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Verification of (Multi-agent) Systems

The Verification Problem

Given a system S and specification P, does S satisfy P?
• Safety: errors cost lives (e.g., Therac-25).
• Mission: errors cost in terms of objectives (e.g., Arianne 5).
• Business: errors cost money (e.g., Pentium 5, Denver airport).

In safety-critical systems failure is not an option!

Model checking in a nutshell [Clarke, Emerson, Sifakis]

1 Model S as some transition system MS

2 Represent specification P as a formula φP

in some logic-based language

3 Check whether MS |= φP
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Properties to Check

80’s-90’s: single-component, stand-alone systems: temporal logics LTL, CTL [Pnu77].

Temporal Properties

The robot . . .
• . . . will always avoid obstacles. G avoid_obstacles

• . . . will finally reach its target. F target

• . . . will always makes progress towards its goal. G F move

• . . . will eventually be in the safe zone forever. F G safe
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From System to Game Verification

Since 2000: systems with several components, interacting agents, game structures:
• ATL [AHK02]
• Coalition Logic [Pau02]
• Strategy Logic [CHP07, MMPV14]

Strategic Properties

• Coercion Resistance: the attacker has a strategy whereby he will know how
agent i has voted. 〈〈att〉〉F

∨
1≤j≤c Katt (chi = j)

• There is a [Nash, subgame-perfect, k-robust, . . . ] equilibrium such that . . .

Notions of strategies, equilibria from Game Theory → Rational Synthesis [KPV16]

⇒ Automated verification of strategic abilities of autonomous agents (MoChA,
Verics, MCMAS)

So far, so good . . .
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The Problem with MAS Verification

MAS exhibit imperfect information:
• Agents have partial observability/imperfect information about the system.

• Perfect information unachievable or computationally costly.

• Imperfect information makes things hard(er).

Perfect Information: decidability results

• Synthesis for LTL goals (Büchi, Landweber, 1969), (Rabin, 1972), (Pnueli, Rosner, 1989)

• Nash equilibria for LTL goals (Mogavero, Murano, Vardi, 2010)

Imperfect Information: undecidability results

Synthesis for reachability goals (Peterson, Reif, 1979)
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How to tame Imperfect Information?

Semantic Restrictions:
• Hierarchical MAS (Peterson, Reif, 1979), (Pnueli, Rosner, 1990), (Kupferman, Vardi, 2001), (Schewe,

Finkbeiner, 2007), (Berwanger, Mathew, vdBogaard, 2015), (Berthon, Maubert, Murano, 2017)

• MAS with public actions only. [BLMR17a, BLMR17b, BLMR18]

• . . .

This talk:
1 Bounded memory and 3-valued logic to approximate perfect recall [BLM18]

2 Perfect Information and 3-valued logic to approximate imperfect information
[BLM19, BM20]
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Concurrent Game Structures with Imperfect Information

Definition (iCGS)
An iCGS is a tuple M = 〈Ag ,AP, S , s0, {Acti}i∈Ag , {∼i}i∈Ag , d , δ,V 〉 where
• Ag is a set of agents.
• AP is a set of atomic propositions.
• S is a set of states, with initial state s0 ∈ S.
• Each Acti is a set of actions.

Act =
⋃

i∈Ag Acti is the set of all actions, and
ACT =

∏
i∈Ag Acti is the set of all joint actions.

• Each ∼i is a relation of indistinguishability (equivalence) between states.
• The protocol function d : Ag × S → (2Act \ ∅) defines the availability of actions.
The same actions are available in indistinguishable states.

• The transition function δ : S × ACT → S assigns a successor state s′ = δ(s, ~a)
to each state s ∈ S, for every joint action ~a ∈ ACT .

• V : S × AP → {>,⊥} is the two-valued labelling function.

• Perfect information: for every i ∈ Ag , ∼i is the identity relation.
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Variant of the TGC Scenario with Imperfect Information

sI
b

s2
l1

s1
l1, l2

s3
r1

s4
r1, r2

s5
g

s7
r2

s6
l2

LLL

LRL

LRRRLL

RLR

RRR

∗

O

A

E

O

E

O

A

O

∗

E

O

E

O

t1 c t1

• Three agents: t1, t2, and c.

• t1 and t2 need to coordinate L or R.

• c’s actions: L, R, E , A, and O.

• t1 can’t observe t2’s choice.

• c can’t observe t1’s and t2’s choices.

• Spec: t1 and c have a strategy to co-
ordinate to go left, but then an agree-
ment has to be reached before visiting
the initial state again.
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Alternating-time Temporal Logic

To express specifications as above we consider ATL.
Specification Language: Alternating-time temporal logic

State (ϕ) and path (ψ) formulas in ATL∗ are defined as:

ϕ ::= q | ¬ϕ | ϕ ∧ ϕ | 〈〈Γ〉〉ψ
ψ ::= ϕ | ¬ψ | ψ ∧ ψ | Xψ | (ψUψ)

where q ∈ AP and Γ ⊆ Ag .

〈〈Γ〉〉ψ ::= “the agents in coalition Γ have a joint strategy to achieve goal ψ”.

ATL is the fragment of ATL∗ where path formulas are restricted as:

ψ ::= Xϕ | (ϕUϕ) | (ϕRϕ)

〈〈t1, c〉〉F (l1 ∧ ¬bUg): t1 and c have a strategy to coordinate to go left (l1), but then
an agreement has to be reached (g) before visiting the initial state again (b).
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Strategies

Strategies

• Each agent can play some actions according to the protocol function.
• A strategy is a conditional plan that prescribes an action at each state.
• The composition of individual strategie induces a unique outcome.

Memory in strategies

• Depending on the memory, we distinguish between:
• perfect recall (memoryful) strategies (R) =⇒ f : S+ → Act
• imperfect recall (positional) strategies (r) =⇒ f : S → Act

(R) the players take a decision by considering the history of the game.

(r) the players take a decision by considering the current state of the game.

Agents’ information

• Depending on the players’ information, we distinguish between:
• perfect information systems (I)
• imperfect information systems (i)

(I ) the players have full knowledge of the state of the game, at every moment.

(i) the players come to decisions without having all relevant information at hand.
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Model Checking ATL

Interpretation of ATL∗ formulas on iCGS

The 2-valued (2V) satisfaction relation |=2 for an iCGS M, state s, and ATL∗ formula
φ = 〈〈Γ〉〉ψ is defined as

(M, s) |=2 〈〈Γ〉〉ψ iff for some joint strategy FΓ,
for all outcomes p ∈ out(s,FΓ), (M, p) |=2 ψ

where out(s,FΓ) is the set of all paths p starting from state s and compatible with FΓ.

Model checking results for ATL:

perfect imperfect
memoryless PTIME-complete (A. H. K., 2002)

∆P
2 -complete (Jamroga, Dix, 2006)

perfect recall undecidable (Dima, Tiplea, 2011)

Idea of [BLM18]: can we approximate perfect recall with bounded recall?
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Strategies with Bounded Recall

Hereafter we consider a bound n ∈ N+ ∪ {ω}.

Uniform Strategies with Bounded Recall

A uniform strategy with n-bounded recall for agent i ∈ Ag is a function
f n
i : S≤n → Acti such that for all n-histories h, h′:

1 action f n
i (h) is enabled at h: f n

i (h) ∈ d(i , last(h))

2 h ∼i h′ implies f n
i (h) = f n

i (h′)
where, h ∼i h′ iff |h| = |h′| and for every j ≤ |h|, hj ∼i h′j .

About the bound

• For n = 1 ⇒ imperfect recall (positional) strategies
• For n = ω ⇒ perfect recall (memoryful) strategies

Bounded recall v. bounded memory (strategies as trasducers of bounded size [Ves15]):
related but orthogonal issues.
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Semantics of ATL with bounded recall

Interpretation of ATL∗ formulas on iCGS

The two-valued (2V), n-bounded satisfaction relation |=2
n for an iCGS M, state s, and

ATL∗ formula φ = 〈〈Γ〉〉ψ is defined as

(M, s) |=2
n 〈〈Γ〉〉ψ iff for some n-bounded joint strategy F n

Γ ,
for all outcomes p ∈ out(s,F n

Γ ), (M, p) |=2
n ψ

where out(s,F n
Γ ) is the set of all paths p starting from state s and compatible with F n

Γ .
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Example: matching pennies with recall

s1

s12 s13

s24 s25

sn
4 sn

5

s6
w

s7 s8 s9
w

(head, I ) (tail, I )

(H1, I ) (H1, I )

(H2, I ) (H2, I )

(Hn, I ) (Hn, I )

(I, head) (I, tail) (I, head) (I, tail)

Player2

Player2

• Player 1 chooses first head or tail.
• Player 2 can see her choice.
• Then, there are n − 1 steps in which the coin

is hidden from Player 2.
• Consider 〈〈2〉〉Fwin2 and m, n ∈ N+ ∪ {ω}

with m < n.
• Player 2 has no strategy with m-bounded

recall to win the game, but she has a
n-bounded recall strategy.

• Hence, s1 6|=2
m 〈〈2〉〉Fwin2, but s1|=2

n 〈〈2〉〉Fwin2.
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Model Checking Bounded Recall

Algorithm MC(M, ϕ, n):

M′ = Inflate(M, n);
return MC_ATL(M′, ϕ);

• Each state in M′ represents a sequence of states in M of length at most n.
• There are exponentially many such sequences.

Complexity Results

ATL∗ with:
• n = ω (perfect recall) is undecidable.
• n ∈ N+ is in EXPTIME .
• n ∈ N+ and fixed is PSPACE -complete (the same as imperfect recall).

ATL with:
• n = ω (perfect recall) is undecidable.
• n ∈ N+ is in EXPTIME .
• n ∈ N+ and fixed is ∆P

2 -complete (the same as imperfect recall).
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Key Aspects on 2V Semantics

Naive idea: approximate perfect recall via bounded recall with an increasing bound.

Let m, n ∈ N+ ∪ {ω} with m < n. There exists formulas ϕ and ϕ′ = ¬ϕ in ATL such
that:

1 (M, p) 6|=2
m ϕ and (M, p) |=2

n ϕ

2 (M, p) |=2
m ϕ′ and (M, p) 6|=2

n ϕ
′

Just take ϕ = 〈〈2〉〉F win2 in the matching penny scenario above.

Consequences

• Any naive attempt to approximate PR by increasing the bound n will not succeed.
• The issue is with models, not just formulas.

⇒ To overcome this problem, we consider a 3-valued semantics.
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3-valued Semantics for Bounded ATL

• V : S × AP → {>,⊥, uu} is now a three-valued labelling function.
• Γ̄ = Ag \ Γ

The 3-valued (3V) (n-bounded) satisfaction relation |=3
n for an iCGS M, state s, and

ATL∗ formula ϕ = 〈〈Γ〉〉ψ is defined as

((M, s) |=3
n 〈〈Γ〉〉ψ) = > iff for some joint n-bounded strategy F n

Γ ,
for all outcomes p ∈ out(s,F n

Γ ), ((M, p) |=3
n ψ) = >

((M, s) |=3
n 〈〈Γ〉〉ψ) = ⊥ iff for some joint n-bounded strategy F n

Γ̄
,

for all outcomes p ∈ out(s,F n
Γ̄

), ((M, p) |=3
n ψ) = ⊥

In all other cases the value of φ is undefined (uu).

In the matching penny scenario 〈〈2〉〉F win2 is undefined for m < n.
• both 〈〈2〉〉F win2 and 〈〈1〉〉G¬win2 are false (in the 2V m-bounded semantics).

F. Belardinelli Imperial College London, UK & Université d’Evry, France
Multi-valued Logics and Abstractions for the Verification of Strategic Properties in MAS with Imperfect Information 17 / 36



3-valued Semantics for Bounded ATL

• V : S × AP → {>,⊥, uu} is now a three-valued labelling function.
• Γ̄ = Ag \ Γ

The 3-valued (3V) (n-bounded) satisfaction relation |=3
n for an iCGS M, state s, and

ATL∗ formula ϕ = 〈〈Γ〉〉ψ is defined as

((M, s) |=3
n 〈〈Γ〉〉ψ) = > iff for some joint n-bounded strategy F n

Γ ,
for all outcomes p ∈ out(s,F n

Γ ), ((M, p) |=3
n ψ) = >

((M, s) |=3
n 〈〈Γ〉〉ψ) = ⊥ iff for some joint n-bounded strategy F n

Γ̄
,

for all outcomes p ∈ out(s,F n
Γ̄

), ((M, p) |=3
n ψ) = ⊥

In all other cases the value of φ is undefined (uu).

In the matching penny scenario 〈〈2〉〉F win2 is undefined for m < n.
• both 〈〈2〉〉F win2 and 〈〈1〉〉G¬win2 are false (in the 2V m-bounded semantics).

F. Belardinelli Imperial College London, UK & Université d’Evry, France
Multi-valued Logics and Abstractions for the Verification of Strategic Properties in MAS with Imperfect Information 17 / 36



Model Checking 3-valued ATL

We reduce 3V model checking to 2V model checking.

Given a model checking instance ((M, s) |= ϕ) = v , for v ∈ {>,⊥}:
1 For every atom q ∈ AP, introduce two new atoms q> and q⊥.

2 Define a 2V-model M′ s.t. q> (resp. q⊥) is true whenever q is true (resp. false).

3 Model check translation Transl(ϕ, v) on M′.

4 Transfer the result to the original 3V-model M.

Algorithm Transl(ϕ, v)

switch(ϕ)
case ϕ = q:
switch(v)

case v = >: return q>;
case v = ⊥: return q⊥;

case ϕ = ¬ϕ′:
switch(v)

case v = >: return Transl(ϕ′,⊥);
case v = ⊥: return Transl(ϕ′,>);
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Model Checking 3-valued ATL
Algorithm Transl(ϕ, v) (cont.)

case ϕ = ϕ′ ∧ ϕ′′:
switch(v)

case v = >: return Transl(ϕ′,>) ∧ Transl(ϕ′′,>);
case v = ⊥: return Transl(ϕ′,⊥) ∨ Transl(ϕ′′,⊥);

case ϕ = 〈〈Γ〉〉ψ:
switch(v)

case v = >: return 〈〈Γ〉〉 Transl(ψ,>);
case v = ⊥: return 〈〈Γ̄〉〉 Transl(ψ,⊥);

case ϕ = Xψ:
switch(v)

case v = >: return X Transl(ψ,>);
case v = ⊥: return X Transl(ψ,⊥);

case ϕ = ψUψ′:
switch(v)

case v = >: return Transl(ψ,>) U Transl(ψ′,>);
case v = ⊥: return Transl(ψ,⊥) R Transl(ψ′,⊥)

case ϕ = ψRψ′:
switch(v)

case v = >: return Transl(ψ,>) R Transl(ψ′,>);
case v = ⊥: return Transl(ψ,⊥) U Transl(ψ′,⊥)
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Model Checking 3-valued ATL: Soundness

Lemma
For every iCGS M and ATL∗ formula ϕ, given M′ = Duplicate_atoms(M),

(M′, s) |=2 Transl(ϕ,>) ⇔ ((M, s) |=3 ϕ) = > (1)

(M′, s) |=2 Transl(ϕ,⊥) ⇔ ((M, s) |=3 ϕ) = ⊥ (2)

(M′, s) |=2 ¬(ϕ> ∨ ϕ⊥) ⇔ ((M, s) |=3 ϕ) = uu (3)

Complexity Results

The complexity of 3V model checking is the same as 2V.

⇒ Translation Transl() is polynomial,
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Iterative Model Checking (1)

For every m, n ∈ N+ ∪ {ω}, formula φ in ATL∗, and m ≤ n:

((M, s) |=3
m φ) = > ⇒ ((M, s) |=3

n φ) = > (4)

((M, s) |=3
m φ) = ⊥ ⇒ ((M, s) |=3

n φ) = ⊥ (5)

((M, s) |=3
n φ) = > ⇒ (M, s) |=2

n φ (6)

((M, s) |=3
n φ) = ⊥ ⇒ (M, s) 6|=2

n φ (7)

By (4) and (6): ((M, s) |=3
m φ) = > ⇒ (M, s) |=2

n φ (8)

By (5) and (7): ((M, s) |=3
m φ) = ⊥ ⇒ (M, s) 6|=2

n φ (9)

Consequences

• By (8) and (9) we can design a procedure for PR, whereby ATL∗ formulas are
checked in the 3V semantics for increasingly larger bounds.

• If either > or ⊥ is returned, by (8) and (9) this is also the truth value for the 2V
semantics under perfect recall.
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Iterative Model Checking (2)

Algorithm Iterative_MC(M, ψ, n):

j = 1, k = uu;
while j ≤ n and k = uu

if MC3(M, ψ, j ,>) then k = >;
else if MC3(M, ψ, j ,⊥) then k = ⊥;
j = j + 1;

end while;
if k 6= uu then return (j − 1, k);
else return −1;

Soundness

• Iterative_MC() is sound for all bounds n ∈ N+ ∪ {ω}.
• I.e., if the value returned is different from −1, then M |=2

n φ iff k = >.

Termination

• For n ∈ N+ ⇒ Iterative_MC() terminates in EXPTIME .
• For n = ω ⇒ Iterative_MC() does not necessarily terminate.
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Conclusions

• We introduced BR and 3V semantics on iCGS to tackle undecidability under PR
and II.

• We proved preservation results for defined truth values from the BR to the PR
case and from 3V to 2V semantics for all ATL∗ specifications.

• We introduced an iterative procedure that, in some cases, solves the MC problem
under PR by taking a bounded amount of memory.

• Since model checking PR (under II) is undecidable in general, the procedure
discussed is naturally partial.

• We are currently working on implementing the described procedure on a symbolic
MC for ATL with II.

F. Belardinelli Imperial College London, UK & Université d’Evry, France
Multi-valued Logics and Abstractions for the Verification of Strategic Properties in MAS with Imperfect Information 23 / 36



Conclusions

• We introduced BR and 3V semantics on iCGS to tackle undecidability under PR
and II.

• We proved preservation results for defined truth values from the BR to the PR
case and from 3V to 2V semantics for all ATL∗ specifications.

• We introduced an iterative procedure that, in some cases, solves the MC problem
under PR by taking a bounded amount of memory.

• Since model checking PR (under II) is undecidable in general, the procedure
discussed is naturally partial.

• We are currently working on implementing the described procedure on a symbolic
MC for ATL with II.

F. Belardinelli Imperial College London, UK & Université d’Evry, France
Multi-valued Logics and Abstractions for the Verification of Strategic Properties in MAS with Imperfect Information 23 / 36



Conclusions

• We introduced BR and 3V semantics on iCGS to tackle undecidability under PR
and II.

• We proved preservation results for defined truth values from the BR to the PR
case and from 3V to 2V semantics for all ATL∗ specifications.

• We introduced an iterative procedure that, in some cases, solves the MC problem
under PR by taking a bounded amount of memory.

• Since model checking PR (under II) is undecidable in general, the procedure
discussed is naturally partial.

• We are currently working on implementing the described procedure on a symbolic
MC for ATL with II.

F. Belardinelli Imperial College London, UK & Université d’Evry, France
Multi-valued Logics and Abstractions for the Verification of Strategic Properties in MAS with Imperfect Information 23 / 36



Conclusions

• We introduced BR and 3V semantics on iCGS to tackle undecidability under PR
and II.

• We proved preservation results for defined truth values from the BR to the PR
case and from 3V to 2V semantics for all ATL∗ specifications.

• We introduced an iterative procedure that, in some cases, solves the MC problem
under PR by taking a bounded amount of memory.

• Since model checking PR (under II) is undecidable in general, the procedure
discussed is naturally partial.

• We are currently working on implementing the described procedure on a symbolic
MC for ATL with II.

F. Belardinelli Imperial College London, UK & Université d’Evry, France
Multi-valued Logics and Abstractions for the Verification of Strategic Properties in MAS with Imperfect Information 23 / 36



Conclusions

• We introduced BR and 3V semantics on iCGS to tackle undecidability under PR
and II.

• We proved preservation results for defined truth values from the BR to the PR
case and from 3V to 2V semantics for all ATL∗ specifications.

• We introduced an iterative procedure that, in some cases, solves the MC problem
under PR by taking a bounded amount of memory.

• Since model checking PR (under II) is undecidable in general, the procedure
discussed is naturally partial.

• We are currently working on implementing the described procedure on a symbolic
MC for ATL with II.

F. Belardinelli Imperial College London, UK & Université d’Evry, France
Multi-valued Logics and Abstractions for the Verification of Strategic Properties in MAS with Imperfect Information 23 / 36



PI Abstractions and 3-valued Logic to approximate II

Idea: abstract imperfect information away!

• This yields clusters with possibly undefined truth values (when atoms are true in
some states and false in others).

⇒ Abstraction and 3-valued Logic.
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Variant of the TGC Scenario with Imperfect Information

sI
b

s2
l1

s1
l1, l2

s3
r1

s4
r1, r2

s5
g

s7
r2

s6
l2

LLL

LRL

LRRRLL

RLR

RRR

∗

O

A

E

O

E

O

A

O

∗

E

O

E

O

t1 c t1

• Three agents: t1, t2, and c.

• t1 and t2 need to coordinate L or R.

• c’s actions: L, R, E , A, and O.

• t1 can’t observe t2’s choice.

• c can’t observe t1’s and t2’s choices.

• Spec: 〈〈t1, c〉〉F (l1 ∧ ¬bUg).
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Abstract TGC with PI

We cluster together states indistinguishable for t1 and c.

a1
sI
b

a2
s2
l1

s1
l1, l2

s3
r1

s4
r1, r2

a3
s5
g

a4
s6
l2

a5
s7
r2

LLL, LRL, RLR, RRR

∗

LRRRLL

A

E

O

E

OO

∗

• Ma is constructed over the common
knowledge set of t1 and c.

• 2 kinds of transitions:
may : ∃s ∈ t ∃s′ ∈ t′ : edge(s, s′)
must: ∀s ∈ t ∃s′ ∈ t′ : edge(s, s′)

• Intuitively,
may : under-approximations
must: over-approximations

• The spec is undefined.
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Abstract CGS

• Common knowledge for coalition Γ ⊆ Ag : ∼C
Γ = (

⋃
i∈Γ ∼i )

∗

• CK set: [s]Γ = {s′ ∈ S | s′ ∼C
Γ s}

Definition (Abstract CGS)
Given an iCGS M and a coalition Γ ⊆ Ag , the abstract CGS

MΓ = 〈Ag ,AP, SΓ, [s0]Γ, {Acti}i∈Ag , d
may
Γ , dmust

Γ , δmay
Γ , δmust

Γ ,VΓ〉

is defined as:

1 SΓ = {[s]Γ | s ∈ S} is the set of equivalence classes for all states s ∈ S , with
initial state [s0]Γ;

2 for t, t′ ∈ SΓ and joint action ~a, t′ ∈ δmay
Γ (t, ~a) iff for some s ∈ t and s′ ∈ t′,

δ(s, ~a) = s′;

3 for t, t′ ∈ SΓ and joint action ~a, t′ ∈ δmust
Γ (t, ~a) iff for all s ∈ t there is s′ ∈ t′

such that δ(s, ~a) = s′;

4 for v ∈ {>,⊥}, p ∈ AP, and t ∈ SΓ, VΓ(t, p) = v iff V (s, p) = v for all s ∈ t;
otherwise, VΓ(t, p) = uu.

Key remark: the abstract CGS has perfect information!
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3-valued Semantics for Abstract CGS

Definition (x-Strategy (with perfect recall))
For x ∈ {may ,must}, a x-strategy with perfect recall for agent i ∈ Ag is a function
f x
i : S+ → Acti such that for every history h ∈ S+, f x

i (h) ∈ dx
Γ (i , last(h)).

p ∈ out(s, F must
Γ ) iff for all j ≥ 0, pj+1 ∈ δmay (pj , (F must

Γ (p≤j ), ~aΓ)) and for all i ∈ Γ, ai ∈ dmay (i, pj )

p ∈ out(s, F may
Γ ) iff for all j ≥ 0, pj+1 ∈ δmust (pj , (F may

Γ (p≤j ), ~aΓ)) and for all i ∈ Γ, ai ∈ dmust (i, pj )

The 3-valued (3V) satisfaction relation |=3 for an abstract CGS MΓ, state s, and ATL∗

formula ϕ = 〈〈Γ〉〉ψ is defined as

((MΓ, s) |=3 〈〈Γ〉〉ψ) = > iff for some joint strategy F must
Γ ,

for all outcomes p ∈ out(s,F must
Γ ), ((MΓ, p) |=3 ψ) = >

((MΓ, s) |=3 〈〈Γ〉〉ψ) = ⊥ iff for every joint strategy F may
Γ ,

for some outcome p ∈ out(s,F may
Γ ), ((MΓ, p) |=3 ψ) = ⊥

In all other cases, ϕ is undefined (uu).

• may-components: under-approximations
• must-components: over-approximations
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((MΓ, s) |=3 〈〈Γ〉〉ψ) = > iff for some joint strategy F must
Γ ,

for all outcomes p ∈ out(s,F must
Γ ), ((MΓ, p) |=3 ψ) = >

((MΓ, s) |=3 〈〈Γ〉〉ψ) = ⊥ iff for every joint strategy F may
Γ ,

for some outcome p ∈ out(s,F may
Γ ), ((MΓ, p) |=3 ψ) = ⊥

In all other cases, ϕ is undefined (uu).

• may-components: under-approximations
• must-components: over-approximations
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Properties

Conservativeness

• The 3V semantics for ATL∗ is a conservative extension of its 2V semantics.

That is, in standard iCGS the 2V and 3V semantics coincide.

3-valued Model Checking

• ATL∗: 2EXPTIME-complete.

• ATL: PTIME-complete.

The same as for the 2V, perfect information case.
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Main Property

Lemma
Given an iCGS M, state s, and coalition Γ ⊆ Ag , for every Γ-formula φ in ATL∗,

((MΓ, [s]Γ) |=3
I φ) = > ⇒ (M, s) |=2

i φ

((MΓ, [s]Γ) |=3
I φ) = ⊥ ⇒ (M, s) 6|=2

i φ

⇒ We can verify imperfect information by checking 3V perfect information.

Limitation: results are restricted to Γ-formulas.

Question: what if undefined uu is returned? Let’s refine!
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Refined Train Gate Controller

Failure couple (sf , φ): φ is not defined at sf but all its subformulas are.

a1
sI
b

a4
s6
l2

a5
s7
r2

a1
2 s1

l1, l2
s2
l1

a2
2 s3

r1
s4

r1, r2

a3
s5
g

LLL, LRL

∗

LRRRLL

RLR, RRR A

E

O

A

E

O

E

O

E

O

∗

• A state sf can be split if:
(i) for all the ingoing edges → the
actions of t1 and c are different;
(ii) it is possible to construct two
new states in accordance with II.

• The refinement procedure splits a2.

• The spec is defined and it is true!
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Refinement Procedure

Algorithm Refinement(MΓ,M, sf ):

for s, s′ ∈ sf , do m[s, s′] = true;
Check1(MΓ,M, sf ,m); check for “indistinguishable” incoming transitions
update = true;
while update = true
Check2(MΓ, sf ,m, update);

split = false;
while s, s′ ∈ sf and split = false

if m[s, s′] = true then
remove(sf , SΓ);
add(v ,SΓ); add(w , SΓ); add(s, v); add(s′,w);
split = true;
for t ∈ sf

if m[s, t] = true then add(t,w);
else add(t, v);
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Refined CGS

Definition (Refinement)
Given an abstract CGS MΓ, its refinement

Mr
Γ = 〈Ag ,AP, S r

Γ, s
r
0, {Acti}i∈Ag , d

may
Γ , dmust

Γ , δmay
Γ , δmust

Γ ,V r
Γ 〉

obtained by an application of algorithm Refinement(MΓ,M, sf ) is defined as

1 S r
Γ is the set SΓ of states in MΓ, possibly without the “failure” state sf , but with

the new states added by Refinement().
Then, sr

0 is the state in S r
Γ such that s0 ∈ sr

0, for s0 ∈ M.

2 For x ∈ {may ,must}, the transitions relations δx
Γ and the protocol functions dx

Γ
are defined as for the abstract CGS.

3 For v ∈ {>,⊥}, p ∈ AP, and t ∈ S r
Γ, V r

Γ (t, p) = v iff V (s, p) = v for all s ∈ t;
otherwise, VΓ(s, p) = uu.
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Main Preservation Result

Lemma
Given an iCGS M, state s, coalition Γ, its abstract CGS MΓ with refinement Mr

Γ, and
state sr

Γ 3 s, for every Γ-formula φ in ATL∗,

((Mr
Γ, s

r
Γ) |=3

I φ) = > ⇒ (M, s) |=2
i φ (10)

((Mr
Γ, s

r
Γ) |=3

I φ) = ⊥ ⇒ (M, s) 6|=2
i φ (11)

• By leveraging on this lemma we can refine iteratively to obtain a defined result.

• Since the problem is undecidable in general, this procedure is not guaranteed to
produce a defined answer.

• Again, these results are limited to Γ-formulas.
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Conclusions

• Motivation: undecidable model checking under PR and II.

• Finding (good) approximations/abstractions remains an open problem at present.

• We presented a notion of abstraction between different classes of CGS to
overcome this difficulty.

• We showed that iCGSs admit a 3V PI abstraction which preserves satisfaction
back to the original 2V-model.

• We can given an incomplete but sound procedure for the original MC problem,
which is undecidable in general.

• Key issue: how to find failure states (efficiently)?

Check our talk@KR2020!

Questions?
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