}, we have that w ∈ Un and3185

for all Uψ ∈D containing w, Un ⊆ Uψ. That is, Un is minimal according to set inclusion.

Further, suppose that Ra(w, v) for some v ∈W and let Uψ ∈ D be the atom containing

v. Then, Maψ ∈ w by maximality and consistency, and for every w′ ∈ Un, Maψ ∈ w′ as

well. Therefore, v′ ∈ Ra(w
′) for some v′ ∈ Uψ.

Theorem 3.43. Soundness follows immediately by Lemma 3.19, as every frame that sat-3190

isfies condition ∀x∀P⃗STx(ψ) = ∀xSTx(∀p⃗ψ), also validates ∀p⃗ψ. As to completeness,

if ∀p⃗ψ is an axiom, then it appears in every state of the canonical model M, and by

the truth lemma, M validates ∀p⃗ψ. Finally, by another application of Lemma 3.19, F

validates ∀x∀P⃗STx(ψ).

Theorem 3.45. As regards hardness, we reduce satisfiability of quantified boolean for-3195

mulas to SOPML model checking. Given a formula φ ∈ Lqbf , consider frame F =

⟨{w}, (w,w),{{w},∅}⟩ and an arbitrary assignment V , and define M = ⟨F , V ⟩. Then,

we have that φ is satisfiable iff (M,w) ⊧ ∃p⃗φ, iffM ⊧ ∃p⃗φ, where p⃗ are all the atoms in

φ. Hence, model checking SOPML is PSPACE-hard.
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As regards completeness, by combining the algorithms for modal logic and quantified3200

boolean formulas we check that model checking formulas in SOPML takes polynomial

space in the size of the formula and exponential time in the size of the model. Specifically,

Algorithm 1 takes as input a formula φ ∈ Lsopml and a finite modelM, and returns the set

⟦φ⟧M ⊆W of worlds satisfying φ in M in exponential time. Then, the model checking

algorithm returns a positive answer iff ⟦φ⟧M = W . In particular, the case of modal3205

operators is dealt with by computing pre-images of sets according to the accessibility

relation, which can be done in polynomial time, while for propositional quantification we

have to consider all reinterpretationsMp
U . This is where the exponential blow-up comes

from. In order to obtain a (deterministic) algorithm in PSPACE, we describe a non-

deterministic algorithm in PSPACE. The result follows from NPSPACE = PSPACE.3210

Specifically, we suppose w.l.o.g. that φ contains only existential quantifiers and we deal

with them by guessing an assignment satisfying the immediate subformula. Since the

other cases can be treated in polynomial time as in Algorithm 1, the overall complexity

of the procedure is in NPSPACE.

A.2 Chapter 43215

Theorem 4.3. Since w ⪯ w′, there is a simulation pair (σ,Σ) such that σ(w,w′). Fix

this σ. We prove by induction on ϕ that if (F , V,w) /⊧ ϕ for some assignment V ,

then (F ′,Σ(V ),w′) /⊧ ϕ, where Σ(V ) is any assignment such that for every p ∈ AP ,

(Σ(V ))(p) = U ′ with Σ(V (p), U ′). We write Σ(V )(p) for (Σ(V ))(p). By clause (i) of

Definition 4.1, Σ(V )(p) ∈D′.3220

For ϕ = p, (F , V,w) /⊧ ϕ iff w ∉ V (p) ∈ D. By clause (ii).2 in Definition 4.1,

w ∉ V (p) ∈D iff w′ ∉ Σ(V )(p) ∈D′, that is, (F ′,Σ(V ),w′) /⊧ ϕ.

For ϕ = ¬p, (F , V,w) /⊧ ϕ iff w ∈ V (p) ∈ D. Again by clause (ii).2 in Definition 4.1,

w ∈ V (p) ∈D iff w′ ∈ Σ(V ) ∈D′, that is, (F ′,Σ(V ),w′) /⊧ ϕ.

The inductive cases for propositional connectives are immediate.3225

For ϕ = ◻aψ, (F , V,w) /⊧ ϕ iff for some v ∈ Ra(w), (F , V, v) /⊧ ψ. By clause (ii).1, for

some v′ ∈ R′
a(w

′), σ(v, v′). In particular, (F ′,Σ(V ), v′) /⊧ ψ by induction hypothesis.

That is, (F ′,Σ(V ),w′) /⊧ ϕ. The case for ϕ = ◻∗Aψ is similar.

For ϕ = ∀pψ, (F , V,w) /⊧ ϕ iff for some U ∈D, (F , V p
U ,w) /⊧ ψ. By induction hypothe-

sis, (F ′,Σ(V p
U ),w′) /⊧ ψ. By condition (i) in Definition 4.1, for U ∈D, Σ(U,U ′) for some3230

U ′ ∈D′. In particular, we have that Σ(V p
U ) = Σ(V )pU ′ and therefore (F ′,Σ(V )pU ′ ,w

′) /⊧ ψ

for U ′ ∈D′, that is, (F ′,Σ(V ),w′) /⊧ ϕ.
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Corollary 4.4. Suppose that F /⊧ ϕ, that is, (F ,w) /⊧ ϕ for some w ∈W . Since F ⪯ F ′,

for some w′ ∈ W ′, w ⪯ w′. Therefore, by Lemma 4.3 we obtain that (F ′,w′) /⊧ ϕ, that

is, F ′ /⊧ ϕ.3235

Theorem 4.7. We prove the implication from right to left, the opposite direction be-

ing symmetric. If w ≈ w′ then ω(w,w′) holds for some bisimulation pair (ω,Ω).

As above, we show by induction on ϕ that if (F , V,w) /⊧ ϕ for some assignment V ,

then (F ′,Ω(V ),w′) /⊧ ϕ, where Ω(V ) is any assignment such that for every p ∈ AP ,

(Ω(V ))(p) = U ′ with Ω(V (p), U ′). Since ω is a simulation relation in particular, the3240

base cases for ϕ = p and ϕ = ¬p are as in Theorem 4.3, as well as the inductive cases for

propositional connectives and ϕ = ◻aψ, ϕ = ◻∗Aψ, and ϕ = ∀pψ.

For ϕ = ◇aψ, (F ′,Ω(V ),w′) ⊧ ϕ iff for some v′ ∈ R′
a(w

′), (F ′,Ω(V ), v′) ⊧ ψ. By

bisimulation, for some v ∈ Ra(w), ω(v, v′). In particular, (F , V, v) ⊧ ψ by induction

hypothesis. That is, (F , V,w) ⊧ ϕ. The case for ϕ =◇∗
Aψ is similar.3245

For ϕ = ∃pψ, (F ′,Ω(V ),w′) ⊧ ϕ iff for some U ′ ∈ D′, (F ′, (Ω(V ))pU ′ ,w
′) ⊧ ψ. Now

consider U ∈D such that Ω(U,U ′) ∈D. In particular, assignments (Ω(V ))pU ′ and Ω(V p
U )

coincides. Hence, (F ′,Ω(V p
U ),w′) ⊧ ψ, and by induction hypothesis, (F , V p

U ,w) ⊧ ψ for

U ∈D, that is, (F , V,w) ⊧ ϕ.

Lemma 4.12. We show that the pair (↦,↦) of mappings satisfies Definition 4.1. As3250

to condition (i), if U ∈ D then U ↦ [U] for [U] ∈ DA. Next, for (i).1 suppose that

Ra(w, v). Then, for [v] ∈ WA we have that RAa ([w], [v]) and v ↦ [v]. Finally, as to

(ii).2, if w ↦ [w] and w ∈ U , then clearly [w] ∈ [U]. On the other hand, if [w] ∈ [U]

then for some v ∈ [w], v ∈ U . However, v ∈ [w] implies that v ∼ w. In particular, w ∈ U

by the constraint on ∼.3255

Theorem 4.15. As to the ⇐-direction, we show that if (σ,Σ) is a simulation pair such

that σ(v, v′), then Duplicator can always reply to any Spoiler’s move in state (F , v, U⃗),

(F ′, v′, U⃗ ′) with Σ(Ui, U
′
i). Moreover, the new state (F , u, T⃗ ), (F ′, u′, T⃗ ′) is such that

σ(u,u′) and Σ(Ti, T
′
i ). As a consequence, Duplicator has a winning strategy and the

result follows. As regards move (1) in Definition 4.14, suppose that Spoiler picks a3260

set U ∈ D. Then Duplicator can reply with U ′ ∈ D′ such that Σ(U,U ′): by (i) in

Definition 4.1 such U ′ always exists. Moreover, by (ii).2, v ∈ U iff v′ ∈ U ′. On the

other hand, if Spoiler chooses u ∈ Ra(v), then by (ii).1 Duplicator can reply with some

u′ ∈ R′
a(v

′) such that σ(u,u′). In particular, for every i, u ∈ Ui iff u′ ∈ U ′
i , as Σ(Ui, U

′
i)

holds. In both cases the new state (F , u, T⃗ ), (F ′, u′, T⃗ ′) is such that σ(u,u′) and3265

Σ(Ti, T
′
i ) as required.
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As to the ⇒-direction, we show that relations σ ⊆ W ×W ′ and Σ ⊆ D ×D′ defined

as: σ(v, v′) and Σ(Ui, U
′
i) hold iff Duplicator has a winning strategy at state (F , v, U⃗),

(F ′, v′, U⃗ ′) form a simulation pair. As regards condition (i) in Definition 4.1, consider

any winning state (F , v, U⃗), (F ′, v′, U⃗ ′) in the game starting in (F ,w), (F ′,w′). Spoiler3270

can play any U ∈ D, but then Duplicator has to reply with some U ′ ∈ D′ so that he

has a winning strategy in the resulting state (F , v, T⃗ ), (F ′, v′, T⃗ ′). In particular, by the

definition of Σ, we have Σ(U,U ′). Further, for condition (ii).1, if σ(v, v′) then (F , v, U⃗),

(F ′, v′, U⃗ ′) is a winning state for some U⃗ , U⃗ ′ with Σ(Ui, U
′
i). Then, for every u ∈ Ra(v),

Duplicator can reply with u′ ∈ R′
a(v

′) (otherwise, Duplicator has no winning strategy.)3275

Moreover, Duplicator has a winning strategy in the resulting state (F , u, U⃗), (F ′, u′, U⃗ ′).

Hence, we have σ(u,u′) by definition of σ. Finally, for condition (ii).2, if σ(v, v′) then

again (F , v, U⃗), (F ′, v′, U⃗ ′) is a winning state for some U⃗ and U⃗ ′. Further, if Σ(T,T ′)

then (F , u, T⃗ ), (F ′, u′, T⃗ ′) is a winning state for some u ∈ W and u′ ∈ W ′ such that

σ(u,u′). Now we analyse the following two cases: if couple (v, v′) has appeared before3280

(u,u′) in the game then, when introducing sets U and U ′, condition v ∈ U iff v′ ∈ U ′

has to be satisfied by (1) in Definition 4.14. On the other hand, if couple (u,u′) has

appeared first, when introducing (v, v′) condition v ∈ U iff v′ ∈ U ′ has to be satisfied by

(2). Finally, since Duplicator has a winning strategy for game (F ,w), (F ′,w′), it is the

case that w′ simulates w.3285

Theorem 4.18. The proof follows the one for Theorem 4.15, once we notice that the

behaviour of Spoiler and Duplicator on frames F and F ′ is completely symmetric. As

regards the⇐-direction, if (ω,Ω) is a bisimulation pair such that ω(v, v′), then Duplica-

tor can always reply to any Spoiler’s move in state (F , v, U⃗), (F ′, v′, U⃗ ′) with Ω(Ui, U
′
i).

As to the ⇒-direction, the relations ω ⊆W ×W ′ and Ω ⊆D×D′ defined as: ω(v, v′) and3290

Ω(Ui, U
′
i) hold iff Duplicator has a winning strategy at state (F , v, U⃗), (F ′, v′, U⃗ ′) form

a bisimulation pair.

Lemma 6.5. Consider φ ∉ Th(GN) with finite modal depth k ∈ N, where the modal depth

is defined as in the propositional case, as the maximum embedding of modal operators

[47]. We can assume without loss of generality that (GN, V,0) /⊧ φ for some assignment V ,3295

then we prove that (Gk, V
′,0) /⊧ φ, where assignment V ′ is such that V ′(p) = V (p)∩[k] ∈

D′ for every p ∈ AP . Now we prove that if ψ is subformula of φ of modal depth n ≤ k,

then (GN, V, k − n) ⊧ ψ iff (Gk, V
′, k − n) ⊧ ψ.

We start with the case for n = 0. If ψ is an atom p, then (GN, V, k) ⊧ ψ iff k ∈ V (p),

iff k ∈ V ′(p), iff (Gk, V
′, k) ⊧ ψ. The inductive cases for propositional connectives are3300

immediate. Finally, if ψ = ∃pχ, then (GN, V, k) ⊧ ψ implies that for some U ∈ D,
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(GN, V
p
U , k) ⊧ ψ. Consider U ′ = U ∩ [k] ∈ D′. In particular, (V p

U )′ = V ′p
U ′ . By induction

hypothesis (Gk, V
′p
U ′ , k) ⊧ χ, that is, (Gk, V

′, k) ⊧ ψ.

As for the inductive step, we again consider the subformulas ψ of φ. If ψ is an

atom p, then (GN, V, k − (n + 1)) ⊧ ψ iff k − (n + 1) ∈ V (p), iff k − (n + 1) ∈ V ′(p), iff3305

(Gk, V
′, k−(n+1)) ⊧ ψ. The inductive cases for propositional connectives are immediate.

If ψ = ∃pχ, then (GN, V, k−(n+1)) ⊧ ψ implies that for some U ∈D, (GN, V
p
U , k−(n+1)) ⊧

χ. Again consider, U ′ = U ∩ [k] ∈D′. By induction hypothesis (Gk, V
′p
U ′ , k − (n + 1)) ⊧ χ,

that is, (Gk, V
′, k − (n + 1)) ⊧ ψ. Finally, if ψ = ◇χ, then (GN, V, k − (n + 1)) ⊧ ψ

implies that (GN, V, k − n)) ⊧ χ. By induction hypothesis (Gk, V
′, k − n)) ⊧ χ, that is,3310

(Gk, V
′, k − (n + 1)) ⊧ ψ.

As a consequence, (GN, V,0) /⊧ φ implies (Gk, V
′,0) /⊧ φ, i.e., φ ∉ Th(G).

A.3 Chapter 5

Lemma 5.6. The case for x = pl and y = bool follows from equalities ⟦¬ψ⟧ = ∖⟦ψ⟧,

⟦ψ ∧ ψ′⟧ = ⟦ψ⟧ ∩ ⟦ψ′⟧, ⟦ψ ∨ ψ′⟧ = ⟦ψ⟧ ∪ ⟦ψ′⟧ and the fact that D is a boolean algebra.3315

For x = el and y = el , notice that ⟦Kaψ⟧ = [a](⟦ψ⟧), ⟦CAψ⟧ = [A](⟦ψ⟧), and D is a

boolean algebra with operators [a] and [A].

The case of x = pal and y = el follows since PAL is as expressive as epistemic logic

[100]; while the case for x = sopal and y = full is trivial.

Lemma 5.7. The proof for full frames is immediate, as for all U ⊆W∣φ, U ⊆W and then3320

U ∈D. Hence, U∣φ = U ∈D∣φ.

The proof for boolean frames follows from the identities below, for ⋆ ∈ {∩,∪}:

U∣φ ⋆U
′
∣φ = (U ⋆U ′)∣φ

∖(U∣φ) = (∖U)∣φ

As for epistemic frames, we remark that

[a](U∣φ) = ([a](∖⟦φ⟧ ∪U))∣φ

[A] (U∣φ) = ([A](∖⟦φ⟧ ∪U))∣φ

Observe that here [a] and [A] denotes two different operations, the former onM∣φ and

the latter on M. Then, w ∈ [a](U∣φ) iff R∣φ,a(w) ⊆ U∣φ. Since, R∣φ,a(w) = Ra(w) ∩W 2
∣φ,3325
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this is the case iff w ∈ ⟦φ⟧ and for every w′ ∈ Ra(w), w′ ∈ ⟦φ⟧ implies w′ ∈ U , iff w ∈ ⟦φ⟧

and Ra(w) ⊆ (∖⟦φ⟧∪U), iff w ∈ ([a](∖⟦φ⟧∪U))φ. Finally, notice that [a](∖⟦φ⟧∪U) ∈D,

as ⟦φ⟧ ∈ D for every φ ∈ Lel by Lemma 5.6 and D is a boolean algebra with operators.

Hence, [a](U∣φ) = ([a](∖⟦φ⟧ ∪U))φ ∈D∣φ. The proof for operator [A] is similar.

Lemma 5.8. All proofs are by induction on the structure of φ. Notice that the proofs3330

of Lemmas 5.8(1) and 5.8(2) (resp. Lemmas 5.8(3) and 5.8(4)) make use of each other.

This circularity is safe nonetheless, as in each step formulas of strictly smaller length

are considered.

We first prove (1) for x = el . The other cases follow similarly by Lemma 5.6. For

φ = r, (Mp
⟦ψ⟧
,w) ⊧ φ iff w ∈ V p

⟦ψ⟧
(r), iff w ∈ V (r) whenever r ≠ p or w ∈ ⟦ψ⟧ for r = p. In3335

both cases (M,w) ⊧ φ[p/ψ].

The inductive cases for the propositional connectives and epistemic operators are

straightforward, as these simply commute with substitution.

If φ = [ϕ]ϕ′ then (Mp
⟦ψ⟧
,w) ⊧ φ iff (Mp

⟦ψ⟧
,w) ⊧ ϕ implies ((Mp

⟦ψ⟧
)∣ϕ,w) ⊧ ϕ′. By

induction hypothesis, this is the case iff (M,w) ⊧ ϕ[p/ψ] implies ((Mp
⟦ψ⟧

)∣ϕ,w) ⊧ ϕ′.3340

By (2) we have that ((Mp
⟦ψ⟧

)∣ϕ,w) ⊧ ϕ′ iff ((M∣ϕ[p/ψ])
p
⟦ψ⟧
,w) ⊧ ϕ′, as ψ is free for

p in φ. And again by induction hypothesis we have that (M,w) ⊧ ϕ[p/ψ] implies

(M∣ϕ[p/ψ],w) ⊧ ϕ′[p/ψ], that is, (M,w) ⊧ [ϕ[p/ψ]](ϕ′[p/ψ]) = ([ϕ]ϕ′)[p/ψ].

If φ = ∀rϕ for r ≠ p, then (Mp
⟦ψ⟧
,w) ⊧ φ iff for any U ∈ D, ((Mp

⟦ψ⟧
)rU ,w) ⊧ ϕ.

Since r ≠ p and ψ is free for p in ϕ, the assignment (V p
⟦ψ⟧

)rU coincides with (V r
U)

p
⟦ψ⟧

.3345

As a consequence, we obtain ((Mr
U)

p
⟦ψ⟧
,w) ⊧ ϕ, i.e., (Mr

U ,w) ⊧ ϕ[p/ψ] by induction

hypothesis. But this means that (M,w) ⊧ ∀r(ϕ[p/ψ]) = (∀rϕ)[p/ψ]. This completes

the proof for (1).

As for (2), by (1) (Mp
⟦ψ⟧
,w) ⊧ φ iff (M,w) ⊧ φ[p/ψ]. Hence, W∣φ in (Mp

⟦ψ⟧
)∣φ is

equal to W∣φ[p/ψ] in (M∣φ[p/ψ])
p
⟦ψ⟧

. Similarly for components R∣φ and D∣φ in (Mp
⟦ψ⟧

)∣φ.3350

Finally, we have to prove that (V p
⟦ψ⟧

)∣φ(r) = (V∣φ[p/ψ])
p
⟦ψ⟧

(r), for every r ∈ AP , under

the restriction that p ∈ fr(φ) implies ψ ∈ Lqbf . If p ∈ fr(φ) then from (Mp
⟦ψ⟧
,w) ⊧ φ

iff (M,w) ⊧ φ[p/ψ] follows that (V p
⟦ψ⟧

)∣φ(r) = V∣φ[p/ψ](r) = (V∣φ[p/ψ])
p
⟦ψ⟧

(r) for r ≠ p.

For r = p, notice that for every ψ′ ∈ Lqbf , ((Mp
⟦ψ⟧

)∣φ,w) ⊧ ψ′ iff (M∣φ[p/ψ],w) ⊧ ψ′.

In particular, (V p
⟦ψ⟧

)∣φ(p) = ⟦ψ⟧∣φ = ⟦ψ⟧∣φ[p/ψ] = (V∣φ[p/ψ])
p
⟦ψ⟧

(p). On the other hand,3355

if p ∉ fr(φ) then we have to prove that (V p
⟦ψ⟧

)∣φ(r) = (V∣φ)
p
⟦ψ⟧

(r), for every r ∈ AP .

For r ≠ p, we have that (V p
⟦ψ⟧

)∣φ(r) = V∣φ(r) = (V∣φ)
p
⟦ψ⟧

(r). For r = p, (V p
⟦ψ⟧

)∣φ(p) =

(⟦ψ⟧M)∣φ = (V∣φ)
p
⟦ψ⟧

(p). This completes the proof for (2).

As regards (3), if φ = p, then fr(φ) = {p} and (M,w) ⊧ φ iff w ∈ V (p) = V ′(p), iff

(M′,w) ⊧ φ.3360
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The inductive cases for the propositional connectives and epistemic operators are

straightforward.

For φ = [ψ]ψ′, (M,w) ⊧ φ iff (M,w) ⊧ ψ implies (M∣φ,w) ⊧ ψ′, iff (M′,w) ⊧ ψ

implies (M′
∣φ,w) ⊧ ψ′ by induction hypothesis and (4). That is, (M′,w) ⊧ φ.

If φ = ∀pψ, then (M,w) ⊧ φ iff for every U ∈ D, (Mp
U ,w) ⊧ ψ. Since fr(φ) =3365

fr(ψ) ∖ {p}, V p
U (fr(ψ)) = V ′p

U (fr(ψ)) and by induction hypothesis (M′p
U ,w) ⊧ ψ, that is,

(M′,w) ⊧ φ. This completes the proof for (3).

As for (4), by (3zx) (M,w) ⊧ ψ iff (M′,w) ⊧ ψ. Hence W∣ψ = W ′
∣ψ, R∣ψ = R′

∣ψ,

D∣ψ =D′
∣ψ, and V∣ψ = V ′

∣ψ.

Lemma 5.10. Indeed, if (M,w) /⊧ [ψ]φ for some ψ ∈ Lel, then in particular, ⟦ψ⟧ ∈ D by3370

Lemma 5.6 and for U = ⟦ψ⟧, (Mp
U ,w) /⊧ [p]φ. That is, (M,w) /⊧ ∀p[p]φ.

Lemma 5.12. The⇐ direction follows from (5.6) above. As for the⇒ direction, suppose

that for some model M and state w, (M,w) /⊧ τ(φ). Consider now a model M′ such

that F ′ = F and V ′ coincides with V on all atoms appearing in φ. Further, for every

U ∈ D take qU ∈ AP not appearing in φ and let V ′(qU) = U . By Lemma 5.8(3),3375

(M,w) /⊧ τ(φ) implies (M′,w) /⊧ τ(φ) (the assignment V ′(q) for all atoms not appearing

in φ and not assigned to a set U is uninfluential, let it be W .)

Hereafter we write N ⊆M to express that N is a submodel of M, i.e., WN ⊆ W ;

DN = {U ∩WN ∣ U ∈ D}; RN ,a = Ra ∩W
2
N ; and VN (p) = V (p) ∩WN for every p ∈ AP .

We can now prove the following auxiliary result: for every submodel N ′ of M′ and3380

subformula ψ of φ,

(N ′,w) ⊧ ψ iff (N ′,w) ⊧ τ(ψ) (A.4)

For ψ being an atom, a boolean combination of formulas, an epistemic formula or a

PAL formula, this is indeed clear. So consider φ of the form ◻ψ, with the claim proven
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for ψ. For the implication from left to right,

(N ′,w) /⊧ τ(◻ψ) ⇒ (N ′,w) /⊧ ∀p[p]τ(ψ)

⇒ for some U ∈D, (N ′p
U ,w) /⊧ [p]τ(ψ)

⇒ for some U ∈D, (N ′p
U ,w) ⊧ p and ((N ′p

U )∣p,w) /⊧ τ(ψ)

⇒ for some qU ∈ Lel, (N
′p
⟦qU ⟧

,w) ⊧ p and ((N ′p
⟦qU ⟧

)∣p,w) /⊧ τ(ψ)

⇒ for some qU ∈ Lel, (N
′,w) ⊧ p[p/qU ] and ((N ′

∣qU
)p
⟦qU ⟧

,w) /⊧ τ(ψ)

⇒ for some qU ∈ Lel, (N
′,w) ⊧ qU and (N ′

∣qU
,w) /⊧ (τ(ψ))[p/qU ]

⇒ for some qU ∈ Lel, (N
′,w) ⊧ qU and (N ′

∣qU
,w) /⊧ τ(ψ)

⇒ for some qU ∈ Lel, (N
′,w) ⊧ qU and (N ′

∣qU
,w) /⊧ ψ

⇒ for some qU ∈ Lel, (N
′,w) /⊧ [qU ]ψ

⇒ (N ′,w) /⊧ ◻ψ

As to the implication from right to left,3385

(N ′,w) /⊧ ◻ψ ⇒ for some ϕ ∈ Lel, (N
′,w) /⊧ [ϕ]ψ

⇒ for ⟦ϕ⟧ ∈D, (N ′,w) ⊧ ϕ and (N ′
∣ϕ,w) /⊧ ψ

⇒ for ⟦ϕ⟧ ∈D, (N ′,w) ⊧ p[p/ϕ] and (N ′
∣ϕ,w) /⊧ τ(ψ)

⇒ for ⟦ϕ⟧ ∈D, (N ′p
⟦ϕ⟧
,w) ⊧ p and ((N ′p

⟦ϕ⟧
)∣p,w) /⊧ τ(ψ)

⇒ for ⟦ϕ⟧ ∈D, (N ′p
⟦ϕ⟧
,w) /⊧ [p]τ(ψ)

⇒ (N ′,w) /⊧ ∀p[p]τ(ψ)

Notice that the deductions above make essential use of Lemmas 5.8(1-2).

Finally, by (A.4) (M′,w) /⊧ τ(φ) implies (M′,w) /⊧ φ as required.

Lemma 5.16. If APAL ≤m SOPAL, then for ϕ = ◻(Kaq →KbKaq) in APAL there exists

a corresponding ϕ′ in SOPAL. However, (M,w00) ⊧ ϕ implies (M,w00) ⊧ ϕ
′, which

implies (M′′,w00) ⊧ ϕ
′ by Lemma 5.8.4, which implies (M′′,w00) ⊧ ϕ. A contradiction.3390

Lemma 5.17. We prove statement (5.7). For x ∈ {ap,pl , el ,pal , sopal}, if (M,w) ⊧ ∀pφ

then for every U ∈ D, (Mp
U ,w) ⊧ φ. In particular, (Mp

⟦ψ⟧
,w) ⊧ φ as by Lemma 5.6,

⟦ψ⟧ ∈D whenever ψ ∈ Lx. By Lemma 5.8(1), (Mp
⟦ψ⟧
,w) ⊧ φ implies (M,w) ⊧ φ[p/ψ].

As to (5.8), suppose that (M,w) ⊧ ψ. Since p does not appear free in ψ, for every3395

U ∈ D, assignment V p
U coincides with V on fr(ψ). By Lemma 5.8(3) we have that
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(Mp
U ,w) ⊧ ψ and by hypothesis, (Mp

U ,w) ⊧ φ. Hence, for every U ∈ D, (Mp
U ,w) ⊧ φ,

that is, (M,w) ⊧ ∀pφ.

Lemma 5.18. As regards (5.9) observe that,

(M,w) ⊧ [ψ]∀pφ iff (M,w) ⊧ ψ implies (M∣ψ,w) ⊧ ∀pφ

iff (M,w) ⊧ ψ implies for all U ′ ∈D∣ψ, ((M∣ψ)
p
U ′ ,w) ⊧ φ

Now, if U ∈D then U ′ = U ∩W∣ψ ∈D∣ψ. On the other hand, if U ′ ∈D∣ψ then for some3400

U ∈ D, U ′ = U ∩W∣ψ. In particular (V∣ψ)
p
U ′ = (V p

U )∣ψ, as p does not appear free in ψ.

Hence,

(M,w) ⊧ [ψ]∀pφ iff (M,w) ⊧ ψ implies for all U ∈D, ((Mp
U)∣ψ,w) ⊧ φ

iff (M,w) ⊧ ψ implies (M,w) ⊧ ∀p[ψ]φ

iff (M,w) ⊧ ψ → ∀p[ψ]φ

The other equivalences are proved similarly. In particular, formulas (5.10) and (5.12)

are dual of (5.9) and (5.11) respectively.

Lemma 5.21. We show that for every model M, M′, M′′ with M′′ ⊆ M′ ⊆ M, s ∈3405

W ′′, and positive formula φ ∈ L+sopal , (M′, s) ⊧ φ implies (M′′, s) ⊧ φ. The inductive

cases for φ ≠ ∀pψ follow seamlessly as in [116]. As for φ = ∀pψ, Consider U ′′ ∈ W ′′

s.t. (M′′p
U ′′ , s) ⊧ ψ. Clearly, M′′p

U ′′ ⊆M
′p
U ′ for U ′ ∈D′ such that U ′′ = U ′ ∩W ′′. Moreover,

hypothesis (M′, s) ⊧ ∀pψ implies (M′p
U ′ , s) ⊧ ψ, and by induction hypothesis it follows

that (M′′p
U ′′ , s) ⊧ ψ. Since U ′′ is arbitrary, (M′′, s) ⊧ ∀pψ.3410

As a result, positive formulas are preserved under taking submodels. In particular,

they are preserved by the model refinement of public announcement operators.

Theorem 5.28. We briefly sketch the case for quantifiers, for the other cases we refer to

[68, Theorem 1]. The ‘if’ direction is by induction on the formula, so assume ϕ = ∃pψ,

with the claim proven for ψ with ∣ψ∣ = n − 1. That is, suppose that ϕ has size n < k and3415

that M ⊧ ∃pψ while N ⊧ ¬∃pψ. Spoiler plays the ∃p-move: since M ⊧ ∃pψ, for every

model (M,w) ∈M, Spoiler can choose some U ∈ D such that (Mp
U ,w) ⊧ ψ. Collecting

all pointed models thus obtained in M1, we have M1 ⊧ ψ. Since N ⊧ ¬∃pψ, if we put

all models (N , v) in a set N1, we have N1 ⊧ ¬ψ. We know that Spoiler can win the

sub-game starting in ⟨M1 ○N1⟩ in n − 1 moves, which in turn ensures he wins the game3420

starting in ⟨M ○N⟩ in n moves.
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For the ‘only-if’ direction, if Spoiler has won the FSG starting at ⟨M ○N⟩ in n < k

moves, then the resulting closed game tree is a parse tree of a formula ϕ of length n

such that M ⊧ ϕ and N ⊧ ¬ϕ. To see this, we label the nodes of the tree with formulas,

starting with the leaves. In particular, if a node has a label ∃p and its successor is3425

labeled with ψ, then the current node is labeled with ∃pψ. One can verify that for each

node ⟨A ○B⟩, the formula labelling the node is true in A, and false in B. Hence, the

game tree is a parse tree for the formula labelling the root.

A.4 Chapter 6

Lemma 6.4. We consider the properties of reflexivity, symmetry, and transitivity of3430

equivalence relations. The case for a ∉ A is immediate, as R−
a = R

+
a = Ra.

Reflexivity of R−
a : suppose that v ∈ W ′ = W . Clearly, Ra(v, v) holds, and in the

definition of R−
a , if v ∈ Ra(w) ∩ [[ψ]] then v ∈ Ra(v) ∩ [[ψ]]. Hence, R−

a(v, v) holds. The

case for v ∈ Ra(w) ∩ [[¬ψ]] is symmetric. The case for R+
a is similar.

Symmetry of R−
a : suppose that R−

a(v1, v2) holds. Clearly, Ra(v1, v2) as R−
a ⊆ Ra, and3435

Ra(v2, v1) as Ra is symmetric. Now notice that R−
a(v1, v2) implies that both v1 and v2

satisfy ψ, or they both satisfy ¬ψ. In both cases R−
a(v2, v1) holds as well. Also in this

case, the proof for R+
a is similar.

Transitivity of R−
a : suppose that R−

a(v1, v2) and R−
a(v2, v3). Clearly, Ra(v1, v2) and

Ra(v2, v3) as R−
a ⊆ Ra, and therefore Ra(v1, v3) by transitivity. Moreover, if R−

a(v1, v2)3440

and R−
a(v2, v3), then all v1, v2 and v3 satisfy ψ, or they all satisfy ¬ψ. In both cases

R−
a(v1, v3) holds. The case for R+

a is similar.

Lemma 6.5. We prove (6.1) for a propositional formula φ. Suppose that (M,w) ⊧ φ but

(M−
(w,φ,A)

,w) /⊧ EAφ to obtain a contradiction, that is, (M−
(w,φ,A)

,w′) /⊧ φ for some a ∈ A

and w′ ∈ R−
a(w). In particular, this means that (M,w′) /⊧ φ, as φ is propositional. Hence,3445

w′ ≠ w (as φ is true in w) and w′ ∈ Ra(w) ⊇ R−
a(w). But then w′ ∉ Ra(w)∩ [[φ]], against

the hypothesis that R−
a(w,w

′). Therefore, it is the case that (M−
(w,φ,A)

,w) ⊧ EAφ. The

proof for (6.2) follows a similar line.

Proposition 6.6. The only non-trivial case is for ψ = [φ]φ′. In particular, we show that

for every w ∈W , refinement M+
(w,φ,I) satisfies the same formulas in PAL as refinement3450

Mφ. The key remark here is that worlds that are not reachable from w via relation R∗
I

do not account for the truth value of formulas at w. Specifically, in refinementM+
(w,φ,I),
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any state w′ is reachable from w via (R+)∗I iff w′ is reachable from w in Mφ. Also,

in both refinements the indistinguishability relations and assignments are restricted to

[[φ]]M. As a result, the two models satisfy the same announcement formulas at w.3455

Lemma 6.11. We prove (6.3) as (6.4) is the special case for A = {a}. By Definition 6.3,

(M,w) ⊧ [φ]+ACAψ iff (M,w) ⊧ φ implies that for every w′ ∈ R′∗
A (w), (M+

(w,φ,A)
,w′) ⊧

ψ. Now notice that for every w′ ∈ R′∗
A (w) = R∗

A(w) ∩ [[φ]]M, the refinements M+
(w,φ,A)

and M+
(w′,φ,A)

are equal. Hence, (M,w) ⊧ [φ]+ACAψ iff (M,w) ⊧ φ implies that for

every w′ ∈ R∗
A(w) ∩ [[φ]]M, (M+

(w′,φ,A)
,w′) ⊧ ψ, that is, (M,w) ⊧ φ implies that for3460

every w′ ∈ R∗
A(w), (M,w′) ⊧ [φ]+Aψ, i.e., (M,w) ⊧ φ→ CA[φ]

+
Aψ.

Lemma 6.12. We prove (6.5). Suppose that (M,w) ⊧ [φ]−A [φ′]
−

Aψ, that is, if (M,w) ⊧

φ and (M−
(w,φ,A)

,w) ⊧ φ′, then ((M−
(w,φ,A)

)−
(w,φ′,A)

,w) ⊧ ψ. We have to show that this

is equivalent to (M,w) ⊧ [φ ∧ [φ]−A φ
′]
−

A
ψ, that is, if (M,w) ⊧ φ and (M−

(w,φ,A)
,w) ⊧ φ′,

then (M−

(w,φ∧[φ]−Aψ
′,A)

,w) ⊧ ψ. Hence, it is enough to prove that ((M−
(w,φ,A)

)−
(w,φ′,A)

,w) ⊧3465

ψ iff (M−

(w,φ∧[φ]−Aψ
′,A)

,w) ⊧ ψ. In particular, refinements (M−
(w,φ,A)

)−
(w,φ′,A)

andM−

(w,φ∧[φ]−Aψ
′,A)

are identical. To see this we remark that in refinement (M−
(w,φ,A)

)−
(w,φ′,A)

, for every a ∈ A,

R−
a(v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ra(v) ∩ [[φ]]M ∩ [[φ′]]M(w,φ,A) if v ∈ Ra(w) ∩ [[φ]]M ∩ [[φ′]]M(w,φ,A)

Ra(v) ∩ [[φ]]M ∩ [[¬φ′]]M(w,φ,A) if v ∈ Ra(w) ∩ [[φ]]M ∩ [[¬φ′]]M(w,φ,A)

Ra(v) ∩ [[¬φ]]M ∩ [[φ′]]M(w,φ,A) if v ∈ Ra(w) ∩ [[¬φ]]M ∩ [[φ′]]M(w,φ,A)

Ra(v) ∩ [[¬φ]]M ∩ [[¬φ′]]M(w,φ,A) if v ∈ Ra(w) ∩ [[¬φ]]M ∩ [[¬φ′]]M(w,φ,A)

Ra(v) otherwise

which is tantamount to the following in model M−

(w,φ∧[φ]−Aφ
′,A)

:

R−
a(v) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ra(v) ∩ [[φ ∧ [φ]Aφ
′]]M if v ∈ Ra(w) ∩ [[φ ∧ [φ]Aφ

′]]M

Ra(v) ∩ [[¬(φ ∧ [φ]Aφ
′)]]M if v ∈ Ra(w) ∩ [[¬(φ ∧ [φ]Aφ

′)]]M

Ra(v) otherwise

Hence, the two models are identical and (6.5) holds.
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