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ABSTRACT 

 

Augmented reality is an important tool for surgical training and skills assessment. The use 

of computer simulation, particularly the reliance on patient specific data for building 

realistic models both in terms of biomechanical fidelity and photorealism has attracted 

extensive interests in recent years. For example, by fusing real bronchoscopy video with 3D 

tomographic data with the same patient, it is possible to generate photorealistic models that 

allow high fidelity, patient specific bronchoscope simulation. In order to match video 

bronchoscope images to the geometry extracted from 3D reconstructions of the bronchi, 

however, robust registration techniques have to be developed. This is a challenging 

problem as it implies 2D/3D registration with certain degrees of deformation and different 

physiological responses.  

In this thesis, we propose a new pq-space based 2D/3D registration method for camera pose 

estimation in endoscope tracking. The proposed technique involves the extraction of 

surface normals for each pixel of the video images by using a linear, local shape-from-

shading algorithm derived from the unique camera/lighting constrains of the endoscopes. 

We demonstrate how to use the derived pq-space distribution to match to that of the 3D 

tomographic model. The registration algorithm is further enhanced by introducing temporal 

constrains based on particle filtering. For motion prediction, a second-order auto-regressive 

model has been used to characterize camera motion in a bounded lumen as encountered in 

bronchoscope examination. The proposed method provides a systematic learning procedure 

with modular training from ground truth data such that information from different subjects 

are integrated for creating a dynamic model, which accommodates the learnt behaviour.  

To cater for airway deformation, an active shape model (ASM) driven 2D/3D registration 

has been proposed. ASM captures the intrinsic variability of the tracheo-bronchial tree 

during breathing and it is specific to the class of motion it represents. The method reduces 

the number of parameters that control the deformation, and thus greatly simplifies the 

optimisation procedure. Subsequently, pq-based registration is performed to recover both 

the camera pose and parameters of the ASM. Radial Basis Functions (RBFs) are employed 

to smoothly warp the 3D mesh based on the ASM point correspondences. The method also 

exploits the recent development of five degrees-of-freedom miniaturised catheter tip 

electromagnetic trackers such that the position and orientation of the bronchoscope can be 

accurately determined under dis-occlusion and bleeding artefacts. The accuracy of the 

proposed method has been assessed by using both a specially constructed airway phantom 

with an electro-magnetic tracker, and in vivo patient data.  
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Chapter 1   
 

 

  

Introduction  

ver the last ten years, there have been major advances in Minimally Invasive Surgery 

(MIS). Bronchoscopy and laparoscopy are two common procedures in MIS, which 

are carried out through natural body openings or small artificial incisions. With these 

techniques, diagnostic accuracy and therapeutic success are improved when compared to 

conventional techniques, while at the same time patient trauma and the duration of 

hospitalisation are greatly reduced. With the maturity of MIS in recent years, there has been 

an increasing demand of patient specific simulation devices for both training and skills 

assessment. This is due to the fact that the complexity of the instrument controls, restricted 

vision and mobility, difficult hand-eye co-ordination, and a lack of tactile perception are 

major obstacles in performing MIS. They require a high degree of manual dexterity and 

hand-eye coordination from the operator. Flexible fibre-optic bronchoscopy, for example, is 

normally performed on patients who are fully awake or with light conscious sedation. The 

procedure can entail considerable discomfort if it is not handled properly. Training 

according to the traditional apprenticeship scheme is useful but can result in prolonged 

surgical procedures with increased patient discomfort and a potential risk of further 

complications. Simulation devices provide an attractive alternative that offers a number of 

advantages in terms of cost, time and efficiency.  

The use of computer simulation has attracted extensive interests in recent years. For most 

of the current simulation systems, however, the degree of visual realism is severely limited. 

In endoscope simulations, most systems have used standard polygon rendering techniques 

with synthetic texture mapping. Texture mapping is usually uniform throughout the whole 

simulation, and even in cases where special visual effects, such as polyps or inflammation, 

are provided, they are limited in both accuracy and adaptability. Natural objects, such as the 

colon or the bronchi show considerable diversity of shape and texture. The problem of 

generating realistic structure and surface properties has hindered the production of generic 
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test-case databases. These drawbacks highlight the importance of augmenting virtual 

endoscopic views with patient specific endoscopic videos. 

In this thesis, we aim to rely on patient specific data for building anatomical models of MIS 

both in terms of biomechanical fidelity and photorealism. In Chapter 2, the problem and 

major challenges of MIS simulation are discussed. Particular attention is directed to 

bronchoscope simulation, which is used as an exemplar to highlight the visual, physical, 

and tactile realities required for MIS simulation. The objective of this chapter is to establish 

the basic requirements for creating photorealistic bronchoscopy simulation and identify the 

drawbacks of existing approaches.  

One of the key computational issues identified in Chapter 2 for bronchoscopy simulation is 

how to fuse real-bronchoscopy video with 3D tomographic data of  the same patient. In 

order to match video bronchoscope images to the geometry extracted from 3D 

reconstructions of the bronchi, robust registration techniques have to be developed. This is 

a challenging problem as it implies 2D/3D registration with the presence of local 

deformation. In Chapter 3, existing methods for 2D/3D registration based on intensity and 

geometric features are reviewed. Both techniques involve optimising a similarity measure 

that evaluates how close a 3D model viewed from a given camera pose is to the current 2D 

video frame. Intensity based techniques entail comparing a predicted image of the object 

with the 2D image without any structural analysis. With this approach, similarity measures 

such as cross-correlation and mutual information are typically used. Mutual information 

exploits the statistical dependency of two datasets and is particularly suitable for multi-

modal images. Existing methods, however, are based on special illumination conditions that 

may not match bronchoscope images because they are illuminated by a light source that is 

close to the tissue surface and are heavily affected by inter-reflections. In this case, the 

intensity decreases with the square of the distance from the light source and it is essential to 

adjust the illumination conditions of the rendered 3D model in order for the intensity-based 

techniques to work. The method is further complicated by specular reflections due to the 

mucous layer of the tissue surface, which is difficult to model for simulated views. As an 

alternative, feature based techniques depend on the alignment of corresponding image 

features, which are relatively robust against changes in lighting conditions. However, using 

features purely based on visual appearance is not reliable due to the richness of surface 

texture observed in bronchoscope views, which are absent in 3D tomographic images.  

The basic hypothesis of the thesis is that a robust 2D/3D registration can be achieved by 

exploiting the unique geometrical constraint between the camera and the light source in 

bronchoscopic procedures. Shape-from-shading techniques utilise this information to 
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recover surface structure that can be described by ( ),p q  vectors. This approach directly 

relates the intensity information available in endoscopic image frames to the 3D CT data. 

Based on this hypothesis, a novel pq-space based 2D/3D registration technique is 

developed. In the specific case of using perspective projection with a point light source near 

the camera, the use of intensity gradient can reduce the conventional shape-from-shading 

equations to a linear form, which suggests a local shape-from-shading algorithm that avoids 

the complication of changing surface albedos. Albedo is a unitless measure indicative of the 

surface’s reflectivity. We have demonstrated in this chapter how to effectively use the 

derived pq-space distribution to match to that of the 3D tomographic model. The validation 

of the accuracy of the method is based on the positional and angular errors by using 6 DoF 

Electro-Magnetic (EM) tracking as the reference. The major advantage of the proposed pq-

space based method is that it depends neither on the illumination of the 3D model, nor on 

feature extraction and matching. Furthermore, the temporal variation of the pq distribution 

permits the identification of localized deformation, which offers a means of excluding these 

areas from the registration process.  

Since 2D bronchoscope video only provides a localised view of the inner surface of the 

lumen, the exact 3D location of the structure it represents is ambiguous. Different segments 

of the airways may well have a similar local structure. Therefore, the use of temporal 

information to derive the trajectory of the bronchoscope camera in 3D space is important  

for resolving such ambiguities. Another advantage of using temporal correspondence is that 

the estimates of the camera’s orientation and position can be used to accelerate the 

registration process. In previous research, Kalman filtering has been used but it is generally 

restricted to situations where the probability distribution of the state variables is unimodal. 

In bronchoscopy, tissue deformation, inter-reflection, and view dependent specularity due 

to mucosa can influence the accuracy of registration algorithms, and the resultant 

probability density function of the state vector can be multi-modal. In Chapter 5, a 

predictive tracking algorithm based on the Condensation algorithm has been developed. 

The method is designed to cater for the general situation when several competing 

observations form a non-Gaussian state-density. It uses a stochastic approach that has very 

few restrictions on the system/measurement models used and the distribution of error 

sources. An autoregressive algorithm is used as a predictive model, which is based on the 

fact that during bronchoscope navigation, the motion is restricted to a bounded area and a 

rapidly moving camera is more likely to slow down or change direction, rather than 

accelerate further. The method provides a systematic learning procedure with modular 

training from the ground truth data such that information from different subjects are 

integrated for creating a dynamical model that can accommodate the learnt behaviour.  
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The results presented in Chapters 4 and 5 show that the proposed pq-space based 2D/3D 

registration combined with temporal tracking are effective, but they can be problematic 

when large airway deformation is encountered. This, however, is common in practical 

examinations due to extreme breathing and deformation (such as coughing) of the patient. 

With the recent advances of miniaturised EM tracking devices, it is now possible to insert 

these devices into the biopsy channel of the bronchoscope to provide in situ measurement 

of the camera pose of the bronchoscope. In Chapter 6, issues related to the practical use of 

the EM tracker are discussed. Since airways are highly deformable and their shape is 

affected by respiratory motion, the use of the EM tracking data must first consider the 

alignment of the fixed EM coordinates with the moving frame-of-reference of the 

bronchoscope camera. In this chapter, both respiration and patient movements are 

considered, and a global and local respiratory motion decoupling technique is proposed.  

After global and local frame-of-reference alignment, the positional and orientation data 

derived from the EM tracker can be used for 2D/3D registration. This significantly 

enhances the robustness of the technique as temporal tracking is now more immune to 

discontinuities caused by abrupt airway motions. This provides the scope in exploiting the 

improved accuracy to examine detailed local deformation of the airways. To address the 

high degrees-of-freedom involved in bronchial deformation during the 2D/3D registration 

process, an active shape model has been developed in Chapter 7 to capture the principal 

modes of airway deformation during respiration such that the registration process can be 

implemented with a much reduced parameter space to allow for simultaneous registration 

and deformation tracking.  

Finally, limitations of the current technique and possible improvements of the proposed 

registration framework are discussed in Chapter 8. To our knowledge, this is the first 

systematic study of 2D/3D registration incorporating airway deformation with 

comprehensive phantom and patient data validation. The work presented in this thesis has 

been included in a number of peer-reviewed academic journals and conference proceedings.   
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Chapter 2   
  

 

 

Simulation in Minimally Invasive 

Surgery 

inimally Invasive Surgery (MIS), also known as minimal access surgery, refers to 

surgical operations that are carried out through natural body openings or small 

surgical incisions. Bronchoscopy and laparoscopy are two examples of MIS. The first 

laparoscopic cholecystectomy was performed in 1987 by Dr Phillipe Mouret and it is 

widely accepted that MIS is the most significant change in surgical practice since the 

introduction of aseptic technique and safe anaesthesia [1, 2]. 

MIS has become possible through a combination of several technological advances in 

optics, illumination systems, insufflation devices, and imaging techniques. In 1954, Harold 

Hopkins, published in Nature an article reporting the transmission of images along tiny 

glass fibers and produced the first fibre-scope image. Five years later, he described a 

method that could efficiently transmit light through a solid quartz rod without introducing 

heat [3]. The Hopkins rod lens system and the subsequent miniaturisation of video cameras 

have allowed surgeons to visualise inside the body with clarity that is comparable to that of 

open surgery. In the early 1970s, flexible endoscope found widespread applications in 

surgery. At the same time, insufflation devices have also been developed to allow 

controlled distension of body cavities with CO2 gas to provide surgeons with improved 

work-space.  

With MIS, improvements in diagnostic accuracy and therapeutic outcome are significant 

when compared to conventional techniques. Firstly, small incisions lead to less post-

operative pain and a reduction in the morbidity due to immobility. Secondly, patient trauma 
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and the duration of hospitalisation are greatly reduced. Thirdly, the small port-holes of MIS 

surgery lead to improved cosmetic results. There are also a number of other advantages of 

MIS, which include improved visualisation of inaccessible areas, minimisation of the risk 

of adhesive intestinal obstruction, and a decreased inflammatory response.  

However, MIS can also cause a number of complications if it is not handled properly. The 

creation of a gas filled cavity, as well as the prolongation of the operation can carry  certain 

risks [4, 5]. It can also cause significant mental and physical stress to the surgeon by 

standing in a fixed position for long hours. Most importantly, advanced surgical skills and 

manual dexterity are required for MIS and they are often associated with a steep ‘learning 

curve’ [6]. Complications usually occur early in the surgeon’s overall experience of MIS, 

or when an experienced surgeon is expanding into new procedures.  

MIS requires a range of skills that are different from those used in open surgery. This is due 

to the fact that the complexity of the instrument control, restricted vision and mobility, 

difficulty in hand-eye co-ordination, and the lack of tactile perception are major obstacles 

in performing MIS. In MIS, the view of the operative field is displayed on a 2D monitor 

that is widely separated from the field of action. The two-dimensional view of a three-

dimensional field has to be interpreted and synchronized with instrument movement. Depth 

information has to be extracted from 2D image cues in order to be able to navigate inside 

the cavity. In laparoscopy, the surgeon also has to adapt to the fulcrum effect, whereby the 

tip of the instrument moves in a direction that is opposite to the surgeon’s hand around the 

port. The fulcrum effect causes a fundamental visual-alignment conflict that requires 

extended practice. Subsequently, a high degree of manual dexterity and visual-motor 

coordination from the operator is essential to the success of the laparoscopic procedure. 

Since the acquisition of these skills is fundamental to the success of performing MIS, 

effective training is important.  

 

2.1 Elements in MIS  

To design an effective surgical training scheme, it is important to acquire knowledge 

concerning the basic skills that must be trained and assessed. Methods of identifying 

component skills in a complex domain include consultation with experts and task analysis. 

While experts can provide information on strategies, key skills, critical steps, and common 

errors, surgical experience mainly consists of procedural knowledge in the form of 
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perceptual-motor or spatial skills and information management capabilities. These aptitudes 

cannot be fully described verbally and can only be initiated by performing the task 

repeatedly. It is important to note that the skills of an experienced surgeon are not always 

easy to identify, since complex actions learnt at a subconscious level are difficult to be 

broken down into component parts. Consequently, it is not trivial to generate task-oriented 

analyses that capture the complexity of relationships among perceptual, motor, and spatial 

skills. This is further complicated by their compounding effect with external factors such as 

the experience of assistants and the quality of equipment used. Currently, there is a general 

lack of a solid theoretical base for the teaching and assessment of surgical competence in 

MIS.  

In general, acquiring the skills for MIS is more difficult than learning open surgical 

procedures [7]. MIS is more dependent on spatial abilities, since there is little perceptual 

information available. Direct vision is replaced by a video image and it requires the ability 

to appreciate depth from a 2D image using subtle visual clues. Because instrument 

positions are continuously changing, so does the relationship between visual and instrument 

coordinates. Dexterity is diminished and kinaesthetic feedback of the interaction forces 

between instruments and tissues is also reduced. Tactile sensation, which is especially 

useful to gauge hidden lesions or vessels embedded in fat, is unavailable. Consequently, 

there are fundamental changes in the required perceptual-motor skills. Endoscopic 

procedures also require the ability to create 3D mental models while viewing a 2D image 

[8]. Spatial orientation, complex visuo-spatial organisation, and other perceptual abilities 

are intimately involved in the effective performance of endoscopic procedures [9].  

Spatial cognition is the study of how humans acquire, store, retrieve and process knowledge 

of the spatial properties of objects, events and places in the world. Spatial properties 

include location, movement, extent, shape and connectivity [10]. Spatial ability plays a 

significant role in surgical skills training [11]. Several studies have shown a strong 

correlation between standardized tests on spatial ability and performance ratings on a 

variety of tasks in open surgery and MIS. Surgeons develop a mental image of the 3D 

anatomy based on a surface view or cross-sections of X-rays, Computed Tomographic 

(CT), Magnetic Resonance (MR) or Ultrasound images. Based on this model and their 

experience and prior knowledge, they plan their strategy accordingly.  

The performance of general motor skill is affected by three major factors - 1) cognitive 

abilities, 2) perceptual-motor skills, and 3) information processing and decision making. 

Cognitive abilities, such as perceptual awareness, may be more relevant during the early 

stages of motor learning, and psychomotor abilities may become important in later stages 
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when cognitive problems have been solved. The relationship between visual perception and 

motor abilities is the focus of skill assessment, since it is related to the speed and accuracy, 

as well as the coordination of the movements for performing MIS.   

Perceptual-motor skills, also known as psychomotor skills, include, but are not limited to, 

the following elements [12]: (1) multi-limb coordination, which is the ability to coordinate 

the movements of a number of limbs simultaneously; (2) control precision, i.e., the ability 

to make highly controlled and precise muscular adjustments; (3) response orientation, i.e., 

the ability to select rapidly where a response should be made, as in a choice-reaction-time 

situation; (4) reaction time, i.e., the ability to respond rapidly to a stimulus when it appears; 

(5) speed of arm movement, i.e., the ability to make a gross rapid arm movement; (6) rate 

control, i.e., the ability to change speed and direction of responses with precise timing in 

following a continuously moving target; (7) manual dexterity, i.e., the ability to make the 

skilful, well-directed arm-hand movements that are involved in manipulating objects under 

speed conditions; (8) finger dexterity, i.e., the ability to perform skilful, controlled 

manipulations of tiny objects involving  primarily the fingers; (9) arm-hand steadiness, i.e., 

the ability to make precise arm-hand positioning movements where strength and speed are 

minimally involved; (10) wrist, finger speed, i.e., the ability to move the wrist and fingers 

rapidly; (11) aiming, i.e., the ability to aim precisely at a small object in space; (12) visual 

acuity, i.e., the ability to see clearly and precisely; (13) visual tracking, i.e., the ability to 

follow a moving object visually; and (14) hand-eye coordination, i.e., the ability to perform 

skills requiring vision and the precise use of the hands.  

Basic psychomotor and information processing aptitudes with relation to learning fibre-

optic endoscopy with the video-endoscope are presented by Dashfield et al. [9]. 

Psychomotor abilities, such as manual dexterity and hand-eye co-ordination, however, 

appeared to be determinants of trainees’ initial proficiency in endoscopy, but did not appear 

to be determinants of trainees’ rates of progress during early fibre-optic training. 

Psychomotor tests, such as adaptive tracking tasks, which measure hand-eye co-ordination 

and dexterity, are particularly relevant. However, the ability to process and use a sequence 

of fast-moving images is not a key aptitude when performing traditional fibre-optic 

endoscopy. It is conceivable that spatial orientation, complex, visuo-spatial organisation 

and other perceptual abilities are intimately involved in the skilful performance of fibre-

optic endoscopy. There are evidences that the mean half-life for fibre-optic nasotracheal 

endoscopy learning is approximately nine endoscopies, and subsequently an average trainee 

needs to perform at least 45 endoscopic sessions before he/she approaches the asymptote or 

‘expert time’, when the learning process may be considered almost complete [9]. 
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In laparoscopy, perceptual and information processing abilities are more accurate predictors 

of operative skills among surgical residents than psychomotor aptitude. Psychomotor 

abilities may account for up to one-third of the variations in early endoscopy performance. 

It is still poorly understood how surgeons learn and adapt to the unusual perceptual motor 

relationships in MIS. The perceptual (both visual and haptic) cues that surgeons use are 

complex and some of these cues, such as subtle lighting changes or differences in tissue 

consistency, are difficult to identify and reproduce.  

The notion of a competent surgeon combines other excellences in anatomy, physiology, 

pathology, communicative skills, and decision making [13]. It has been estimated that 

decision making accounts for 75% of the successful completion of a surgical operation. The 

importance of decision making is further highlighted when the surgeon is faced with 

complications that are rare in routine procedures. In other words, the surgeon needs to carry 

out unsupervised operations that they had never performed before. Such skills cannot be 

learnt by example, since they may only appear once in a lifetime. Other essential elements 

of the effectiveness of a training scheme include a positive mental attitude and the ability to 

focus one’s attention. Team dynamics and the attainment of a cohesive group are also 

important factors to consider.  

 

2.2 Surgical Education and Skills Assessment  

Constructing a structured programme that provides the means to develop the necessary 

skills to independently perform MIS is by no means a trivial task. The learning process is 

inherently a complex procedure that involves a number of stages. The acquisition of 

psychomotor skills generally requires three steps:  

• Cognition - in the sense of perceptual awareness; 

• Integration - the task of comprehension of mechanical principles; 

• Automation - which includes, speed, efficiency and precision.  

There are also various different styles of learning such as concrete experience, abstract 

conceptualisation, active experimentation, and reflective observation. It has been reported 

that deficiencies in the teaching and learning of motor skills are unlikely to be corrected, 

unless there is some mechanism to provide a reliable and systematic feedback.   
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It has been noted that retention of motor skills appears to be most dependent on the degree 

to which the skills are perfected, rather than on variables such as the environment. This 

implies that many of the basic skills required for surgery can be acquired away from the 

operating theatre [7]. The ability to practice independently to the real procedure is 

important when surgical tasks need to be performed repeatedly in order to be perfected. 

Variability in practical experience is important for learning motor skills [12]. This includes 

variations of the characteristics of the context in which the learner performs the skill, as 

well as variations of the skill he or she is practising. There is evidence that successful future 

performance of a skill depends on the amount of variability the learner experiences during 

practice. Existing research shows that a greater error rate during the initial learning stage 

results in a better latter performance. However, similarly to musical education, repetitive 

performance of a specific task is necessary in certain circumstances and it cannot be 

replaced by training in a variety of skills alone.  

The amount of practice influences the amount of learning, although the benefit is not 

always proportional to the time required. The spacing or distribution of practice can affect 

both performance and learning of motor skills. Practising skills during shorter sessions may 

lead to better learning. Furthermore, surgical skills can be practiced as wholes or in parts. 

Practicing the whole procedure can result in a better feeling for the flow and timing of all 

the component movements of the skill. On the other hand, practising the skill by parts 

reduces the complexity of the skill and allows the learner to emphasize on performing each 

part correctly before putting the whole procedure together.  

Mental practice is also effective for learning skills, especially when combined with physical 

practice. It has been shown that electrical activity in the musculature involved in a 

movement as a result of the subject’s imagining of an action suggests that the appropriate 

neuromotor pathways are activated during mental practice. This process increases the 

likelihood that the subject will perform the action appropriately and reduces the demands 

on the motor control system as it prepares to perform the procedure. Mental practice can be 

beneficial especially in assisting the ability to consolidate strategies as well as to correct for 

errors.  

In a surgical environment, it might be relatively easy to learn most steps of a procedure by 

observation and participating. In every procedure, however, there are a few key steps that 

are more likely to be performed incorrectly, resulting in complications. The significance of 

these steps might not be obvious, even to an experienced surgeon, until situations arise such 

as unusual anatomy or uncommon manifestations of disease. The value of a surgical 

simulator is analogous to the value of a flight simulator. In current practice, pilots are 
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certified to fly by dealing with simulated situations, such as wind shear or engine 

emergencies, that happen only once in a lifetime. A surgical simulator should train 

surgeons for the principal pitfalls that underlie the major technical complications. Such 

training and assessment could be used by medical schools, health administrations, or 

professional accrediting organizations to enforce standards for granting surgical privileges 

and for comparing patient outcomes with surgeon skills.  

Clinical performance requires additional cognitive skills, abilities and behaviours that are 

not adequately reflected in objective measures of academic performance. In order to assess 

skills learning, it is important to realise that ‘learning’ is not directly observable. Inferences 

about the quality of learning are based on the performance of the trainee. “Learning is 

defined as a change in the capability of a person to perform a skill that must be inferred 

from relatively permanent improvement in performance as a result of practice or 

experience” [12]. Subsequently, ‘learning’ is measured based on the following criteria:  

(1)  Improvement - performance of the skill shows improvement over a period of time. 

Note that learning is not necessarily limited to improvement in performance. When it 

is not appropriate, it can lead to ‘bad habits’ that result in poor performance of the 

trainee.  

(2)  Consistency - as learning progresses, performance becomes increasingly more 

consistent. Subsequently, the acquired new behaviour is not easily disrupted by minor 

changes in personal or environmental characteristics.  

(3)  Persistence - the improved performance capability is marked by an increasing amount 

of persistence.  

(4)  Adaptability  - the improved performance is adaptable to a variety of performance 

context characteristics.   

 

It is common to use the ‘learning curve’ as an indication of adequate training. This curve 

shows the progressive improvement of a trainee over time or number of cases. However, a 

concrete and complete definition of what consists the ‘quality axis -Y’ of the learning curve 

has not been fully achieved [6]. The ‘X axis’ of the learning curve is also ambiguous. 

Furthermore, the learning curve usually monitors ‘improvement’ and ‘consistency’, 

whereas ‘persistence’ and ‘adaptability’ are generally ignored.   

The performance of a trainee is a result of both his/her innate abilities and the training 

quality. The objective assessment of the innate psychomotor skills of a surgeon is a 

challenging research issue, as well as a controversial topic with both political and social 

implications [14]. Under the existing technology, an objective evaluation of the innate 



 

- 27 - 27 

abilities of a trainee is rather vague and leads to a controversy among the profession. It also 

raises questions such as if psychomotor deficiency is innate then it should be considered as 

a learning disability, and hence protected from the current legislation [14]. A number of 

researchers [15] support that training assessment should apply more in terms of detecting 

areas where surgical skills have not been learned efficiently rather than as a method of 

determining who will be allowed to progress in training. This is an interesting debate but it 

is out of the scope of this work.  

Nevertheless, the need to objectively assess the surgical skills of the trainees before they 

are allowed to perform on patients is evident. However, it is rather unclear how to construct 

a valid strategy for evaluation. A test should be standardised, objective, consistent, sensitive 

and specific. The sensitivity of a test is defined as the proportion of the trainees that are 

correctly identified to meet the requirements. The specificity of a test is defined as the 

proportion of the trainees that are correctly identified that do not meet the specified 

requirements. Under the traditional apprenticeship surgical training, the performance of the 

trainee is evaluated subjectively from an expert according to the outcome of the operation. 

A number of studies use an objective evaluation scheme by introducing an examination 

board [16, 17]. The operations are either videotaped or observed directly. A common 

problem with this approach is that it requires a large examination team, which implies a 

high cost and further overload to the surgeons’ existing workload.   

 

2.2.1 Traditional Surgical Education in MIS 

Traditional surgical education is based on the apprenticeship scheme. Such educational 

programs depend on the time of the physicians and the flow of subjects. In most cases, they 

require five to seven years to complete and involve a relatively high cost, while there is a 

means of technical evaluation of the trainees’ skills until they perform on patients. 

Teaching in the operating theatre also takes time and this is in conflict with the need for 

fiscal restraint and a move towards more civilised hours of work for doctors in training. 

There is now little opportunity for either reflection or practice during a procedure and this 

has created the need for formal training outside the operating theatre.  

Alternatively, animals or cadavers can be used in surgical training. Typically, anesthetised 

dogs, pigs or rats are used for training. Training based on animals is constrained by the 

inability to simulate pathology and their significant variation to human anatomy [18]. 

Further disadvantages include the concern about the transmission of infectious diseases and 
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the inherent costs involved. Nevertheless, ethical and humane reasons either prohibit or 

limit their use for routine training purpose and only used when there are no other 

alternatives [13]. Similarly, the use of cadavers is limited due to the restricted availability.  

Synthetic models made of plastic or latex materials allow the trainee to practice basic skills, 

such as suturing and dissection, in a laboratory environment without the concern of patient 

safety and transmission of infectious diseases.  However, they cannot give the appropriate 

physiological response, and thus do not provide students with constructive criticism. The 

realism is generally poor and therefore these models are only used during preliminary 

stages of the surgical education. The need to maintain a collection of different pathological 

cases and the fact that these models are usually non-reusable, can result in a prohibitive cost 

for most medical schools. 

Typically, a surgeon gets certified by passing the Board Examination, which usually 

consists of a multiple-choice test and an oral examination [19, 20]. Surgery is a high-risk 

and high-cost environment where eminent technical skills, rapid decision making, and crisis 

management are of significant importance. In addition, advances in surgical technology 

have permitted the performance of procedures with increased complexity. Therefore, 

examinations that evaluate theoretical knowledge only are inadequate for assessing 

trainees’ abilities in the operation room. There are studies showing that the surgical 

outcome is significantly worse on the first procedure performed by an inexperienced 

surgeon as the management of many of the complications cannot presently be taught. 

  

2.3 Medical Simulators and Virtual Reality 

Medical simulators provide an attractive means of overcoming the inherent difficulties and 

limitations of traditional surgical training techniques. Apart from their relatively low cost, 

they have the potential to provide a comprehensive educational curriculum with a complete 

database of usual as well as rare and highly hazardous pathological cases. This significantly 

reduces the time required for the completion of the educational program [21]. They offer 

the opportunities for informative feedback, repetition, and correction of errors during a 

well-defined task with an appropriate difficulty level, allowing for practice in a safe 

environment. These training procedures would otherwise require numerous subjects and 

hours of supervision [22]. They also give the user a control over the learning process, such 
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that a trainee with a slow learning curve can safely achieve the same level of expertise 

compared to the more advanced practitioners.  

One important characteristic of computer-based medical simulators is that they have the 

potential to integrate in one system numerous elements that are essential to MIS training 

and assessment [23]. General knowledge as well as psychomotor skills can be taught 

through a well-designed computer simulation. For example, when a trainee performs 

fiberscope bronchoscopy, it is equally important to have a mental model of the anatomy of 

the airways and the relation between the pre-operative CT images, as well as the manual 

dexterity to comfortably navigate inside the tracheo-bronchial tree. Surgical simulators can 

be used to repeatedly practice individual skills for simple tasks, as well as for more 

complicate procedures. The variability of the tasks they offer is potentially superior to the 

traditional training practice. They can also be tuned to provide feedback as well as 

objective assessment and suggest a different training program according to individual 

needs.  

In addition, they have the potential to objectively evaluate the surgical skills of the trainees 

and compare them with the performance of the experienced surgeons. Indeed, there are a 

number of studies that use virtual reality based experiments to assess laparoscopic 

psychomotor skills [24-26]. Although, the current methodology is still in its infancy, it is 

widely accepted that this approach removes bias and subjectivity. Gallagher et al. assessed 

the psychomotor skills of a group of trainees and experienced laparoscopic surgeons using 

a simulator (MIST), which is common in laparoscopic training and assessment [25]. 

Typically, the position of the hands [13] or the tips of the instruments [27] are tracked in 

order to construct objective measures of the performance. Metrics based on common sense 

and practical experience, such as the number of movements made, distance travelled, speed 

of movement, and overall time are used to classify the participants into different categories 

according to their expertise.  

Medical simulators may also be a valuable tool in understanding the development of 

perceptual-motor skills and their relationship to cognitive abilities in surgery. Because of 

the complexity of the tasks, surgeons appear to use different strategies and rely on various 

degrees of spatial and psychomotor processes. Studying the surgical performance in virtual 

environments can potentially elucidate these strategies and test the underlying hypotheses 

[11, 28]. Cognitive models of different strategies, both declarative and procedural, can be 

built based on trainees’ interaction with these environments. Subsequently, the structure of 

complex procedures can be broken down to explicit components to reveal the most efficient 

way of improving performance.  
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2.3.1 Current State-of-the-Art 

Surgery involves many different processes and dissimilar tasks. This diversity, along with 

the rapid changes in technology and the continuing emergence of new procedures, has led 

to apparent differences in the type and capabilities of surgical simulators. Currently, 

surgical simulators can be classified according to their simulation complexity and 

application target. For example, the work by Liu et al. [21], as well as Satava et al. [29] 

classifies simulators as needle-based, minimally invasive, and open surgery. However, the 

application of Virtual Reality (VR) in medicine is not restricted only to simulation but it is 

also extended to general medical education, image-guidance, and pre-operative planning. 

Since these areas have many common requirements, the technological advance in either of 

them is usually broadly applicable.     

In general, needle-based simulators are focused on teaching relatively straightforward tasks, 

which involve the insertion of small bore instruments, such as catheters and guide-wires. 

They are characterised by a relatively simplistic computational model that allows for visual 

and haptic feedback. Examples in this category include intravenous catheterization, 

pericardiocentesis and diagnostic peritoneal lavage. However, most of the available surgical 

simulators target MIS procedures. This is due to the nature of the application, which 

requires advanced psychomotor skills and complex instrument control. Open surgery is 

more difficult to simulate because it requires larger incisions in the body and the surgeon 

has direct visual and tactile contact with the region of interest. In open surgery the visual 

field view, the range of haptic feedback, and the freedom of motion are considerably larger 

compared to MIS procedures. Extensive advances in haptics, real-time deformation, 

biomechanical modelling, and visual rendering are required before open surgery can be 

simulated realistically. 

 

2.3.1.1 VR in Surgical Simulation 

VR is an artificial environment created with computer technology that allows the user to 

interact within. These systems have been extensively used in computer games and 3D 

visualisation to imitate reality. Human-machine interaction includes visual displays, 

tracking, tactile feedback, force feedback, and auditory displays. Usually a sense of 3D is 

conveyed by mimicking binocular vision to give a stereoscopic effect. Tracking technology 
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is usually used to track the position of the head and update the images accordingly. 

However, tracking can also be used to report the position of the hands, tools, and the 

cameras. Tactile and force feedback has been incorporated in many VR systems to provide 

a feel of the surface texture and material characteristics. Auditory feedback is also used to 

convey additional information, e.g., patient’s discomfort due to inappropriate manipulation 

of the inserted instruments. 

Flight simulators are among the most successful VR systems used today. Their success and 

widespread use indicate that the current technology can also be used in medicine. An 

overview of surgical simulators can be found in the work of Satava et al. [29]. Early 

surgical simulators provided interactivity in a simplistic environment based on drawings of 

the underlying anatomy. One example is the cholecystectomy simulator called KISMET 

which was originally designed to be used with a telesurgery system. 

In the current simulation systems, medical imaging data is used to reconstruct the 3D 

anatomy. They provide an accurate anatomical representation that incorporates tissue 

properties. Several simulators have been developed for a range of surgical procedures, such 

as hysteroscopy, laparoscopic cholecystectomy, bronchoscopy, gastrointestinal endoscopy, 

sinus surgery, limb trauma, and intravenous insertion. For example, in colonoscopy, one of 

the most well known simulation systems is the Simbionix simulator [30], which uses real 

endoscopic procedures to extract lumen texture, which is later applied uniformly to the 3D 

geometric model of the colon. Global and local deformation is also present and the entire 

configuration of the colon changes according to tissue instrument interaction. Similar 

systems have been also developed for bronchoscopy procedures [31], but their visual 

fidelity and physiological realism have so far been limited. Both texture and physiologic 

response are simplistic and repetitive, and thus cannot reproduce the complexity and the 

level of difficulty that is present in a real bronchoscopic procedure.  

 

2.3.1.2 Augmented Reality in Surgical Simulation 

In order to enhance the available in vivo information with pre-opeative data and prior 

knowledge during real surgical procedures, Augmented Reality (AR) has increasingly been 

used in MIS. Usually, this requires merging pre-operative data with in situ - in vivo 

information. AR is important because it enhances the user’s perception and interaction with 

the real world. For example, AR systems have been developed to  superimpose ultrasound 

images of a foetus in the mother’s womb [32]. AR systems have a number of possible 

applications in medical visualisation, planning, as well as training.  
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Accurate registration between the real and virtual world is a crucial issue for AR. Human 

vision is very sensitive to even small mis-registration errors or synchronisation lags. For 

this reason, tracking systems are of great importance in AR systems. In indoor applications, 

hybrid tracking is usually employed, which involves both magnetic and video sensors. 

Systems delays, also known as time latency, are often the largest source of registration 

errors. Prediction models are usually employed to reduce these effects by combining 

multiple tracking models. AR systems generally require extensive calibration to produce 

accurate registration. This includes measurement of camera parameters, sensor offsets, and 

field distortions.  

 

2.4 Patient Specific Simulation 

Although the majority of the surgeons believe that there is a need for training outside the 

operating room, the medical profession has been slow to incorporate simulation techniques 

into surgical training programs on a widespread basis. Their expectations are not fulfilled 

by the current state-of-the-art in simulation technology. Concerns include visual and haptic 

fidelity as well as inadequate validation of effectiveness and potential requirements for 

frequent system upgrades [33, 34]. Thus far, validation is limited to qualitative results due 

to a lack of the ground truth data. In current virtual simulators, there is also a lack of 

reliability, especially in terms of skill assessment. For example, various simulation systems 

indicate that the difference between experienced surgeons and novices is diminished after 

the first three-to-five trials [25], but in practice the first twenty trials have a significant rate 

of complications and errors. This indicates that most of the techniques developed so far are 

not adequate to classify surgeons and identify all the factors that contribute to a successful 

performance. This is due to the lack of visual and physiological realism, which is important 

for decision making in real operating environments. 

To reach the goal of a truly realistic virtual simulator, it is necessary to create an 

environment that is not possible to distinguish between real and virtual [19]. In AR, 

different degrees of realism are classified and they include: (1) visual reality, photorealism; 

(2) physical reality, which presents tissue deformation and realist reaction to the underline 

forces; (3) physiological reality, such as bleeding upon cutting, bruising and peristalsis; (4) 

tactile reality, the trainee senses the forces during operation [13].  This implies a 

transformation from generic to patient-specific models that have a realistic sight, touch or 

feel even when they are dissected. Moreover, they should provide full procedural training 



 

- 33 - 33 

and not just accomplish the requirements of developing simple motor skills [34, 35]. Patient 

specific models built from medical imaging data offer significant scopes for the practice of 

complex procedures prior to working on the patient directly.  

 

2.4.1 Challenges in Surgical Simulation 

Robert Mann proposed the first medical VR system as early as in 1965. His aspiration was 

to develop a rehabilitation application to allow surgeons to try out multiple surgical 

approaches for a given orthopedic problem [19]. This approach requires not only the model 

to be patient-specific but also to provide an accurate representation of the tissue-instrument 

interaction over time. Whilst early simulators have often been criticized for being too 

simplistic, recently technical advances have allowed the implementation of such a vision 

[35, 36]. This section presents the technological progress in the four basic components that 

constitute a realistic surgical simulation environment including visual, biomechanical, 

physiological, and haptic realism. It also investigates what has yet to be achieved in 

surgical simulation and the role of patient specific simulation models.  

 

2.4.1.1 Photorealism – Visual Fidelity of Complex Structures 

Visual perception is the primary information available to surgeons especially in MIS 

procedures. Surgeons depend on scene appearance to determine tissue properties, 

instrument pathways, and necessary interactions. Usually, disease identification is based on 

distinctive texture appearance that guides the biopsy procedure. It is not surprising that 

visual realism, also referred to as photorealism, plays a major role in MIS training [37 

2005].  

Visual realism is usually described as the ability to represent a virtual surgical view in a 

way that cannot be distinguished from a real surgical view. However, for the purpose of 

MIS training procedures, it can also be represented as an information channel. A virtual 

environment that provides less information than in real situations would not allow the 

trainee to develop the appropriate skills to process the missing information. On the other 

hand, a virtual environment that provides too much information than is normally available 

would oversimplify the procedure. Subsequently, the trainee would rely on this extra 

information and not develop alternative methodologies and tactics to acquire the missing 

perceptual data in a real case scenario. For example, impairment of visual realism, due to 
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homogenous texture mapping and a lack of an appropriate illumination model can lead to a 

misunderstanding of the tissue anatomy. In laparoscopy, for example, misunderstanding of 

the anatomy of ducts between the liver and gall bladder can lead the surgeon to cut the 

wrong duct during gall bladder removal. 

Morphological geometry, surface properties, and lighting conditions need to be modelled 

for all scene objects in order to attain a realistic appearance. This involves a number of 

different components such as an organ’s boundary representation and modelling, 

illumination, surface properties, shadows, anti-aliasing and colour/texture perception. In 

early simulation systems, organ surface appearance was mainly based on synthetic texture. 

For example, in the work presented by Cakmak et al. [38], synthetic texture and procedural 

turbulence functions are combined with grammar-based tree growing algorithms to give the 

impression of organ surfaces with fine arterial and venous trees. However, synthetic texture 

provides homogeneous surface with little or no more information than direct rendering of 

the 3D tomographic data. Recently,  image-based rendering has been applied to surgical 

environments to increase the visual realism by accounting for global illumination and inter-

object reflections [37 2005]. These techniques have achieved improved results, but issues 

related to visibility, reconstruction, as well as the huge data storage requirements have yet 

to be resolved. Since these methods do not explicitly represent geometry, the extension of 

these techniques for simulating physiological tissue response after cutting and dissecting is 

not trivial.   

 

2.4.1.2 Tissue Deformation and Biomechanical Modelling 

Tissue and human organs are elastic and they deform considerably during surgical 

operations. In any attempt of creating a meaningful learning experience, simulators must 

model this appearance and the behaviour of soft tissue in response to instrument interaction. 

Accurate modelling of biomechanical tissue properties is important for effective surgical 

training, planning and outcome evaluation [39]. Thus far, a number of physical and non-

physical based deformable models have been proposed.  

However, the quest for both photorealism and tissue deformation is not a trivial problem. 

Real-time simulation of soft tissue deformation is still the major obstacle in surgical 

simulation. Most applications sacrifice photorealism for achieving the interactive rendering 

rates required. Soft tissue is a non-linear viscoelastic anisotropic active material and in 

tissue modelling there are two fundamental problems that need to be addressed, i.e., how to 

measure tissue properties and how to create a realistic mathematical model with fast 
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convergence. The concept of strain, a measure of length change or displacement gradient, 

and stress, the force per unit area on an infinitesimally small plane surface within the 

material, are of essential importance in estimating biomechanical properties of the tissue 

and subsequent physiological modelling.  

Physical-based models can incorporate material properties and they are indeed the most 

common methods used in surgical simulation. Mass-spring and Finite Element Models 

(FEM) fall into this category. Mass-spring model consists of a network of point masses 

connected by spring-dampers. They can be relatively large and complex without sacrificing 

real-time response due to user interaction. However, they generally have limited precision 

and realism, and can lead to numerical instability. In contrast, FEM can model tissue 

properties more accurately and it differs from the mass-spring models in that it permits a 

continuous formulation relating deformation to energy, and thus computes deformation 

over the entire volume instead of discrete points. The main disadvantage of the method is 

computational complexity.  

In practice, measuring tissue properties is not trivial as different values can be obtained 

from one individual to another. Different forces, with a range similar to that of the real 

procedure, are exerted on selected tissue regions and the resulting displacements are 

recorded. Material parameters are then computed from the plotted force/displacement or 

stress/strain, relationships. In general, in vitro tissue characterisation is easier to achieve but 

the measured tissue properties can be significantly different to that of in vivo.  

Alternatively, kinematic or non-physical models can be used to model tissue deformation. 

These approaches do not consider the actual physical characteristics but are based on 

abstract geometric manipulation under mathematical constraints, such as surface continuity 

and volume preservation. Examples of such techniques include parametric surface and 

Free-Form Deformations (FFD). Parametric models are usually based on splines and 

patches, such as Thin-Plate Splines, B-splines, and Non-Uniform Rational B-Splines. They 

are simple to manipulate and easy for collision detection. However, deforming the 

underling mesh/volume based on these techniques usually involves a large amount of 

parameters and it is counter-intuitive for localised deformations. Furthermore, the inability 

to incorporate physical laws can result in a low level of deformation realism. Among these 

techniques, FFD provides a higher level of control by deforming the space where the 

objects positioned and it is a versatile tool for geometrical modelling of objects of different 

topologies.  
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Recently, Active Shape Models (ASMs) have been used to describe tissue deformation. 

They are parametric deformable models that deform in ways that are consistent with the 

class of motion they represent [40]. The intuitive benefit of the use of ASMs is that surface 

points of the underlying tissue are not moving independently, so the intrinsic dimension is 

significantly decreased than the number of control points. Although there is no need to 

measure tissue properties, they can accurately model both local and global deformation 

based on a training data set. ASMs are simple to build and manipulate, thus facilitating the 

development of patient-specific deformation models. 

 

2.4.1.3 Physiological Response 

Realistic physiological response due to pathology and surgical interaction plays a major 

role in surgical simulation. Usually these responses guide a surgeon’s decisions and 

instrument control. Presentation of accurate physiological cues and information on a 

consistent manner is crucial for MIS simulation. Most current simulation systems are of 

limited use for advanced skills training as they cannot reproduce accurately physiological 

responses and surgical interaction.  

The challenges need to be addressed in order to produce behavioural realism are related to 

the physics of surgical manoeuvres such as cutting, tearing of soft tissue, and appearance of 

organic fluids and bleeding. Cutting and tearing of soft tissue is related to tissue 

biomechanical properties, whereas modelling bleeding involves computational fluid 

dynamics combined with stochastic processes. Bleeding is among the most difficult 

phenomena to simulate realistically. However, it is of great importance in MIS simulation 

since it affects the surgical environment by obscuring the image view and imposes risks to 

the patient. In simulation, bleeding has to be real-time and responsive to the action of the 

surgeon [41].  Instead of direct modelling, image-based approaches have already been used 

in simulation of bleeding for transurethral resection of the prostate [42]. These techniques 

use video sequences of blood flow as the source datasets that are positioned, oriented, and 

morphed to an existing virtual model of anatomy. Although these approaches are 

promising, further investigation is required in order for it to be applied to more complex 

procedures.  
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2.4.1.4 Haptics 

Some of the essential cues used by surgeons for performing a surgical procedure are based 

on haptic feedback. In MIS, the sense of touch compared to open surgery is reduced. 

Surgeons must rely more on the feeling of the net forces resulting from tool-tissue 

interactions and they need more training to successfully operate on patients. In a clinical 

environment, force and visual feedback cannot be separated [43]. From open surgery to 

needle-based procedures, force and tactile feedback is important to permit the surgeon to 

apply appropriate tension to avoid damaging surrounding structures [21, 44]. Haptic 

feedback is important for developing certain motor skills. The integration of computer 

haptics in medical simulators, however, is challenging. It not only involves the task of 

developing software algorithms that synthesize computer generated forces to be displayed 

to the user for manipulating virtual objects through touch [45], but also involves the generic 

design of haptic hardware, tissue modelling,  tool-tissue interactions, real-time graphical 

and haptic rendering, and measurement of tissue material properties [44].  

Typically, the user interacts with the virtual environment through a haptic interface device. 

Information conveyed by the haptic interface includes position, velocity, acceleration and 

force. The force and motion involved are small but require the resolution to be fine and the 

device to be mechanically transparent. Therefore, realistic haptic reproduction can only be 

attained at high feedback frequencies around 1000Hz. Furthermore, in modelling 

deformable objects, the device needs to estimate not only the direction and the amount of 

deformation at each node, but also the magnitude and direction of interaction forces that 

will be reflected to the user. Geometric contacts between haptic forces and objects in the 

virtual environment have to be detected. Contact forces determine how the object is 

perceived by the user in terms of stiffness and surface properties. Empirical investigations 

of in vivo tissue mechanics are critical to measure material parameters needed for realistic 

simulation. However, most current organ-force models are linear, homogeneous, and 

isotropic. They are inadequate to represent the inherent nonlinearities, anisotropy and rate 

dependence of the soft tissues [35, 44]. Haptics remain an active research area and yet 

many technological advances have to be achieved in order to provide users with a realistic 

sense of touch in complex scenes.  
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2.5 Simulation in Bronchoscopy 

The tracheo-bronchial tree as part of the respiratory system is one of the most vital organs 

of the human body. The pulmonary-respiratory system is responsible for gas exchange 

between the external environment and the circulating blood supply in the body. This utilises 

a circulatory system to transport gases and energy to, and wastes from the tissues. Diseases 

such as cancer, emphysema, fibrosis, bronchitis, pneumonia, and asthma can disrupt normal 

circulation. For example, they alter the elastic properties of the lung tissue; block airways 

or blood vessels, changing the diffusing capacity of gas exchange surfaces; modify muscle 

function of the rib cage or diaphragm, altering the central nervous system processes that 

govern respiration. Bronchoscopy is the gold standard imaging modality in detecting and 

evaluating cancer in the tracheo-bronchial tree. Bronchoscopic images are used to identify 

stenoses and tumours, direct intra-airway interventions, and guide biopsy needles to 

suspected tumour sites. However, it is not a well tolerated procedure and training on the 

patient can result in prolonged operation and considerable discomfort. Virtual and 

augmented bronchoscopy has a number of advantages to offer in terms of operator skills 

training and assessment. In this section, the basic airway physiology and function are 

reviewed in order to provide an overview of  the basic anatomical and mechanical 

properties of the airways and the potential complications related to operation of the 

fibreoptic bronchoscope.  

 

2.5.1 Airways Anatomy and Physiology 

The respiratory system is made up of the organs involved in the interchanges of gases and 

consists of the nose, pharynx, larynx, trachea, bronchi and lungs. Anatomically, it is 

divided into the upper and lower respiratory system. The upper respiratory system includes 

nose, nasal cavity, ethmoidal air cells, frontal sinuses, maxillary sinus, larynx and trachea. 

The lower respiratory tract includes the lungs, bronchi, and alveoli. The lungs are a pair of 

cone-shaped organs made up of spongy, pinkish-grey tissue. They take up most of the space 

in the chest, or the thorax, which is the part of the body between the base of the neck and 

diaphragm. The lungs are enveloped in a membrane called the pleura. The right lung has 

three sections, called lobes. The left lung has two lobes. When you breathe, the air enters 

the body through the nose or the mouth. It then travels down the throat through the larynx 

and trachea and enters into the lungs through tubes called main-stem bronchi. One main-

stem bronchus leads to the right lung and one to the left lung. In the lungs, the main-stem 
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bronchi is divided into smaller bronchi and then into even smaller tubes called bronchioles. 

Bronchioles end in tiny air sacs called alveoli. The lungs take in oxygen, which cells need 

to live and carry out their normal functions and discard carbon dioxide, a waste product of 

the body's cells. 

The human tracheo-bronchial tree consists of a set of connected, branching tubular 

structures that tend to decrease in diameter as the branching progresses as it is depicted in 

Figure 2.1. It is connected to the outside through the trachea, which splits into the main 

bronchi, right and left lung at the main bifurcation. The bronchial wall surrounds the air-

filled lumen of the bronchi and its thickness is relative to the diameter of the airways. In 

humans, there are roughly 23 generations of bifurcations from the trachea down to the 

alveoli. An accurate and complete model of the tracheo-bronchial tree is difficult, since the 

structure of the airways differs between individuals. However, the most useful approach 

remains that of Weibel et al. [46], which numbers successive generations of air passages 

from the trachea (generation 0) down to the alveolar sacs (generation 23). Recent studies 

have shown that a regular dichotomy occurs for the first six generations, which means that 

each bronchus divides into two approximately equal-sized daughter bronchi [47]. The adult 

trachea has a mean diameter of 1.8cm and length of 11cm. The trachea and main bronchi 

are supported by U-shaped cartilages which are joined by smooth muscle bands. From the 

second to eleventh generation, the vessel wall appears irregularly shaped and helical. The 

small bronchi are extended between the fifth and eleventh generation and their diameter 

falls from 3.5 to 1mm.   

The intra-thoracic airways of the lung are highly deformable. Unlike most other organs, 

they undergo large amplitude deformation even during normal breathing. On inspiration, 

active muscle-driven expansion of the rib-cage and diaphragm leads to expansion of the 

airways, which draws air into the lungs. On expiration, muscles relax and the lung typically 

contracts passively via its natural recoil, thus expelling the air. Air can also be actively 

pushed out of the lungs, for example during the respiratory manoeuvre called forced 

expiration [48]. During a cough, large airways such as the trachea and first several 

generations of airways tend to collapse dynamically, narrowing to a small fraction of their 

initial cross-sectional area.  

Thus far, the basic mechanics of human airways are mainly studied to determine how their 

anatomy affects the function in normal and abnormal subjects. The structural properties and 

particularly bifurcation geometry of the airways are important for determining the stiffness 

of the lungs. Physiologists commonly use a simple physical analogue, called thin-walled 

elastic tube and a device, known as the Starling resistor, as a simplistic bench-top model of 
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a deformable airway to simulate flow dynamics [48, 49]. In the work of Kaye et al. [50] a 

simulation system that combines respiratory anatomy and respiratory mechanics has been 

developed based on a physical model. They consider lungs as a single-compartment, 

viscoelastic structure and the classical mechanical model is applied based on observable 

variables such as pleural pressure change, lung volume change, and airway pressure.  

The lung is a highly elastic organ composed of fibres connecting the large airways, intricate 

vasculature and pulmonary interstice. Pathological processes that affect the lung typically 

alter the normal mechanical properties of lung tissue, and they are apparent as observable 

changes in lung morphology and function. The ability to quantify differences in pulmonary 

deformation is useful in the early detection of disease, evaluation of treatment efficacy, and 

improved assessment of disease staging and prognosis. Information about airways and how 

they function during inspiration and expiration can determine the causes of and suggest 

possible treatments for various pulmonary diseases [51]. The constriction of the intra-

thoracic tree depends on a number of mechanisms related to the surrounding structures, as 

well as the biomechanical properties and anatomy of the elastic tissue of the airways. 

Radiological imaging has the potential to provide accurate and detailed description of the 

intra-thoracic tree during function. However, imaging of the human airways during 

respiration is not common because of technological limitations and patient safety 

regulations. 

    

Figure 2.1: Main anatomy of the tracheobronchial tree. 
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2.5.2 Flexible Fibreoptic Bronchoscopy 

Flexible Fibreoptic Bronchoscopy (FFB) is a commonly performed endoscopic procedure 

used for diagnosis and treatment of airway and pulmonary disorders. It allows the physician 

to directly visualize the interior passages of the lower respiratory tract through a 

bronchoscope. The basic reason for performing FFB is to detect anomalies in patient’s 

bronchus and to obtain a biopsy of the effected areas. Procedures are normally performed in 

fully awake patients or using light sedation. The bronchoscope is then inserted into the 

airways through either the nose or the mouth. Subsequently it passes through the vocal 

chords and reaches the main bifurcation, moving to the trachea. There are two types of 

bronchoscopes, flexible and rigid. The type of bronchoscope used determines the extent to 

which the bronchioles, smaller branches of the bronchi, can be visualized.  

A rigid bronchoscope is a straight, metal, lighted tube capable of visualizing only the larger 

airways, thus limiting the diagnostic and therapeutic options available. However, certain 

conditions may warrant its use, such as aspiration of a large amount of secretions or blood, 

controlling significant bleeding, or removal of foreign objects and/or lesions (diseased 

tissue) within the bronchi. Generally, the rigid bronchoscope has been replaced by the 

flexible bronchoscope because it has less risk of traumatizing the tissue, thus improving 

patient tolerance and providing better access to smaller areas of the lung tissue. The design 

of the flexible bronchoscope is advantageous because it can be manoeuvred into the smaller 

bronchioles, yielding more information about their condition. In addition, the flexible 

fibreoptic bronchoscope has interior channels which increase the capabilities of treatment 

options, such as delivering oxygen, suctioning secretions, obtaining tissue samples during 

biopsy, instilling medications, and laser therapy. Recently, electronic video-scopes have 

been manufactured that use a video chip and strobe light mounted onto the tube for image  

capture.  

Bronchoscopy may be performed for diagnostic or therapeutic reasons. Diagnostic 

indications include the detection of: (1) tumors or bronchial cancer; (2) airway obstructions 

or narrowed areas; (3) inflammation and infections such as tuberculosis, pneumonia, or 

fungal or parasitic lung infections; (4) interstitial pulmonary disease; (5) persistent cough or 

hemoptysis; (6) abnormal chest x-rays; (7) biopsy of tissue or collection of other 

specimens; (8) vocal cord paralysis; and (9) bronchoalveolar lavage, or BAL, which implies 

the instillation of fluid through the bronchoscope to aid the diagnosis of certain lung 

disorders. Therapeutic uses of bronchoscopy, on the other hand, include: (1) removal of 
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secretions, blood, mucus plugs, or polyps to clear airways; (2) control bleeding in the 

bronchi; (3) removal of foreign objects or other obstructions; (4) laser therapy or radiation 

treatment for bronchial tumours; (5) stent placement; and  (6) draining of an abscess.  

During FFB, patients are awake although a sedative is generally given. Rigid bronchoscopy 

usually is performed in the operating room under general anaesthesia. Generally, a 

fibreoptic bronchoscopy procedure follows a standard process, which involves: (1) an 

intravenous (IV) line may be inserted in the arm or hand of the patient; (2) heart rate, blood 

pressure, respiratory rate, and oxygen level may be monitored during the procedure; (3) 

patient is positioned in a sitting position or lying on your back; (4) oxygen is received 

through a nasal cannula (tube) or face mask during the procedure; (5) slight sedative is 

given to make patient sleepy; (6) numbing medication is sprayed into the back of the throat 

of the patient to prevent gagging as the bronchoscope is passed down your trachea into the 

bronchi; (7) patients are not able to swallow the saliva that may collect in your mouth 

during the procedure due to the bronchoscope in your throat, the saliva is suctioned from 

their mouth regularly; (8) the physician advances the bronchoscope down the throat and 

into the airways, and as the bronchoscope is advanced, the tissues and structures are 

examined; (9) Patients experience some discomfort when the bronchoscope is advanced, 

but their airway is not blocked; and (10) the physician may obtain tissue samples for biopsy 

or other specimens for testing during the procedure.  

As with any invasive procedure, complications may occur. Common complications related 

to bronchoscopy include bleeding, infection, bronchial perforation, bronchospasm or 

laryngospasm and pneumothorax, which is the state where air becomes trapped in the 

pleural space causing the lung to collapse. Major bleeding is the most common cause of 

death resulting from bronchoscopy and it accounts for the 3% of the total number of 

procedures [52]. Other procedures fail because the physician is unable to take a biopsy of 

the appropriate area. Needle and forceps biopsies are the most difficult tasks of the 

procedure. Needle biopsies are performed by inserting a needle into the bronchial wall to 

obtain tissue samples below the surface of the bronchus, while in forceps biopsies tissue 

sample are obtained from the surface using a small set of clamps. Biopsy presents a greater 

cognitive strain on the physician mainly because of the need to combine the mental 

mapping of the bronchial tree with the mental location of the particular site that changes 

from patient to patient. This is called biopsy location and usually it involves third 

generation navigation, locating the anomaly and determining the biopsy location.  On the 

other hand, pre-biopsy navigation includes navigation through the first and second 

generations of the tracheo-bronchial tree and is typically the same for each patient. 
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Physicians operate the bronchoscope through the airways by controlling a lever that 

actuates the last few centimetres of the scope to bend the tip up and down. They also need 

to rotate the scope in order to gain a better control of the navigation and viewing angle. 

Mental image rotation imposes demands similar to the challenges of map orientation. It is a 

potential cause of physicians ‘getting lost’ in the patient’s bronchus, requiring more time to 

locate the area of interest within it.   

Traditional educational schemes entail two to three years fellowship training after internal 

medicine residency. During fellowship training, novice bronchoscopists learn to manipulate 

the flexible fibreoptic or video bronchoscope by initially watching their attending faculty 

perform a procedure, and then by performing examinations themselves under supervision. 

Manual and technical skills, such as dexterity, speed and ability to thoroughly inspect 

tracheo-bronchial anatomy, are gradually acquired along with decision-making and 

interpretation skills through a combination of one-on-one interactions, patient-care 

experiences, and didactic lectures. Despite the widespread use of diagnostic flexible 

bronchoscopy, there are no firm guidelines that assure a uniform acquisition of basic skills 

and competency, nor are there guidelines to ensure uniform training and competency in 

advanced diagnostic flexible bronchoscopic techniques, such as transbronchial needle 

aspiration biopsy or fluorescence bronchoscopy [22]. More importantly, training using 

patients can result in prolonged bronchoscopy procedures, increased patient soreness and 

the risk for further complications and errors. More than 50% of the pulmonologies believe 

that their instructions in a newer diagnostic bronchoscopic procedure, such as 

transbronchial needle aspiration, had been insufficient during their training. Alternatively, 

animals and inanimate modes are used but they fail to simulate dynamic events such as 

respiratory movements, vocal cord closure, obstructing airway secretions, cough, or 

procedure-related hemodynamic compromise. 

The incorporation of simulation technology for training bronchoscopists has transformed 

pulmonary procedural guidance and enhanced uniform quality of bronchoscopy training 

due to the following reasons [22]: 

• It enables novices to attain a level of basic manual and technical skills when 

performing a thorough diagnostic bronchoscopic inspection of the tracheo-bronchial 

tree. 

• It provides a short, focused course of instruction and unlimited, unsupervised practice. 
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• It has the potential of objective skill evaluation. Bronchoscopy simulations could 

distinguish levels of clinical experience between beginners and experienced 

bronchoscopists by assessing the duration of bronchoscopy, hands and tool motion and 

collisions with airway walls. 

• Simulation devices provide equal opportunities of training in rare pathological cases, 

and decouple the dependency between patient flow and surgical training. 

 

2.5.3 Augmented Bronchoscopy  

The development of Virtual Bronchoscopy (VB) started over 15 years ago when the 

resolution of CT and associated radiation burden was amenable for routine examinations 

[53]. VB does not suffer from certain limitations of real bronchoscopic procedures such as 

the accessibility of distal airways. It has the unique ability of navigating through narrow 

airways and circumventing obstructing lesions. Applications of VB include screening 

airways for endo-luminal malignancy, evaluating airway stenoses, and pre/intra-operative 

surgical guidance. A detailed survey on the current systems can be found in the work by 

Bartz et al. [54], whereas Buthiau et al. [53] offers an extensive handbook of possible 

applications of VB as well as its advantages and limitations. Such an example is 

demonstrated in Figure 2.2 where a dental prosthesis is misidentified as a lesion due to the 

lack of texture information.  

Traditional bronchoscopy displays only the inner surface of the airways and yields no 

information about the anatomy beyond the wall, which can be visualized in VB. The 

visualisation of the 3D relationship of the airways and the surrounding vessels has the 

potential benefit of facilitating needle aspiration biopsy procedures and general surgical 

guidance. The non-invasive characterisation of lesions as malignant or benign with Positron 

Emission Tomography has also brought new potential use of VB in non-invasive diagnosis 

of pulmonary abnormalities. Currently, the inability to provide detailed surface information 

is a major limitation of VB to be used for advanced skills training. To overcome this 

problem, VB should provide information that combines the information from both 3D CT 

scans and that of real bronchoscopy [55].  
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a)

b)

 

Figure 2.2: Augmented Reality combines Virtual Reality and Real Bronchoscope Video to enhance 

the available information. 

 

2.5.4 Technical Requirements of Augmented Bronchoscopy 

The combination of 3D information derived from imaging with the bronchoscopic videos is 

the latest development in augmented MIS simulation environments. The basic steps 

involved in such a system are outlined in Figure 2.3. They include:  

• High resolution imaging data of the airways  

• Segmentation of the tracheo-bronchial tree 

• Surface rendering of 3D geometry  

• 2D/3D registration of the airways model to the in vivo bronchoscopic video  
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• Photorealistic rendering that involves the generation of novel views not previously 

acquired 

• Navigation in real-time inside the tracheo-bronchial tree with haptic feedback. 
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Figure 2.3: Technical requirements of augmented bronchoscopy 

 

2.5.4.1 High Resolution Image Acquisition of the Airways 

Chest radiography is one of the oldest pulmonary imaging modalities. Radiography forms a 

2D image that is the result of penetrating X-rays through the lung tissue. The outcome of 

the image is based on the fact that different tissues absorb different levels of radiation. For 

example, dense structures such as bones absorb more x-ray photons than air-filled lung 

tissue. Analysis of radiographic images identifies tissue discrepancies and abnormalities. 

Since the radiographic images are 2D projections of a 3D structure, there are problems with 

geometric ambiguities due to overlap. CT imaging eliminates these issues by constructing a 

high-resolution image representing the 3D volume of the body. It is formed as a number of 

cross-sectional images through the body by gathering many projections at different angles.  

High Resolution CT currently dominates morphological lung imaging as it provides high 

spatial resolution and contrast of the airways. CT offers high quality images of sub-

millimetre in-plane and through-plane resolution [56] and the entire airways can be scanned 

during a single breath hold, eliminating respiratory motion artefacts. The choice of CT 

reconstruction parameters, such as collimation width, smallest pitch and longitudinal 

resolution are important because they affect the size and the shape of the 3D model derived 
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[53]. HRCT allows the identification of airways that are 1-2 mm in size, suggesting the 

extent of the distal airways that the reconstructed VB can reach in practice [57].  

CT entails a considerable radiation exposure, thus limiting its applications to static 

pulmonary images acquired during breath hold. In the work by Sera et al., the mouse lungs 

are visualised with micro-CT without dehydration and fixation in order to acquire high-

resolution images during respiration. Pulmonary dynamics, such as air flow patterns and 

particle deposition, and the associated physiological implication were observed. Images 

with effective spatial resolution of 30 mµ  were obtained with a total scan time of 15 

minutes. In this study, not only small airways but also alveoli were visualised in detail. 

Such a technique offers valuable information for the respiratory system but the radiation 

burden is prohibitive for its use in human subjects.  

In practice, there are several advantages of using MRI over CT, primarily due to the 

avoidance of ionising radiation and detailed high-resolution morphological and functional 

images that MRI can provide. Moreover, MRI has the potential to provide a higher 

sensitivity in detecting ventilation defects than other modalities [58]. Initially, MRI was not 

used for morphological lung imaging due to the lack of signal from the lung parenchyma. 

However, recent developments in ultra-short MR pulse sequences and the use of 

hyperpolarised gases have established the role of MRI in lung imaging [51]. Static 

pulmonary MRI involves imaging several sections of the lung during a single breath hold, 

which provides 3D information of the lungs. The depiction of airways by using static 

hyperpolarised gas is limited, because the lung periphery overshadows the signal from the 

airways. In contrast, dynamic pulmonary hyperpolarized He MRI consists of imaging the 

lungs during inspiration. The images are obtained as the gas flows through the airways to 

the lung periphery. There is limited time during the early inspiration phase when the gas 

travels solely through the airways. During this time, the signal will result only from the 

polarised magnetisation in the airways. After this point, the signal from the lung periphery 

can obscure the signal from the airways. With this technique, up to the seventh-generation 

of the airways can be visualised. Furthermore, this method has the potential to provide 

quantitative measurements such as airway diameters and volumes.  

Experiments based on MRI to capture free-breathing airway function have been recently 

presented in the work by Sundaram et al. [59]. The images used in these experiments were 

acquired at a constant time interval while the volunteers breathed slowly and deeply, 

consciously controlling their respiration. Due to individual variations in respiration and the 

difficulties of real-time pulmonary imaging, the time window of each image acquisition 

bears little physiologic meaning. In this work, each subject’s expiratory image sequence 
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was re-parameterised with respect to normalised lung capacity. This was then combined 

with intra-subject pair-wise non-rigid registration to interpolate intermediate images in the 

normalised volume curve. Subsequently, an average representation of respiratory dynamics 

from free-breathing lung MRI of normal subjects was extracted.  

 

2.5.4.2 Airway Tree Segmentation 

For interactive rendering, segmentation of the intra-thoracic airways is necessary. 

Quantitative analysis of the extracted airway tree is also important for evaluating tree 

structure and function. Segmentation, which is used to identify the boundaries of an organ, 

is a common step in medical imaging. Although CT images are well calibrated, with air 

being at about -1000 Hounsfield Units (HU), bones at about +1000HU and soft tissue in the 

range of -100 HU to 200 HU, airway tree segmentation is a challenging problem. Image 

noise, partial volume effects, and movement artefacts in a complex branching structure 

make a fully automatic segmentation method difficult.  

Partial volume effect occurs when a voxel represents more than one type of tissue. Due to 

the size of the voxel and image reconstruction artefacts, thin or stenosed airways can appear 

broken or discontinuous. Thus far, a number of strategies have been proposed [56, 60-62], 

but none of them can reconstruct accurately the lowest generations of the tracheo-bronchial 

tree. Most of them require the user to manually adjust segmentation parameters 

interactively during segmentation. The robustness of these methods is further restricted for 

low-dose CT images, where the signal-to-noise ratio is low. In general, current approaches 

to airway segmentation can be characterised into region-growing algorithms [63] and 

knowledge-based algorithms [64].  

Region-growing algorithms build up a set of airway pixels by using intensity-based 

threshold and voxel connectivity from a ‘seed’. For airway analysis, the seed selection is 

achieved either manually or automatically. Voxels adjacent to the seed are added to the 

region if they satisfy the intensity criteria. Once a voxel has been added to the region, its 

neighbours are evaluated for selection and the procedure continues until no new luminal 

voxels can be added. Region-growing algorithms in general are not able to segment the 

tracheo-bronchial tree beyond the fourth generation because of the difficulties associated 

with connectivity and threshold selection. Furthermore, small airways oriented at an 

oblique angle to the imaging plane can also impose significant challenges. As the 

orientation of the branch tends to tilt in parallel to the imaging plane, the edge strength at 

the vessel wall is weakened gradually. This can result in the segmented tree ‘leaking’ out 
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into the surrounding lung parenchyma. As the diameter of the airways decreases, partial 

volume effects begin to increase, which greatly can affect the accuracy of threshold-based 

approaches.   

Alternatively, knowledge based segmentation approaches have been developed, which use 

greyscale characteristics and shape information of the airways. In the work by Schlatholter 

et al. [62] a rule-based method for airway segmentation has been developed. The method 

uses the knowledge that airways and vessels often travel in parallel through the image 

dataset and a partial vessel wall is often visible around even the smallest detectable 

airways. While the sensitivity of the method is good, the associated specificity is low due to 

a large number of false airway detections. Fuzzy logic approaches have also been proposed 

[64-66]. These methods utilises fuzzy rules to describe image features such as region 

brightness, wall existence, and region connectivity. Fuzzy logic membership functions and 

fuzzy rules are constructed using real airway examples. The results show that fuzzy-logic 

methods can increase specificity and prevent leaking without sacrificing the underlying 

sensitivity of the method. Based on these approaches, a complete tracheo-bronchial tree up 

to the seventh generation has been reconstructed from low-dose CT data [65]. Given the 

tubular shape of the tracheo-bronchial tree, it is also natural to utilise the knowledge 

derived from central line extraction and thinning algorithms [67, 68] to enhance the 

robustness of the segmentation. 

 

2.5.4.3 Volume and Surface Rendering 

Advances in computer graphics, both in terms of algorithm design and hardware 

improvement, have led to significant progresses in volumetric reconstruction of medical 

images. In practice, two techniques are commonly used in visualisation. The first one is 

volume rendering which directly represents 3D objects as a collection of volume elements 

called voxels. Each voxel is a sample of the original volume and it is associated with one or 

more values quantifying the property of the object such as transparency, density, or 

velocity. The main advantage of this technique is in its ability to preserve the integrity of 

the original data. Therefore, visualisation of details beyond the tracheo-bronchial wall is 

possible with volume rendering. It is particularly useful in differentiating between benign 

and malignant structures. However, effective volume rendering is computationally 

expensive and it is difficult to achieve real-time response along with photorealistic 

rendering in most simulation environments without the use of dedicated hardware.  
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The second technique involves the construction of a set of polygons that represent the area 

of interest, such as the tracheo-bronchial wall. Polygonal models dominate interactive 

computer graphics because of their mathematical simplicity and that the rendering 

algorithms embed well in hardware. Polygonal surfaces that represent the outer surface of 

the 3D objects are usually calculated from a segmentation step. The marching cubes 

algorithm [69] or its variant can be used to extract polygonal surface. Marching cubes 

usually generate a large amount of polygons even for flat regions of the model. 

Subsequently, decimation algorithms are used to simplify the polygonal mesh to accelerate 

rendering without apparent deterioration of the image quality [70]. To this end, quadratic 

error metrics are often used with a manifold representation of triangle meshes. Quadratic 

error metrics provide a fast and simple way to guide the simplification process with 

relatively small storage cost. The visual fidelity of the resulting surfaces achieved tends to 

be high.    

One interesting development in photorealistic rendering in recent years is the use of Image 

Based Modelling and Rendering (IBMR) techniques. IBMR is the intersection between 

computer graphics and computer vision. Computer graphics investigate the interaction of 

light with a set of objects where the geometrical and material properties are known. On the 

other hand, in computer vision often the inverse is presented, where a number of images are 

used to model the scene. With the use of IBMR techniques, it is possible to extend 

conventional texture mapping to support the representation of 3D surface details and 

motion parallax in addition to photorealism [71]. Existing research has shown that IBMR 

has the potential to create high fidelity rendering with manageable computational 

complexity by using the current graphics hardware. IBMR in MIS is not a trivial task since 

the lighting configuration is complex and the tissue deforms dynamically when the 

viewpoint is undergoing constant movement [72]. For patient-specific simulation, it is 

essential that the extraction of intrinsic surface texture and reflectance properties do not 

depend on the viewing conditions such that new views with different camera and lighting 

configurations can be generated [73]. In this way, free navigation of the acquired 3D model 

with enhanced photo-realism can be achieved.  

 

2.5.4.4 Registration of the 3D Model with 2D Bronchoscope Video Sequences 

As mentioned earlier, patient-specific bronchoscopy simulation requires the fusion of 

tomographic data and endoscope video in order to extract realistic surface properties from 

the real bronchoscope. This requires the tracking of the camera motion to determine the 
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pose of the camera inside the reconstructed 3D model that best matches with  the 

bronchoscope video [74, 75][76, 77]. This is a classic 2D/3D registration problem in 

medical image computing.  

Image registration is a well-studied topic in medical imaging which has a broad range of 

applications [78-82]. In bronchoscopy, however, the problem is complicated by the 

deformation of the airways. The pre-operative images generally do not accurately match to 

the geometry of the tracheo-bronchial tree during real bronchoscopy. This is because in 

tomographic imaging the patient is typically  in a supine position, whereas in bronchoscopy 

examinations the patient usually adopts an upright posture. Extreme breathing patterns due 

to patient discomfort can occur, and they can cause severe deformation of the airways.   

Thus far, most of the 2D/3D registration algorithms ignore the deformation of the tracheo-

bronchial tree. Rigid registration techniques are used to match the CT data with 

bronchoscope video. For this reason, it is not guaranteed that these algorithms can converge 

to the solution since they depend on the initial pose and on the level of anatomical 

deformation involved. Registration failure occurs when the endoscope camera is close to 

the vessel wall or when image artefact is significant. In a typical examination, these effects 

account for 20-30% of the image sequence, which limit the current techniques being only 

applicable to short video sequences. A more detailed analysis of the current 2D/3D 

registration techniques will be provided in Chapter 3 and later in this thesis, we will focus 

on the development of a novel 2D/3D registration scheme that is immune to these 

problems.  

 

2.5.4.5 Navigation and Interactivity  

Navigation in virtual bronchoscopy involves the interaction of a user to control the camera 

movement in a way that is similar to real procedures. Even for a trained physician, 

navigation to the target can be difficult. The user should neither deal with too many 

parameters, creating a ‘lost-in-space’ feeling nor should be restricted to a heavily 

constrained navigation environment [83]. A near real-time frame rate is also an important 

goal for a effective navigation. Usually, visualization tools have three navigation modes: 

automated navigation, manual/free navigation, and guided navigation [84]. In automated 

navigation, the user provides the starting and ending positions, and the system 

automatically finds an appropriate path. Alternatively, the user can select key camera 

locations with the corresponding 3D representation. The system then calculates the in-
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between camera poses. When the user is allowed to move freely along the calculated path, 

it is analogous to guided navigation. These features are essential in applications such as 

computer-assisted diagnosis and preoperative planning.  

An indispensable part of realistic navigation is collision detection and haptic feedback. This 

determines the interaction between surgical tools, tissues and organs. Several collision 

detection techniques have been proposed. Most of them adopt a two-level approach, which 

includes collision bounding and collision refinement [21]. Collision bounding is a 

computationally inexpensive method. It is assumed that objects have simple geometry such 

as spheres or rectangles. When the objects interact, a more accurate representation is 

employed. Given that simulation devices require real-time interaction and visualization of 

the virtual anatomy, collision detection algorithms should be computationally efficient. A 

technique based on hardware implementation was proposed to accelerate collision detection 

[85]. It examines the volume around a simple shaped tool to check whether it intersects 

with other objects. This can be implemented easily on any available 3D graphics rendering 

software as a viewing volume with the camera at the tip of the tool. Although this technique 

cannot handle collision between complex objects, it is potentially useful in bronchoscopy 

simulation. The endoscope has a simple geometry and biopsy tools are the only tools used 

during navigation. Subsequently, a small viewing volume defined at the centre of the 

bronchoscopy lenses makes it possible for real-time collision detection on a conventional 

PC. 

 

2.6 Discussion and Conclusions 

With the introduction of MIS in medicine, surgical education and skills assessment have 

become an important part of the training procedure. Although the advantage of MIS over 

open surgery is widely recognised, a number of issues related to the complexity of 

instrument control and hand-eye coordination due to a loss of 3D vision must be 

considered. Extensive practice is required in order to automate the surgeons’ movements 

and familiarise them with the specific demands of MIS procedures. Medical simulators 

have the potential to provide an effective and complete surgical education scheme outside 

the operating room. Under this strategy, computer-based simulators can be used for both 

training and objective skill assessment. They reduce the time required from expert surgeons 

and provide the user with control over the learning process as well as the opportunity to 
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practice on rare pathological cases. However, current simulation systems are far from ideal 

due to the general lack of visual, physical, physiological, and tactile realism.  

Patient specific models built from tomographic data and real endoscopic videos can 

overcome many of the limitations associated with photo-realism. This is because they 

combine the flexibility of scene geometry representation with photorealism based on 

image-based rendering techniques. The effectiveness of patient specific models is not only 

limited in visual reality but also extended to modelling tissue deformation and haptics.  

In this chapter, we have reviewed the main requirements for effective surgical simulation 

and the current state-of-the-art. The work presented in this thesis is mainly to be focused on 

the development patient-specific models for bronchoscopy simulation. Bronchoscopy is the 

most reliable way for detecting cancer in the tracheo-bronchial tree. However, locating the 

lesion can be difficult and the branching structure can be disorientating. Patient specific 

models of the tracheo-bronchial tree can be created by fusing 3D CT images of the airways 

with real bronchoscopic video. This entails effective 2D/3D registration in the presence of 

airway deformation. Non-rigid 2D/3D registration is not a trivial problem. Although there 

is extensive literature on this topic, current techniques are mainly limited to rigid cases. 

This is due to the high dimensionality of the problem and the lack of an efficient way to 

capture and model tissue deformation. In practice, the tracheo-bronchial tree deforms due to 

respiration, cardiac contraction, coughing and pre-operative shifting caused by changes in 

the position of the patient. A non-rigid 2D/3D registration framework that recovers both the 

parameters of the camera motion and the deformation of the tracheo-bronchial tree is 

essential for the development of patient specific models.  

Another major challenge of combining 2D video with 3D tomographic data for patient 

specific simulation is the extraction of intrinsic surface texture and reflectance properties 

that are independent of specific viewing conditions. This is required for generating new 

views with different camera and lighting configurations. For bronchoscope simulation, this 

permits the incorporation of tissue instrument interaction, and thus greatly enhances the 

overall realism of the simulation environment. The prerequisite of this approach is also in 

the accurate alignment of the 3D tomographic data with the bronchoscope video. In the 

following chapters, we will first review the current approaches to image registration and 

outline the major limitations of these techniques. A novel pq-space based 2D/3D 

registration technique is then proposed, which is further extended to incorporate statistical 

shape modelling for handling airway deformation.     
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Chapter 3   
 

 

Non-Rigid 2D/3D Image Registration 

n order to match video bronchoscopic images to the geometry extracted from 3D CT 

data, robust non-rigid 2D/3D registration techniques have to be developed. In non-rigid 

2D/3D registration, the aim is both to localise the acquired image in relation to the 3D 

model and to extract the deformation parameters involved. This is an ill-posed problem and 

the inherent difficulty of the registration process is due to the differences in image 

formation, reduced image content and ambiguities in 2D images. Although image 

registration has been studied for many years, robust non-rigid registration is still a subject 

of on-going research. This is mainly due to the high degrees-of-freedom involved and it has 

been recognised that there is no single registration technique that can be applied to all 

image matching problems. 

In general, a non-rigid image registration algorithm consists of four major components 

which include the target and source data sets, the transformation that relates the target and 

source, a similarity measure that estimates the similarity between the two, and an 

optimization technique that determines the optimal transformation parameters as a function 

of the similarity measure. The reference and target data can be intensity values, 

curves/surfaces, landmarks, or any combination of the above. The transformation model 

depends on whether the motion is rigid or deformable, and can be rigid, affine, piecewise 

linear or elastic. Finally, the similarity measure is based on either intensity values or 

geometrical features to determine how well the two data sets are aligned.  

The main objective of this chapter is to introduce a mathematical framework of non-rigid 

2D/3D registration and highlight the challenges involved. It also discusses the value of 

image-based registration in medical imaging and computer assisted surgical intervention. 

I 
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Common methodologies and techniques are reviewed in order to address the weakness and 

limitations of the current approaches.  

 

3.1 Image Registration in Medical Imaging 

Medical imaging provides information about the morphology and function of the 

anatomical structures of individual patients as well as among a population. In clinical 

practice, it is common to image the same subject multiple times with the same image 

modality in order to monitor the progression of a disease, e.g., evolution of a malignant 

tumour, or assess the efficacy of the therapeutic process. Different image modalities can 

provide complementary information about a given symptom, and in surgery they can 

provide both pre-operative planning and intra-operative navigation. It is also desirable to 

compare images of a given subject to an atlas that reflects the average of a normal 

population. To this end, establishing the spatial correspondence of these data is the 

prerequisite of successful image interpretation and analysis. 

Registration not only is a valuable tool for traditional medical imaging, but also opens up a 

range of new applications. These include serial imaging to monitor subtle changes due to 

disease progression or treatment. In these studies, the subject cannot be expected to remain 

in a fixed position. In image guided interventions, image data acquired prior to the 

procedure is registered to surgical devices so that the surgeons can use these data to guide 

the interventional procedure. Image registration has also become a valuable tool in basic 

sciences research, such as neuroscience, where serial and functional imaging studies are 

making substantial contributions to our understanding of the way the brain works. 

Given the importance of image registration in medical imaging, there are many research 

surveys on the topic and registration techniques can be classified based on different criteria 

[78-80, 82, 86]. These include their dimensionality, registration basis, transformation 

methods, domain of transformation, interaction, optimization procedures, and modalities 

involved [80]. Dimensionality can be classified into spatial or temporal, where spatial 

dimensionality refers to the dimension of the images and thus can be 2D/2D, 2D/3D or 

3D/3D. The nature of the registration basis refers to whether it is based on foreign objects 

introduced into the imaged space or it is purely based on image information. The 

transformation is related to the deformation involved, and therefore a registration can be 
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rigid, affine, or free-form. For existing registration algorithms, three levels of interaction 

are usually involved.  

• Automatic - where the user only supplies the algorithm with the image data and 

possibly parameters related to the image acquisition;  

• Interactive - where the user does the registration assisted by software supplying a 

visual or numerical impression of the current transformation;  

• Semi-automatic - where the user initializes the registration procedure and guides 

the algorithm by rejecting or accepting suggested registration hypotheses.  

The optimization procedure is based on analytical calculation or optimisation of the 

transformation parameters. A registration procedure is also dependent on the nature of the 

modalities involved, whether being multimodal or uni-modal. Alternatively, registration 

algorithms can also be classified according to their applications.   

 

3.2 2D/3D Image Registration 

Image registration becomes more difficult when the dimensionalities of the source and 

target data are different. In this case, 2D/3D registration is a typical example and as 

mentioned earlier, it is an ill-posed problem as the solution space is in 3D, whereas the 

available information is partially constrained to 2D. This is further complicated when 

deformation and image artefacts are present.  

One approach to 2D/3D registration is to reconstruct the 3D volume from 2D images but 

this process itself is ill-posed and can be subject to significant errors. For this reason, most 

of the existing methods reduce the problem to 2D/2D registration between 2D ‘simulated’ 

images derived from the 3D volumetric dataset and the original 2D images. Therefore, a 

number of 2D volumetric images have to be compared to each of the 2D datasets and an 

optimisation procedure should be defined such that the best approximation is adopted as the 

solution. A schematic illustration of this method is provided in Figure 3.1. These 

approaches generally require a good initialisation of the pose parameters. To limit the 

solution space, application specific constraints can be used but local minima of the 

optimisation landscape are difficult to avoid.  

2D/3D registration arises in a number of imaging applications, ranging from orthopaedics 

to neurosurgery. Typically, 2D/3D registration is employed in image-guided surgery and in 
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conventional X-ray radiography. The most common application of 2D/3D registration is in 

the alignment of intra-operative fluoroscopy images with pre-operative CT. In this case, 

each pixel in the fluoroscopic image corresponds to a combination of the X-ray attenuation 

along a projection line through the body. A common solution to this problem is to simulate 

X-ray projections from the CT data to produce a digitally reconstructed radiograph (DRR).  

Iterative pose estimation of the X-ray source of the fluoroscope in relation to the 3D CT 

data is then solved by optimising a 2D intensity similarity measure.   

 

 

 

Figure 3.1: Diagrammatic illustration of 2D/3D registration showing images before registration (a) 

and after registration (b). The contour overlay represents the projection of the 3D model onto the 

endoscopic image.  

 

a) 

b) 
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3.3 Mathematical Formulation of the Registration Problem 

Image registration is defined as the process of establishing a mapping between two or more 

images in order to achieve anatomical or functional correspondence. The computational 

process of registration results in a transformation between the coordinate systems of the 

source and target data. Once the correspondence is determined, one dataset can be readily 

mapped to the other by using the transformation parameters derived. When the images are 

of the same dimensionality then a transformation Τ  that transforms a position x  from one 

image A  to another B  is defined as [87]:  

( ): B A B Ax x x xΤ → ⇔ Τ =  (3.1) 

As the images A  and B  represent the same object X imaged with the same or different 

modalities, there is a relationship between the spatial locations in A  and B . The registration 

process involves recovering the spatial transformation Τ  that maps Bx  to Ax  over the 

entire domain of interest. Practically, this may correspond to the field of view of the 

imaging device or the area of interest. It is useful to think of the two images themselves as 

being mappings of points in the patient to intensity values: 

( ): A A AA x A x∈ Ω →  and ( ): B B BB x B x∈ Ω →  (3.2) 

where Ω  is defined as the domain of an image. The overlap domain between images A  

and B  is defined as [87]: 

( ){ }1
, |A B A A A Bx xΤ −Ω = ∈ Ω Τ ∈ Ω  (3.3) 

Therefore, the overlap domain depends on the domains of the original images A  and B , 

and also on the spatial transformation Τ . The overlapping between domains AΩ  and BΩ  

plays an important role in formulating an accurate and reliable registration algorithm.  

In 2D/3D registration, the spatial transformation Τ  involves a 3D-3D mapping followed by 

the projection of the 3D object onto a 2D plane. In endoscopic images, this involves a 

perspective projection with certain degrees of lens distortion. Endoscopic cameras have a 

large field of view to allow them the visualisation of a large part of the tracheobronchial 

structure even when the camera is close to the lumen’s wall. In this case the approximation 

of the perspective with an orthographic projection leads to significant errors. A perspective 

projection is described by four degrees-of-freedom, which include the focal length ( ),x yf f  
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and the principal point ( ),x yc c . The focal length is the distance between the lenses and the 

image plane, whereas the principal point is defined as the point where the principal 

axis/camera axis intersects with the image plane. Subsequently, the transformation in 

2D/3D registration takes the following form: 

2 3 0

0 0 1

x x x

D D y y distortion

f f c

f c

ϑ

−

 ⋅ 
 

Τ = ⋅Τ ⋅Τ 
 
   

 (3.4) 

where ϑ  is a skewness coefficient describing the angle between x and y pixel axes. In the 

above equation, distortionΤ  is the transformation that describes barrel distortion due to 

imperfection of the camera lenses. Note that in endoscopic cameras, lens distortions are 

usually large due to the wide angle field-of-view. Distortion usually includes both radial 

and tangential [88] components, i.e.,  

distortion radial tangentialΤ = Τ + Τ  (3.5) 

Generally, the intrinsic camera parameters and the distortion coefficients are constants and 

can be extracted prior to the image registration by appropriate calibration.  

The nature of the transformation Τ  defines whether the registration is rigid or not [89]. 

The most common transformations are shown in Table 3.1. The goal of rigid registration is 

to find the six-degrees-of-freedom of a transformation: ( ) ( ): , , , ,x y z x y z′ ′ ′Τ → , which 

completely describe the rotation and translation that need to map each point in the source image 

( ), , ,I x y z t  at time t  into the corresponding point of the target image, ( )0, , ,I x y z t′ ′ ′ . 

Extending rigid-body registration, an affine transformation of 12 degrees-of-freedom allows for 

scaling and shearing. Affine transformations do not in general preserve angles or lengths, 

but parallel lines remain parallel. Therefore, there is no orthogonality constraint on the 

elements of the rotation matrix.  

( )
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31 32 33 34

, ,

10 0 0 1

global

x

y
x y z z

ϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ

        ′ ′ ′ Τ =            

 (3.6) 
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a) b) c) d)
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 Rigid 

Transformation  

(6DoF) 

Affine 

Transformation 

(12DoF) 

Projective 

Transformation 

(15DoF) 

Table 3.1: Common geometric transformations and the degrees-of-freedom (DoF) involved. a) 

Original Shape, b) rigid transformation expressed by rotation R and translation t, c) affine 

transformation which preserves parallel lines (A is not an orthogonal matrix), and d) projective 

transformation, where the projective part is expressed as a three-dimensional vector v
T
.  

Linear transformation should not be confused with affine transformation. A linear 

transformation satisfies the condition [87]: 

( ) ( ) ( )A B A Bx x x xα β α βΤ + = ⋅Τ + ⋅Τ  , D

A Bx x∀ ∈ ℜ  (3.7) 

Affine transformations are described as the combination of linear transformations with 

translations.  

In the case that deformation must be accounted for, the simplest method is to generalise the 

rigid body transformation. This can be represented as global polynomial function, or 

piecewise polynomial relations, or splines. For example, a quadratic transformation model 

can be defined by second-order polynomials: 

( )

2
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, ,
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x y z a a a
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�

�

�
�

�

  (3.8) 

These transformations can be extended to higher order polynomials, but they are generally 

constrained only to global shape changes. Global polynomial transformations are only 

useful to account for low-frequency distortions because of their unpredictable behaviour 

when the order of the polynomial is high. Global mapping functions do not always 
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adequately capture anatomical deformation that is intrinsically local. Therefore, it is 

difficult to use a parameterized transformation to describe local anatomical shape 

variability.   

 

3.4 Non-Rigid 2D/3D Registration  

A non-rigid transformation can be described as a combination of a global and a local 

component [89]:  

( ) ( ) ( ), , , , , ,global localx y z x y z x y zΤ = Τ +Τ  (3.9) 

The global deformation component describes the overall deformation of the object. It is 

usually either rigid or affine. The local transformation describes local deformation that 

cannot be modelled as linear. The level of non-rigid deformation depends on the resolution 

of the control points and is also directly related with the computational complexity. The 

transformation model plays a major role in non-rigid image registration. Since the local 

component encodes variability, it is inherently related to the notion of deformable models. 

However, it should be noted that deformable models describe both shape and shape 

variability, whereas a transformation is only a mapping mechanism from one image to the 

other.  

There are a number of transformation models that have been proposed in the literature for 

non-rigid registration. Their formulation is also dependent on whether an intensity or 

feature-based similarity measure is employed. Intensity based techniques iteratively 

optimise the similarity between the corresponding voxels or pixels of the source and target 

images. They transform the image at each iteration by using the current estimate of Τ  to 

evaluate the similarity measure, and the type of interpolation used can alter the solution 

obtained. 

In computer guided interventions, surface based registration is also common as surface 

rendering requires less computational resources (CPU, RAM) than volume rendering. In 

general, surfaces provide more redundancy than landmarks and this redundancy can be 

useful for characterizing non-rigid motion. Furthermore, surface-based approaches are 

more useful for aligning partially overlapped objects.   
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3.4.1 Transformation Models for Non-Rigid Registration 

Non-rigid (also called non-linear) transformations are often used to describe 

transformations with higher degrees-of-freedom than that of an affine transformation. 

These transformations are meant to model local changes in the shape of an object. Thus far, 

a number of models have been proposed which include those based on geometric 

primitives, such as Thin-Plate Splines, B-splines, Multiquadric, Piecewise Linear and 

Weighted Mean representations, and those based on physical models such as elastic, fluid, 

finite element models and mechanical models.  

Most non-rigid registration algorithms based on a non-physical transformation rely on the 

use of a set of control points between the two image domains. These control points can 

either correspond to particular features extracted in images or be regularly spaced within 

the spatial domain. The transformation either interpolates or approximates the displacement 

required to map each control point of the source image to the corresponding control point in 

the target image. An interpolation condition arises when the number of control points is 

equal to the number of unknown terms in the transformation function. Subsequently, the 

system of equations that describes the transformation is fully determined. When the number 

of control points is greater than the number of unknown parameters, only approximate 

transformation coefficients can be derived. This implies that residual errors may exist 

between the corresponding control points. 

In physically-based transformations, model-based techniques are used to model the shape 

and the dynamic behaviour of the surface. Such methods generally compute curve and 

surface motion not by explicit matching, but by implicit consideration of image motion in 

the form of virtual forces.  

 

3.4.1.1 Spline Based Transformations 

A spline-based transformation provides a smoothly varying displacement field, which, for 

example, can be  formulated as three thin-plate spline functions [87]: 

( )1 2 3, ,
T

t t tΤ =  (3.10) 

Thin-plate splines are defined as a combination of n  radial basis functions ϑ .  
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( ) ( )( )1 2 3 4
1

, , , ,
n

j j

j

t x y z a a x a y a z b x y zϑ ϕ
=

= + + + + ⋅ −∑  (3.11) 

The coefficients a  characterise the affine part of the transformation, whereas the 

coefficients b  characterise the non-affine part of the transformation. ϕ  is the location of 

the control points.  

Radial basis functions have infinite support, which implies that each control point has a 

global influence on the entire transformation. This is undesirable when local deformation 

needs to be modelled. Alternatively, B-splines are locally controlled, which makes them 

computationally efficient for a large number of control points. The most commonly used B-

spline is the cubic B-spline [90], i.e., 

( ) ( ) ( ) ( )
3 3 3

, ,
0 0 0

, , l m n i l j m k n

l m n

x y z B u B v B w φ + + +
= = =

Τ =∑∑∑  (3.12) 

When the local transformation model is based on cubic B-splines, the resulting deformation 

produces a smooth and 
2C  continuous transformation.  

 

3.4.1.2 Free-Form Deformation 

Free-Form Deformation (FFD) provides a higher level of control of the deformation during 

registration. FFD changes the shape of an object by deforming the space where the object 

lies. In other words, the object is embedded in a lattice of grid points using either cubic or 

cylindrical coordinates. Manipulation of the nodes of the grid induces deformation on the 

space inside the grid, which then transforms the graphics primitives describing the object. If 

{ }iU  is the set of three-dimensional cells defined by the grid, a free-form deformation can 

be thought of as a collection of mappings of the form: 
3:i if U → ℜ . Subsequently, direct 

movement of the surface or object points is achieved by converting the desired movements 

of these points to equivalent grid point movements. This under-constrained problem is 

typically solved by choosing the grid point movement with the minimum least-squares 

energy that produces the desired object manipulation.  

FFD mathematically can be defined in terms of a tensor product trivariate Bernstein 

polynomial [89]. First, a local coordinate system on a parallelepiped region is specified 

such that every point ( ), ,X s t u=  in the 3D space can be described as:  
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0X X sS tT uU= + + +  (3.13) 

Every point inside the parallelepiped conforms to the following constraints: 0 1s< < , 

0 1t< < , 0 1u< < . Subsequently, the location of the control points is defined as:  

, , 0i j k

i j k
P X S T U

l m n
= + + +  (3.14) 

where 1l + , 1m +  and 1n + are the number of the grid planes in the S , T  and 

U directions, respectively. The deformation is specified by moving the control points away 

from their original positions. The deformed position dX  of an arbitrary point X  is derived 

by evaluating the vector valued trivariate Bernstein polynomial: 

( ) ( ) ( ) , ,
0 0 0

1 1 1
l m n

l i m j n ki j k

d i j k

i j k

nml
X s s t t u u P

ji k
− − −

= = =

            = − − − ⋅                 
∑ ∑ ∑  (3.15) 

This deformation can also be formulated in terms of other polynomial bases, such as tensor 

product B-splines.  

FFD is a versatile tool for representing different geometric deformations. For example, a 

parametric surface remains parametric after deformation. Furthermore, it is possible to 

apply two or more FFDs in a piecewise manner so as to maintain the cross-boundary 

derivative continuity. Another reason that FFD is so useful in solid modelling is that it 

provides control over the volume change of the deformable object. In general, the volume 

change is given by the Jacobian of the FFD. Therefore, by imposing a bound on the 

Jacobian over the region of deformation also results in a bound of the volume change. Such 

a bound is easily provided when the Jacobian is expressed as a trivariate Bernstein 

polynomial. Subsequently, the two extremes of the coefficients provide upper and lower 

bounds on the volume change. Thus far, FFD has been successfully used for 3D-3D image 

registration for a number of applications [91]. Unlike radial basis functions, FFD requires a 

regular mesh of control points with uniform spacing. Subsequently, its applications are 

limited to volumetric images and solid object representations.  
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3.4.1.3 Physical Transformation Models 

Physically-based techniques simulate natural motions and shape deformations based on 

mathematical models that specify the physical behaviour of the object. Usually, they are 

characterised by a high accuracy at the cost of a higher complexity. Elastic, viscous fluid 

and biomechanical models belong to this category. The idea behind elastic transformations 

is that the underlying deformation is a physical process that resembles the stretching of an 

elastic material. This process is governed by both internal and external forces. The internal 

force is caused by the deformation of elastic material and is opposite to the force that 

deforms the elastic body from its equilibrium. The deformation of the object stops when all 

the forces acting on the object form an equilibrium solution, which is described by the 

Navier linear elastic Partial Differential Equation (PDE) [87]: 

( ) ( ) ( )( ) ( )2 , , , , , , 0x y z x y z x y zµ λ µ∇ + + ∇ ∇ + =u u f  (3.16) 

where u  describes the displacement field, f  is the external force acting on the elastic 

object, ∇  denotes the gradient operator, and 
2∇  is the Laplacian operator. The parameters 

µ  and λ  are Lame’s elasticity constants, which describe the behaviour of the elastic body. 

The external force drives the registration process and it can be defined as the gradient of an 

intensity-based similarity measure or the distance between curves, surfaces and anatomical 

structures.  

Fluid registration enables the modelling of highly localised deformations including corners. 

Fluid registration, similarly to elastic registration, is described by the Navier-Stokes partial 

differential equation: 

( ) ( ) ( )( ) ( )2 , , , , , , 0x y z x y z x y zµ λ µ∇ + + ∇ ∇ + =v v f  (3.17) 

where v  describes the velocity field. The relationship between the Eulerian velocity v  and 

the displacement field u  is: 

( )
( )

( ) ( )
, , ,

, , , , , ,
x y z t

x,y,z,t x y z t x y z t
t

∂
= + ⋅∇

∂
u

v v u  (3.18) 

One way to solve these partial differential equations is the Finite Element Methods (FEM). 

These are numerical techniques that discretise the continuum into a number of elements in 

order to approximate the continuous body equations over each element. FEM is 

computationally intensive, and thus realistic deformation cannot be achieved in real-time. 

Mass-spring-damper systems, Boundary Element Method and Finite Difference Method 
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(FDM) are also used to model physical deformable objects [92]. In Boundary Element 

Method only the object boundary is considered. Although the resulting system is one 

dimension less than FEM, it is still very dense and can not model internal behaviour of non-

homogeneous materials. In FDM, the differential operator is approximated by algebraic 

difference operators. FDM is efficient and accurate when the geometry of the problem is 

regular, but discretisation becomes extremely dense when it is used to approximate the 

boundary of an irregular object.  

Generally, FEM is superior when handling geometric approximations, because it uses the 

exact differential operators that apply only in subspaces of the solution fields. Many 

different approaches have been proposed in order to improve the time efficiency of FEM 

[93]. The key to the efficient solution of this problem is the placement of nodal points and 

elements that constitute the 3D mesh. For example, regions with large gradients need a 

higher mesh density. In order to obtain an optimal mesh, every element should contain the 

same predefined allowable error. Adaptation in FEM is essential to the performance of the 

algorithm while maintaining local deformation details.   

The main problem of physically-based transformations is that µ  and λ  are characteristic 

parameters of the biomechanical tissue properties and they need to be measured prior to the 

registration process. These parameters differ from subject to subject and they have a high 

degree of intra-subject variability. These measurements also differ for in vitro and in vivo 

specimens. Another problem associated with physically-based methods is the large number 

of degrees-of-freedom involved, which makes the optimisation process difficult to 

converge, thus leading to mis-registration errors.  

 

3.4.2 Surface Representation and Deformable Models 

Surface representation is an important element of non-rigid 2D/3D registration. In medical 

image segmentation, a cloud of points is often derived for the anatomical structure and it is 

common to use triangulation to form a 3D mesh. One way to construct a surface 

deformable model is to use scattered data interpolation techniques. The problem of 

scattered data interpolation uses a continuous function that interpolates values that are 

known only at some scattered points. Approaches to the interpolation of scattered data can 

be classified as global and local methods. In global methods, the interpolated values are 

influenced by all of the data and usually they are limited to small datasets because of the 

computational complexity involved. In local methods, the interpolated values are only 
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influenced by the values at neighbouring points, and thus these methods are suited for 

modelling larger datasets. While interpolation techniques construct functions that pass 

through the given data points, data fitting schemes construct functions that maintain the 

overall trend of the input data and they do not necessarily pass through all the input points.  

Scattered data interpolation functions can be formed based on splines and patches. They 

include, for example, Bezier curves, double quadratic curves, B-splines, rational B-splines 

and non-uniform rational B-splines (NURBS). These methods can represent both planar 

and 3D curves and relate 2D patches for specifying surfaces. In these representations, the 

curve or surface is represented by a set of control points. Therefore, the shape of the object 

can be adjusted by moving the control points to new positions. This parameter-based object 

representation is computationally efficient and can support interactive modifications. 

However, precise alterations of the curves or surfaces can be laborious and a perceptually 

simple modification may require the adjustment of many control points [94].  

A NURBS surface is a bidirectional parametric representation of an object. Points on a 

NURBS surface are defined by two variables, u and v, representing the longitude and 

latitude, respectively. Points defined in Cartesian coordinates (x, y, z) can easily be 

converted into surface coordinates (u and v) and vice versa. The extraction of a NURBS 

surface can be based on patient image data and it permits the representation of a surface at 

any resolution. Furthermore, NURBS can be altered easily via affine or other 

transformations for dynamic modelling, as well as capturing anatomical variations among 

patients. The main disadvantages of the NURBS are the inherent mathematic complexity 

and the relatively large number of parameters that need to describe a 3D surface. The added 

complexity, however, is beneficial for modelling biological shapes [95].   

 

3.5 Similarity Measures for Image-Based Registration  

A key issue of non-Rigid 2D/3D registration is how to define the distance measure between 

the 3D data and the 2D projection. Similarity measures are based on either intensity values 

or geometrical features. Both techniques involve optimising a similarity measure, which 

evaluates how close the 3D model is to the corresponding 2D video frame.  Intensity based 

techniques can be based on cross-correlation or mutual information, whereas feature based 

techniques rely on the extraction of features from the model and their alignment to the 

correspondent images. Feature based techniques generally involve the following steps: (1) 
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extraction of landmarks, (2) pair-wise correspondence, and (3) estimation of the transform 

model.   

 

3.5.1 Intensity-Based Similarity Measures 

Intensity based techniques, such as normalised cross correlation and mutual information are 

popular in medical imaging. They have been applied successfully to a number of 

applications as well as modalities such as microscopy, MRI, CT, X-rays, and ultrasound. 

They have also been applied to multimodal registration, such as MR-CT, MR-PET, MR-

SPECT, MR-US, CT-PET, and CT-SPECT. Intensity based techniques tend to be 

computationally intensive but they have the advantage of not requiring pre-segmentation or 

feature extraction, thus facilitating fully automatic image registration.   

 

3.5.1.1 Sum of Square Differences 

Sum of Square Differences (SSD), also called Euclidean Distance, is the simplest way to 

evaluate the similarity between two images. The aim of SSD is to find the transformation 

Τ  that minimises the sum of the square differences between the pixels intensity I  of the 

two images.  

( ) ( )( )( )2
,

argmin
A B

A B

x x

I x I x
∈Ω

− Τ∑  (3.19) 

This measure is optimum when the images differ only by Gaussian noise. Similar to SSD is 

the Sum of Absolute Differences, which uses the absolute intensity differences instead of 

the squared differences, and the Mean of Square Differences. In order to eliminate the 

effect of contrast and brightness changes, the normalised SSD is normally used in practice, 

i.e., the cost function is designed to seek 

( ) ( )( )( )
( )( ) ( )( )( )

2

,

22
argmin A B

A A

A Bx x

A Bx x

I x I x

I x I x

∈Ω

∈Ω ∈Ω

   − Τ     Τ   

∑
∑ ∑

 (3.20) 
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3.5.1.2 Normalised Cross-Correlation 

The cross-correlation measure between two images is defined as: 

( ) ( )( )
,

argmax
A B

A B

x x

I x I x
∈Ω

Τ∑  
(3.21) 

Similarly to SSD, the normalised cross-correlation (NCC) is preferred in order to make this 

measure immune to linear intensity transformations, such as image contrast and brightness. 

The NCC cost function is defined as: 

( )( ) ( )( )( )
( )( ) ( )( )( )

,

22
argmax

BA B

BA B

A A Bx x

A A Bx x

I x I I x I

I x I I x I

Τ∈Ω

Τ∈Ω ∈Ω

   − Τ −     − Τ −   

∑
∑ ∑

 (3.22) 

where AI  is the average intensity of the reference image A  and 
B

IΤ  is the average 

intensity of the transformed image B . For correlation measures, a linear relationship of the 

corresponding voxel/pixel intensities is assumed. However, even in images of the same 

modality, this requirement can not always be met. For example, this can be due to the bias 

field in MR images caused by RF inhomogeneity, and motion artefacts [96]. In practice, the 

sensitivity of correlation-based similarity measures to non-linear intensity transformations 

can be improved by performing correlations on the magnitude of the intensity gradient. 

This can be useful for images with discontinuous surface properties.  

 

3.5.1.3 Fourier Methods 

Fourier Methods are preferred over correlation-based methods when images are large and 

computational speed is important. Fourier-based registration is originated from the Fourier 

Shift Theorem, which states that a shift in spatial domain leads to a linear phase change in 

the frequency domain. Originally, the technique has been introduced for the registration of 

translated 2D images but it has been extended to correct for rotation and scaling in 2D as 

well as 3D images. Fourier-based registration techniques have been used to achieve sub-

pixel accuracy, avoiding image distortion introduced by interpolation. However, their 

application is limited mainly to rigid registration.   
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3.5.1.4 Registration based on Geometrical Moment Invariants 

Moment invariants were initially developed for positional invariant pattern recognition. 

This is a convenient way of characterizing the geometric properties of objects in 2D or 3D 

[97]. Other techniques, such as Gabor filters, wavelets and low frequency representations 

can also be used to extract the geometric properties of the objects. For a 3D continuous 

function ( )1 2 3, ,f x x x , the 3D regular moments of order ( )p q r+ +  are defined by the 

Riemann integrals: 

( )
( ) ( ) ( )22 2 2

1 2 3

, , 1 2 3 1 2 3 1 2 3, ,p q r

p q r

x x x R

M x x x f x x x dx dx dx

+ + <

= ∫∫∫  
(3.23) 

Although geometric moments operate directly on the image intensity values, they reduce 

their content to a representative set of scalars and orientations [80]. Based on these 

methods, the image centre of gravity and its principal orientation/principal axes are 

computed from the first order moments. Subsequently, registration is performed by aligning 

the centre of gravity and its principal orientations, also called invariant attribute vectors.  

The notion of ‘invariant attribute vectors’ has been also used in [98] in the context of 

surface registration. The goal is to distinguish different parts of a boundary according to the 

shape properties. With this method, an attribute vector is attached to each vertex of the 

model in order to reflect the geometric structure of the model from a local to a global level. 

The attribute vector is an extension to curvature, which is invariant to rotation and 

translation.  

 

3.5.1.5 Mutual Information 

Mutual Information (MI) is an entropy-based measure that was introduced in [99] to solve 

the so called ‘sensor fusion’ problem. It uses a new information-theory approach for finding 

the pose of an object based on a formulation of the joint entropy between the model and the 

image. This is called Empirical Entropy Manipulation and Analysis. MI is an effective 

method for image registration, particularly for multi-model applications. MI intuitively 

encodes the statistical relationship of the voxel intensities, thus yielding more consistent 

registration results.  

Mathematically, MI of A  and B  is defined as the amount of information gained about A  

when B  is learned and vice versa. It is zero if and only if A  and B  are independent.  
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H(I1 ) H(I2) H(I1,I2)

MI(I1,I2)  

Figure 3.2: The relationship between entropy and mutual information depicted as Venn diagrams.  

 The basic idea is that when images A  and B  are aligned, there will be a consistent 

relationship between image A  intensity and image B  intensity. A transformation is 

considered to be consistent if points that have similar intensities in image A  are projected 

to similar values in image B . A formal definition of consistency can be formulated based 

on the principle of maximum likelihood. However, a similarity measure based on neighbour 

likelihood alone suffers from certain drawbacks as  it assumes that image A  is a function 

of image B , which may not be true in multi-modal images [100]. Furthermore, it may be 

susceptible to outliers caused by occlusion and specularities.  

Alternatively, Viola et al. [99] suggested using predictability and subsequently information 

entropy based on the assumption that image A  is predictable from image B  but not 

necessarily a function of the later. Information entropy, also called Shannon’s entropy or 

marginal entropy describes how much uncertainty or randomness is encoded by a signal. 

The more random a signal is, the higher the entropy. The entropy of a random variable x  is 

defined as:  

( ) ( ) ( )lnh x p x p x dx≡ −∫  (3.24) 

The joint entropy of two random variables x  and y  is defined as: 

( ) ( ) ( ), , ln ,h x y p x y p x y dxdy≡ −∫  (3.25) 

The concept behind image alignment using the joint entropy is that the predictability of one 

image based on the other is maximised when the two images are aligned correctly and this 

results in minimising the corresponding joint entropy. However, joint entropy is also 

minimised when image intensities are constant, and thus the image by itself is easily 

predictable. To overcome this problem, MI is expressed as the sum of the entropy of the 

individual signals less their joint entropy:  
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( ) ( ) ( ) ( ), ,M x y h x h y h x y= + −  (3.26) 

The relation between entropy and mutual information can also be depicted using Venn 

diagrams as shown in Figure 3.2, where MI is zero when two images are uncorrelated and 

reaches maximum when they are registered to each other. The fact that MI is not minimised 

by image constancy can be better shown by considering a transformation Τ  that seeks to 

align transform image B  to A . The MI of the intensity values of the source image ( )AI x  

and the transformed image ( )( )BI xΤ  that takes the form: 

( ) ( )( )( ) ( )( ) ( )( )( ) ( ) ( )( )( ), ,A B A B A BM I x I x h I x h I x h I x I xΤ = + Τ − Τ  (3.27) 

Registration algorithms based on MI of the images A  and B  seek to find a transformation 

′Τ  that maximises their mutual information over the domain of possible 

transformationsΤ . 

( ) ( )( )( ),arg max A BM I x I x
Τ

′Τ = Τ  (3.28) 

In Equation (3.27), the first term of the MI equation expresses the entropy of the source 

image A  and it does not depend on the transformation Τ , hence it is constant for a given 

set of images. The second term is maximised when the transformation Τ  projects B  into 

the complex parts of image A  and it is minimised when the transformation leads to 

constant intensity. The last term of (3.27) encourages a transformation that maximises 

predictability. Therefore, both the second and third terms strives to minimise entropy, while  

avoiding a transformation that leads to constant image intensities.  

Studhome et al [101] pointed out that MI is sensitive to the changes of image overlap. This 

implies that a change in the proportion of the image overlap can result in changes of MI 

that do not reflect the quality of alignment between the two images. For this reason, they 

formulated the Normalised Mutual Information, which provides a measure that is 

independent to the field of view. 

( ) ( )( )( )
( )( ) ( )( )( )
( ) ( )( )( )

,
,

A B

A B

A B

h I x h I x
MN I x I x

h I x I x

+ Τ
Τ =

Τ
 (3.29) 

MI has been evaluated from a number of different groups [86, 96, 102]. Although it is 

widely accepted as one of the most reliable similarity measures in multi-modal image 
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registration, it also has certain drawbacks. Problems usually arise due to poor image 

resolution and small overlapping areas between the two images. MI can fail if the 2D 

histogram is relatively sparsely populated, which is the case when image resolution is low. 

This problem is also apparent in 2D/3D registration, since the number of pixels reduces 

considerably when compared to 3D/3D registration [86]. Problems also arise when the 

function contains many local minima [103]. Furthermore, MI decouples intensity values 

and location information. As a result, the dependency of the intensity values on 

neighbouring voxels/pixels is ignored [102]. In practice, incorporation of spatial 

information can improve the robustness of the registration process. However, as MI only 

relies on an analysis of the global intensity information, it is not well suited to tasks where 

the statistical aspects of the intensity values vary within the image, which may be the case 

for endoscopic images because of shadows and intensity gradients due to directional 

illumination [104].     

 

3.5.1.6 Beyond Mutual Information 

Recently, several approaches have been introduced to complement or replace MI. For 

example, in the work by Likar et al. [105] noted that searching for the global registration 

transformation with a MI-based similarity measure is not practical for highly non-rigid 

deformations. Typically, this approach leads to a complex similarity function that may have 

many local maxima. They proposed to subdivide the image into blocks that can be 

registered locally by a rigid or affine transformation. The registered images at a higher level 

are then partitioned into progressively smaller sub-images. Once all the sub-images are 

registered, a globally consistent registration is achieved by using the centres of the 

registered sub-images as point pairs and an elastic thin-plate-spline interpolation. However, 

the reduction of the number of samples due to the partition of the images into smaller sub-

images can reduce the statistical power of the joint intensity histogram. In order to improve 

the probability estimation, random re-sampling is introduced, which prevents the alignment 

of a too large number of grid points to minimise the interpolation artefacts.   

Dinggang et al [98] also noted that minimising an intensity-based similarity measure does 

not necessarily imply good registration of the underlying anatomy. In order to address this 

problem, they proposed a new image registration approach based on a Hierarchical 

Attribute Matching Mechanism (HAMMER). Their work has two main features. Firstly, 

they use attribute vectors calculated from the tissue maps across different scales for each 

voxel of the image. Secondly, in order to avoid being trapped by local minima, HAMMER 
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uses a successive approximation of the energy function optimized by lower dimensional 

smooth functions. By hierarchically selecting the features that have distinct attribute 

vectors, the ambiguity in establishing correspondence is significantly reduced. 

In HAMMER, the transformation between two images is defined as a mapping of one 

coordinate system to the other (rigid-body transformation) followed by a shape 

transformation. Let ( )
AI x  be the intensity of voxel x  in a template brain image, and 

( )BI y  be the intensity of voxel y  in another brain image. Here, x  and y  are the 3D 

coordinates of the voxels volumes AV  and BV , respectively. The displacement field ( )u x  

defines the mapping from the coordinate system of image A  to image B , while  

transformation ( ) ( )h x x u x= +  defines the mapping that transforms image A  into the 

shape of image B .  The inverse transformation is defined as ( )1h x−
. 

The hierarchical attribute matching mechanism for non-rigid registration uses a sequence of 

lower dimensional energy functions to approximate the following multivariate energy 

function: 
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In the first term, the similarity of the attribute vectors for each template voxel x  in its 

spherical neighbourhood ( )n x  is calculated. It is worth noting that the similarity is 

estimated over a neighbourhood area, rather than on individual voxels. In (3.30), ( )
A zα  

and ( )
B zα  are the attribute vectors of the voxel z  in image A  and B , respectively. 

Function ( )., .m  measures the similarity of two attribute vectors within the range of 0 to 1. 

In (3.30), the denominator ( )

( )z n x

zε
∈
∑  is used as a normalization factor. The parameter 

( )
A xω  is the relative weight for each voxel x  in image A . The voxels with the distinct 

attribute vectors are assigned with larger weights, because they can be identified more 

reliably than others. In a hierarchical registration scheme, these voxels drive the 

deformation of the image A  by initially focusing on the first term of the energy function. 
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The second energy term is similar to the first, but it is defined in the domain of image B  

and it is used to constrain the inverse transformation ( )1h− ⋅ , from image B  to A . 

Compared to other techniques, the robustness of HAMMER is achieved through a 

combination of the first two terms of the energy function, i.e., the first term is focused on 

deforming image A  to B , whereas the second is focused on deforming image B  back to 

A . The third term is a smoothness constraint on the displacement fields, where 
2∇  

denotes the Laplacian operator and the parameter β  controls the smoothness of the 

deformation field.  

One important factor of HAMMER is the way that the attribute vector is defined. If it 

contains rich enough information then it is possible to distinguish between different parts of 

the anatomy, even when this cannot be inferred from the intensity values alone. Typically, 

the attribute vector is defined for each voxel x  in a volumetric image and it reflects the 

anatomical structure at different scales. Therefore, an attribute vector ( )xα  consists of 

three vectors:  

( ) ( ) ( ) ( )
1 2 3x x x xα α α α =     (3.31) 

( )
1 xα  represents the edge type of the voxel x  in the image and it is designed based on the 

classification of tissue between the voxel x  and its neighbouring voxel z . In this way, 

prior knowledge about the image features and the type of the deformation is also 

incorporated into the registration scheme. In (3.31), ( )
2 xα  represents the intensity of voxel 

x  with a range of grey levels. Finally, vector ( )
3 xα  represents the Geometrical Moment 

Invariants (GMIs) of each tissue at different scales.   

An intuitive way of using an intensity based approach to deal with 2D/3D registration has 

been suggested in [106] for the alignment of 2D optical images with 3D surface data of the 

human faces. In this work, registration is performed by optimizing a similarity measure 

based on photo-consistency with respect to the transformation parameters. The concept of 

photo-consistency can be summarised as follows. When the scene radiance is assumed to 

follow a locally computable lighting model, which means that shadows, antireflections and 

transparencies are not allowed, the observed intensity depends on the cosine of the angle 

between the surface normal and the vector to the light source. Note that it does not depend 

on the angle between the surface normal and the direction to each optical camera. 

Therefore, a surface point projected into different image planes should yield identical 

image intensities in all views.  Given N images of the 3D model, a similarity measure is 
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defined in order to decide whether a point in one view corresponds to a point in the other. 

The arithmetic mean of the pixel values associated with a given point is calculated over all 

optical images. Subsequently, the mean squared image intensity differences are calculated 

and a similarity measure based on a threshold value is introduced.   

 

3.5.2 Feature-Based Techniques 

Although the accuracy of intensity-based registration is usually better than feature-based 

registration, in some cases intensity-based techniques can fail due to anatomical or scene 

structure changes. Another important advantage of feature-based techniques is that they 

converge faster because they use a reduced representation of the image. For this reason, 

they are preferred when real-time response is necessary. These techniques have been 

successfully applied to AR and surgical applications involving implanted fiducial markers.  

 

3.5.2.1 Feature Detection 

Feature detection depends on the nature of the application and plays an important role in 

the accuracy of the registration. In general, features should be distinctive and efficiently 

detectable in both images. They should also be fixed during the whole experiment and 

sufficiently populated in the image plane. Possible features include landmarks and their 

surrounding regions, curves, segmented sets, or points. In 2D/3D registration, the notion of 

edges, regions or points needs to be generalised to 3D surfaces, such that a meaningful 

match between 2D edges and 3D ridges is possible. To this end, a number of definitions 

have been utilised to accomplish this, which also reveals that a mapping between the 2D 

and 3D feature space is not trivial.  

In these approaches, regional features are mainly selected by segmentation and they should 

ideally be invariant to scale, rotation, and illumination changes. Curve and line selection is 

also popular. Standard edge detection methods, such as Canny detector, are often employed 

in 2D/2D registration [78]. However, they are usually not appropriate for 2D/3D 

registration as salient curves on the 3D model surface may not have an accurate match in 

the 2D image data. In the work by Pennec et al. [107], features of the 3D volume data are 

identified through differential geometry where ridges are extracted from the medial axis 

transform. It is worth noting that this definition does not represent salient curves on a 

surface.  
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Crest and extremal lines describe the loci of the surface where one of the principal 

curvatures reaches a local minimum/maximum along the principal curvature. Directional 

curvatures at a surface point P  are defined by the intersection of the plane ( )1, ,P t n  with 

the surface at point P , where n  is the normal to the surface point P  and 1t  presents the 

principal direction, which is the extremum of the surface curvature at point P . 

Subsequently, a crest line can be extracted as the intersection of two implicit surfaces 

[107]: 

f I=  and 1 0e =  (3.32) 

where f  represents the intensity value of the image and I  is an iso-intensity value. In 

(3.32), 1 1 1e k t= ∇ ⋅  and it is called the extremality function.  

Extremal points are close to the notion of corner points. They can also be identified along 

the same line as extremal lines. Extremal points are defined as the intersection of three 

implicit surfaces [107]: 

f I=  and 1 0e =  and 2 0e =  (3.33) 

Similarly to 1e , 2e  is defined as 2 2 2e k t= ∇ ⋅  where 2k  is the associated principal 

curvature. In 2D images, the point features are typically extracted as the intersection of 

salient lines. In general, feature based methods are sensitive to feature extraction and 

selection. Although various techniques have been developed for automatic feature 

selection,  a certain amount of user interaction is often required.  

 

3.5.2.2 Feature Correspondence and Pose Determination 

In feature-based registration, both correspondence between extracted features and pose 

should be determined. Usually they are tackled simultaneously in an iterative manner. 

Features are treated as points either by extracting the geometric centroids or by assuming 

that curves and lines are comprised of a set of points. The problem of establishing 

correspondence between two sets of points is not trivial especially when noise and localised 

deformation are present. In general, the set of points may be unequal in size and can differ 

due to non-rigid transformations. Point correspondence usually is formulated as a discrete 

linear assignment problem and the pose estimation is considered as a continuous least-

squares problem. The combination of the two makes the non-rigid point registration 
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problem difficult. Thus far, a number of approaches have been developed to tackle these 

issues. The Iterative Closest Point (ICP) algorithm is one of the popular techniques to 

register 3D point clouds, curves and surfaces.  

ICP is an iterative approach that identifies the optimal transformation between 3D shapes 

[besl92]. During each iteration, the algorithm establishes point correspondence by 

identifying for each point on the reference surface the closest point in the target surface. 

Typically, ICP uses a mean square distance metric over all six degrees-of-freedom and the 

algorithm can converge monotonically to the nearest local minimum. However, it requires 

an initial pose that is close to the solution in order for the algorithm to converge. In the case 

of large non-rigid deformation, the ICP algorithm does not always converge to the global 

minimum. This is due to the fact that ICP uses a crude way to assign correspondence, 

which can generate local minima and cannot guarantee one-to-one correspondence. 

Subsequently, its performance can deteriorate with the presence of outliers.  

As an alternative, Chui et al. suggested the use of an energy function to solve both the 

correspondence and the transformation problem for non-rigid registration [108]. They  

point out that solving for binary, one-to-one correspondences and outliers at each step is not 

meaningful when the transformation is far away from the optimal solution.  To cater for the 

uncertainty of whether a point matches with another, one allows fuzzy, partial matches 

between the two sets of points. This is the basic idea of softassign, which has also been  

used in [109]. In other words, the discrete problem is now turned into a continuous one in 

order to avoid getting trapped in a local minimum. Softassign has emerged from neural 

networks and it is concerned with how to assign fuzzy values in a set of variables in order 

to form a doubly stochastic matrix. Doubly stochastic matrix is a square matrix with all 

positive entries with rows and columns summed to one.  It has been proved that a doubly 

stochastic matrix is obtained from any square matrix with all positive entries by the 

iterative process of alternating row and column normalisations.  This is known as the 

assignment problem, which is a classical problem in combinatorial optimisation.  However, 

non-rigid point-matching problem is much harder than the linear assignment problem, 

which can be solved in polynomial time.   

Another useful optimisation technique, called deterministic annealing, can also be used to 

directly control the fuzziness by adding an entropy term to the energy function, called 

temperature [108]. Higher temperature values correspond to a higher degree of fuzziness in 

correspondence. The minima obtained at each temperature are used as initial conditions for 

the next stage as the temperature is lowered. The resulted energy function expresses both 

the correspondence and the pose problems at once and it is formulated as:  
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In the above energy function, two point sets U  and V  are defined in , 2, 3n nℜ = , so they 

consist of points { }, 1,2,...,aU u a N≡ =  and { }, 1,2,...,bV v b K≡ = . The non-rigid 

transformation is represented by function f , where 
2

Lf  is a smoothness term that 

imposes constrains on the mapping function. In (3.34), [ ]0,1bam ∈  and it is the fuzzy 

correspondence matrix which satisfies: 

1

1

1
N

ba

a

m
+

=

=∑  for { }1,...,b K∈  and 
1

1

1
K

ba

b

m
+

=

=∑  for { }1,...,a N∈  (3.35) 

whereΤ  is the temperature and it is followed by the entropy term. In (3.34), the last term is 

the robustness control term that prevents the rejection of too many points as outliers. 

Although this formulation is limited to the alignment of 2D or 3D point sets, it can also be 

extended to registering data from different dimensions and modalities.  

When it comes to 2D/3D registration, the perspective projection should also be taken into 

account. Existing approaches have addressed the problem of registering a 3D model and its 

perspective projection using a combination of the softassign technique for the problem of 

correspondence [110, 111]. It incorporates an iterative technique called Pose from 

Orthography and Scaling with Iterations (POSIT) for pose estimation. The basic principle 

of POSIT is based on the fact that the pose problem for perspective projection can be 

solved by iteratively refining the pose computed for scaled orthographic projection. 

According to the idea of ‘softassign’, the correspondence between image features and 

model features in the global objective function is expressed as a correspondence matrix in 

which each term is a weight for the match between an image point and a model point.  This 

weight is a function of the distance between the scaled orthographic projection of the model 

point and the scaled orthographic projection after that model point is displaced onto the line 

of sight of the image point (for a camera pose that is refined during the iteration process).  

For the pose problem, scaled orthographic projection is used as an approximation of 

perspective projection, because it allows one to solve the pose problem with linear algebra 

and with fewer unknowns than with projective geometry.  
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3.6 Optimisation Techniques  

Most of the image registration approaches involve an optimization step. Optimisation 

techniques are iterative processes for identifying the optimal transformation that maximizes 

the similarity between the two images/data sets. This is not an easy task especially when the 

transformation has large degrees-of-freedom and the similarity measure exhibits many local 

minima. Subsequently, the selection of an appropriate search space is crucial. In practice, 

the search space is affected by the similarity measure, the type of the transformation, and 

the image data involved.   

Based on the similarity measure and the nature of transformation, a cost function can be 

constructed. Subsequently, global or local optimization techniques are used to minimize the 

cost function. Global optimization techniques are used to find the best set of parameters to 

optimize an objective function. One such method is the simulated annealing algorithm, 

which is a generalization of a Monte Carlo method applied to combinatorial optimization 

problems. Local optimization methods, on the other hand, usually converge faster but they 

cannot guarantee a global optimum solution. These methods include Powell’s method, 

Simplex, and Gradient Descent Algorithms. In these approaches, only information about 

the neighbourhood of the current approximation is used and subsequently, the algorithm is 

expected to converge to a local minimum/maximum close to the initial position.  

 

3.7 Evaluation of 2D/3D Registration Algorithms  

In image guided surgery, registration errors can have major consequences in patient 

safety. The quantification of the registration quality is also an important issue. For 

example, registration errors can have a strong influence on the quantification of the 

lesion progression and mis-alignment of important anatomical structures. Accurate 

evaluation of the performance of 2D/3D registration algorithms is of crucial importance in 

surgical guidance. Currently, there is a lack of a consistent, common scheme that would 

permit an objective, direct, and data-invariant comparison between different registration 

methods. Thus far, most techniques have been developed under the strict constraints of a 

particular application framework with lack of general applicability. Kraats et al [112] 

investigated this issue and introduced a standard validation method based on the 3D 

Rotational X-ray imaging system. However, this system is designed to address only the 
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problem of registering 3D CT with X-ray images. Otherwise, the ground truth data cannot 

be evaluated with this method and the target-registration error cannot be estimated.  

The most fruitful part of this work is the criteria of validation, which can be applied to other 

registration problems. These are the ground truth data and the determination of accuracy. 

Although the availability of common datasets is necessary in order to establish a 

standardized evaluation framework, ground truth data are not always available. Usually, the 

ground truth data can be created under a controlled environment with additional tracking 

devices. The determination of accuracy involves the estimation of validation statistics under 

a range of different starting positions and experimental conditions.   

In the case of bronchoscopy registration, 2D/3D algorithms have been investigated by a 

number of research groups [74, 75, 77, 113, 114]. However, a common framework for 

validating these algorithms has yet to be created. For example, Mori et al. [75] used visual 

inspection to decide whether a frame was successfully registered. In this way, there is no 

quantitative measurement of the error involved and an indication of the sensitivity of the 

algorithm to different registration parameters. In the work presented by Helferty et al., a 

rubber mould from a human airway tree was used to assess a biopsy procedure and average 

positional error between a target metal bead and the needle. However, there is no 

systematic assessment of the angular accuracy of the technique. The exploration of the 

influence of different initialisations on the convergence of the algorithm is presented in 

[77], although the notion of the ‘ideal registered position’ and ‘registration error’ has not 

been fully clarified.  

 

3.8 Discussion and Conclusions 

Image-based registration is a valuable tool for monitoring the progression of diseases, 

surgical planning, and intra-operative guidance. In general, image registration consists of 

four major components. These include the target and source datasets, the transformation 

model, a similarity measure, and an optimisation technique. The choice of the 

transformation model and the similarity measure plays a key role in the success of 

registration techniques and this will be the focus of the work presented in this thesis.  

For free-form deformation, transformation can be described by a local and global 

component. The local component encodes the variability of the model and a number of 
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geometrical- and physical-based models have been proposed. Geometrical-based models 

offer a large number of unrestricted control points but it may be difficult to adjust in 

practice. Physical-based models provide an effective way of modelling the physical 

behaviour of complex structures. However, their application requires accurate measurement 

of the tissue properties, which in practice can be difficult.  

For image registration, similarity measures can be classified as intensity-based and feature-

based approaches. Intensity-based techniques compare image intensities without structural 

analysis, whereas feature-based techniques are dependent on the extraction and matching of 

features of the reference and target images. Intensity based techniques have a number of 

limitations. For example, cross-correlation based methods are sensitive to intensity changes 

introduced by varying illumination and changing modality. When applied to endoscopic 

image registration, careful adjustment of illumination condition is important to the accuracy 

of the registration result. Mutual information is based on the statistical dependency between 

datasets and thus is more suitable for registering multi-modal images. However, it can fail 

when the histogram is sparsely populated, which is typical for 2D/3D registration. A major 

disadvantage of intensity-based techniques is that image similarity does not necessarily 

imply correct registration. In practice, feature based approaches can augment the 

registration performance but the robust extraction of salient features used for registration 

can be a difficult task.   

Despite extensive research in registration, non-rigid 2D/3D registration remains a 

challenging issue. This is partly due to the ill-posed nature of the problem as well as the 

difficulty in handling both global and local deformation. For this reason, most existing 

techniques reduce the problem to a 2D/2D registration scheme by using the 2D projections 

of the 3D data. However, this procedure introduces further ambiguity when deformation is 

present. In the next chapter, we will demonstrate that for bronchoscopy navigation, it is 

possible to exploit the unique camera-lighting configuration of the system to provide a 

robust surface geometry based 2D/3D registration algorithm. We will demonstrate why the 

proposed method is superior to existing techniques and how it handles significant lighting 

condition changes during bronchoscope examination.   
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Chapter 4   
 

 

 

2D/3D Registration based on pq-based 

Representation  

egistration of 2D bronchoscope video to 3D tomographic data is a popular research 

topic in medical imaging due to improved imaging hardware in recent years. For 

example, the work by Helferty et al. [113] analysed preoperative CT data of the airways to 

compute a segmentation of the tracheo-bronchial tree and the centrelines through the major 

airways. In this way they used the centrelines as a path to guide the registration process. In 

this method, the similarity measure is based on Normalised Mutual Information, which is 

calculated from weighted entropy terms, estimated from the normalised image histograms 

of the video and CT reconstructed images. Their hypothesis is that the darker pixel values 

have less noise and are more likely to form a match in the two images. In other words, dark 

areas give more useful information, as they correspond to distal lumen and airway 

bifurcations.    

In the work by Bricault et al. [77], a multilevel strategy was adopted by considering the fact 

that the bronchial lumen presents no specific texture and gray values vary with the camera 

position and lighting conditions. In order to enhance the robustness of the algorithm, a 

model-based shape-from-shading algorithm is used to reconstruct the surface of the lumen 

and the subsequent 2D/3D registration is transformed into a 3D/3D registration problem.  

Recently, Mori et al [74] presented a registration method that does not depend on the 

airway structure. The objective of the work was to develop a general framework for 

tracking the viewpoint and view direction of the fiberscope in relation to the 3D model. The 

method searches for the best viewpoint and view direction by calculating a matching ratio 

R 
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between a reconstructed virtual bronchoscopic image and a real one. Camera motion is also 

estimated by extracting optical flows. Optical flows of a video sequences are the velocity 

fields that indicate the motion of objects from one frame to the other. For this method, since 

a cross-correlation based similarity measure was used, the lighting properties of the 3D 

model played an important role in the registration process. If the lighting is not carefully 

adjusted to match to that of the bronchoscope video, cross-correlation based similarity 

measures can fail. In real endoscopy, the illumination power decreases with the square of 

the distance from the light source. To simulate this effect, the parameters are adjusted 

manually such that similar visual appearance can be achieved. Throughout the registration 

process, the specular and reflection properties of the tissue are ignored.   

Since image registration often depends on the inherent characteristics of the image data, it 

is necessary to exploit the unique constraints of the image formation process to facilitate 

faster and more accurate convergence of the registration algorithm. These special 

conditions, although may not be generally true, can reduce the ambiguity of the otherwise 

ill-posed problem. In this chapter, a hybrid approach is proposed. It is based on the 

extraction of surface normals from the bronchoscope video images by using the camera-

lighting constraint of the bronchoscope. The components of these normals can be 

represented in the ( ),p q  gradient space that expresses the slopes of the surface in the x and 

y directions as shown in Figure 4.1. This permits the development of a linear shape-from-

shading technique to derive the 3D geometry of the 2D bronchoscope data such that 

registration can be performed based on the alignment of the surface normals. In this way, 

there is no need to adjust the lighting of the 3D model, and hence significantly increases the 

robustness of the registration algorithm.  

The basic process of the proposed technique involves the following steps. Firstly, the 

surface normal for each pixel of the 2D video bronchoscope image is extracted by using a 

linear local shape-from-shading algorithm based on the camera/lighting constraint of the 

bronchoscope. The corresponding pq vectors of the 3D tomographic data are calculated 

from direct z-buffer differentiation. Subsequently, a similarity measure based on angular 

deviations of the pq vectors derived from 2D and 3D data sets is used to find the optimal 

pose of the camera in relation to the 3D model, thus establishing the correspondence 

between the 2D video and the 3D tomographic data. 
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4.1 pq-based 2D/3D Registration 

In this study, our main interest is focused on the estimating pq-components of the exposed 

airway surface from monocular bronchoscopic images without the reconstruction of the 

whole surface. To this end, a linear shape-from-shading technique is adapted [115] and in 

this section detailed processing steps will be provided. The direct use of surface pq-values 

for 2D/3D registration avoids error prone processes of depth integration. First, we will 

introduce the basic concept of shape-from–shading and image formation process. We will 

then demonstrate how to incorporate the special camera-lighting configuration of the 

bronchoscope to reduce the problem to a linear form. Finally, a pq-space based similarity 

measure is constructed for the alignment of the 2D/3D data. Detailed phantom and in vivo 

experimental results are demonstrated at the end of this chapter.    

 

 
 
Figure 4.1: A schematic illustration of the basic configuration of the image formation process for 

bronchoscope. In this figure, the camera coordinate system is used with the Z-axis towards the image 

plane. N̂  is the unit normal of a surface point. Variables p, q are called the surface gradients at that 

point, which are the slopes of the surface along the x and y direction, respectively. In the case of 

endoscope images, the viewing vector (the vector from the camera to the surface point) coincides 

with the lighting vector (the vector from the light to the surface point).  However, the camera is close 

to the object and the angle between the viewing vector and the optical axis, α , is not negligible. 
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4.2 Shape-from-shading 

Shape-from-shading is a classic problem in computer vision that has been well investigated 

since the pioneering work of Horn [116].  It addresses the problem of extracting both 

surface and relative depth information from a single image. Before we move on to the 

special case of extracting surface information from bronchoscopic images, we need to 

define a few basic concepts of how image intensity is related to scene geometry. To extract 

the 3D structure from a monocular image, it is also important to study how the brightness 

pattern of an image depends on the shape of the object being imaged. Most of the notations 

used in this chapter follow the convention adopted by Horn on his original work on Shape-

from-shading and photometric stereo [116-118].  

 

4.2.1 Human Vision and Depth Perception  

How the human visual cortex infers depth information from 2D images is an issue that has 

intrigued scientists and philosophers for centuries. There are many cues that help the vision 

system to recover the third dimension. Well known cues for depth recovery include motion 

parallax and binocular disparity. Motion parallax is the apparent shift of an object against 

the background. Binocular disparity, on the other hand, is the difference between the 

relative positions of corresponding features resulting from the spatial separation of the two 

eyes.  

When an image is projected onto the screen, the apparent depth information is lost. 

However, humans can still infer shape from monocular images with a remarkable degree of 

details [119]. It is believed that the extraction of shape-from-shading is a visual process, 

developed prior to higher-level cognitive tasks, such as perceptual grouping and motion 

perception [120]. The leading cue in a monocular image is the variations in brightness, also 

called shading. Shading should not be confused with shadowing, which is the locus of 

points where the rays graze the surface (self-shadow), or a region of darkness where light is 

blocked (cast-shadow). Shading arises partly from the fact that the fraction of the light 

source that appears at a particular point on the surface depends on surface orientation. 

Subsequently, shading provides cues all over the surface and not just along special 

contours. However, shading is related to shadowing in the sense that shadowing of parts of 

the microstructure of the surface may contribute to the shading effects apparent on the 

macro scale.  
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The recovery of shape-from-shading is by no means trivial, since the problem is ill-posed. 

Simply speaking, the orientation of an object located at a given distance from the camera 

depends on two parameters while there is only one measurement of brightness for each 

pixel. Therefore, to solve the shape-from-shading problem mathematically, additional 

constraints must be adopted. One common way of providing these constraints is to assume 

a smooth and continuous surface, implying that the surface orientations of the neighbouring 

surface patches are not independent. It has been shown that for the human vision system, 

object boundaries and prior knowledge plays an important role in resolving depth 

ambiguities. We often simplify the task of interpreting shading by assuming a single light 

source emitting light from above in relation to the retinal coordinates [119]. Furthermore, in 

our visual environment, we mainly deal with opaque objects, where the light rays do not 

penetrate through the material. Subsequently, we only need to focus on the surface of the 

object. It is with these simplifications, that the 3D shape of an object can be recovered 

given only one monocular image. To understand how to use the shape information encoded 

in the intensity values of an image, it is important to study the relationship between the 

light falling onto a surface and that radiated from the same point according to the 

reflectance properties and orientation of the surface. It is also important to study image 

formation process itself.   

 

4.2.2 Understanding Image Intensities  

The image of a 3D object depends on its shape, its reflectance properties, and the location 

of the light sources. It is also a function of the position of the object relative to the camera 

and the object’s orientation in space. Radiometry is the field that studies the measurement 

of electromagnetic radiation, including visible light. It is central to the determination of 

how the brightness at a particular point of the image is formulated. In this field, the amount 

of light falling onto a surface is called the irradiance and the amount of light radiated from 

a surface is called the radiance. Light transports energy through space and subsequently 

brightness is determined by the amount of energy the imaging system receives per unit 

area. The fact that a surface can anisotropically radiate into a whole hemisphere of possible 

directions is what complicates the notion of radiance, and subsequently the process of 

image formation. This is modelled with the Bidirectional Reflectance Distribution Function 

(BRDF), which is a measure of how much of the incident light is reflected in a particular 

direction. More accurately BRDF is the ratio of radiance to irradiance. Analytical 



 

 88 

estimation of the reflectance function is difficult to construct, and hence it is usually 

determined empirically. 

Assuming a single point light source and a unique value of BRDF, which can be assumed 

for most surfaces, the geometry of reflection is governed by three angles.  

• The incident angle, which is the angle between the incident ray and the local 

normal; 

• the emittance angle, which is the angle between the ray to the viewer and the local 

normal; 

• the phase angle, which is the angle between the incident and the emitted ray.  

In this way, object geometry, expressed as the normal to each surface point, is related to the 

light reflected in the direction of the viewer, and hence it is related to image intensity. A 

surface normal is the vector perpendicular to the tangent plane of a surface point and it can 

be described by two parameters only as it defines only the orientation of the surface. 

Moreover, it is unique as long as the surface is smooth. Here, it is practical to describe 

surface orientation based on viewer-centred coordinate system, such that one axis is aligned 

to the optical axis of the imaging system. By following this convention, it has been shown 

that in the image coordinate system the unit surface normal is described from the equation 

below [116].  

( )n
n

n 2 2

, ,1
ˆ

1

p q

p q

Τ− −
= =

+ +
 (4.1) 

where ( ),p q  is called the gradient space, since its components represent the slopes of the 

surface in the x and y directions, respectively. These components can also be seen as the x 

and y projections of the normal to the camera coordinate system. The sign depends on 

whether the normal is pointing inside or outside of the 3D-object.  

Gradient space is a map that provides insight into the geometrical properties of a surface. 

For a given type of surface and distribution of light sources, there is a fixed value of BRDF 

for every point in gradient space. Subsequently, image intensity is a single-valued function 

of ( ),p q . The plot of the intensity values against the gradient space is also called 

reflectance map and it only depends on the surface properties and the light source 

distribution. In other words, a reflectance map encodes the relation between brightness and 

surface orientation, and the pattern it follows is characteristic of the surface and lighting 

properties. Subsequently, this map holds properties that make it attractive to image analysis 
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because it establishes an explicit relationship between surface orientation and brightness. 

For example, the angular position of a point in gradient space corresponds to the direction 

of steepest descent on the original surface. Furthermore, a line that appears on the image 

and corresponds to the intersection of two surfaces would be mutually perpendicular to the 

gradient-line, which is the line that connects the points corresponding to each plane in the 

gradient-space.  

The dependence of brightness on surface orientation can also be described as image 

irradiance equation, which illustrates that image irradiance ( ),E x y  is proportional to the 

radiance ( ),R p q  at the corresponding point on the surface. 

( ) ( ), ,E x y c R p q= ⋅  (4.2) 

Note that ( ),R p q  is described from the reflectance map and c  is a constant. Image 

irradiance equation is an important tool in recovering surface shape from a monocular 

image. However, the image irradiance equation only restricts the orientation of a surface 

point and cannot uniquely define the surface itself. Although there is a unique mapping 

from surface orientation to radiance, the inverse mapping is not unique. An infinite number 

of surface orientations give rise to the same brightness. To recover surface orientation 

locally, additional constraints must be introduced. For example, many surfaces are smooth 

without discontinuous in depth and the same is true for their partial derivatives. The 

assumption of smoothness is a strong constraint, since adjacent patches of the surface 

cannot have arbitrary orientations. 

 

4.2.2.1 Special Cases of Reflectance Map 

In this section, some special cases of illumination are further described as they are common 

in bronchoscopy and related to the problem of reconstructing 3D shape from endoscopic 

images. In practice, a number of factors can complicate the problem. For finding an 

analytical solution, certain assumptions must be taken into consideration. For example, it is 

common to assume a Lambertian model with an ideal point light source as well as a pinhole 

camera setup. However, it is also important to investigate the errors that these assumptions 

introduce.  

The situation where a point source is located at the same place as the viewer leads to a 

Rotational Symmetric Reflectance Map (RSRM), which generally holds when the light 
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source is distributed in a rotationally symmetric fashion about the viewer. This is described 

from the equation bellow, where g  is assumed to be a strictly monotonic and differentiable 

function.  

( ) ( )2 2,R p q g p q= +  (4.3) 

Based on the image irradiance equation a system of five differential equations is 

constructed. 
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where( ),x yE E  is the image brightness gradient, and the dots denote differentiation with 

respect to a step δξ  in the direction of the steepest ascent. Giving starting values, this set of 

differential equations can be solved numerically.  

It is common for shape-from-shading algorithms to assume an ideal Lambertian surface 

because of its mathematical simplicity. Lambertian surface under point source illumination 

is an idealised surface material that satisfies two conditions: (1) it appears equally bright 

from all viewing directions, and (2) it reflects all incident light. This surface when 

illuminated from a single light source obeys Lambert’s cosine law, which states that the 

amount of reflected light is proportional to the cosine of angle of incidence. In this case, the 

RSRM takes the form: 

( ) 2 2, 1 1R p q p q= + +  (4.5) 

This special case can be used also when brightness decreases monotonically with the 

surface slope. It has been proved that for a surface that is illuminated symmetrically around 

the viewer, i.e., RSRM, with a Lambertian reflectivity model (not self-occluded and wholly 

contained in the field of view) a shaded image uniquely determines the imaged surface 

[121].   

In most cases of recovering 3D shape from image intensities, mutual illumination is 

ignored. Mutual illumination is created from the interaction of objects, so that light is 

reflected from one to another. If the intensity of an image is also subject to mutual 

illumination, then the reflectance map cannot be uniquely determined. This implies that the 
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assumption of a unique value of image intensity with every surface orientation does not 

hold any more. The effects of mutual illumination include a reduction in contrast between 

faces and the appearance of gradation of light on images of planar surfaces. In the absence 

of this effect, one would expect planar surfaces to form images of uniform intensity, since 

all points on a plane surface have the same orientation. However, when the light source is 

close to the scene, significant gradients can appear.  

Since mutual illumination is due to global lighting interaction, it is difficult to account for 

this effect in shape-from-shading schemes. In these cases, it is better to rely on the 

discontinuities of radiance rather than its actual values, since the former are related to the 

scene geometry [122]. It has also been noted that in the presence of inter-reflections, the 

extracted shape appears shallower than that of the real one and a refinement of the solution 

is required [123]. If the surface has small albedo, which implies that the surface material 

reflects only a small portion of the incident light, the inter-reflections can be ignored and 

the solution is very close to that suggested by the image irradiance equation.   

 

4.2.3 Image Formation  

Image formation is a transformation between two worlds: (1) a 2D surface and the depth 

values, and (2) a 2D image and its intensity values. The relationship between object 

coordinates and image coordinates is given by the well-known perspective projection 

equations where f  is the focal length. 

( )0 /x x z f= , ( )0 /y y z f=  (4.6) 

where f  is the focal length. Horn [118] also proved that image irradiance is proportional to 

scene radiance by taking in consideration an ideal pinhole imaging system. This is achieved 

by considering a patch on the surface of the object that makes an angle α  between the 

optical axis and the light ray going through the centre of the solid angle subtended by the 

object’s surface patch. Note that the solid angle subtended by a surface patch is defined as 

the surface area of a unit sphere covered by the surface’s projection onto the sphere. This 

area is proportional to the area of the patch and the cosine of the angle of inclination, but it 

is inversely proportional to the square of its distance from the origin. The solid angle 

defined by the origin of the lens and the surface patch must be equal to the solid angle 

defined by the lens and the corresponding image patch. Assuming that no light from other 

areas reaches this image patch, it follows that:  
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where ( ),E x y  is the irradiance of the image, L  is the reflected radiance of the surface in 

the direction towards the lens, d  is the diameter of the lens, and f  is its focal length. This 

is a basic relationship for recovering information about the shape of an object and it is also 

related to the image irradiance equation defined above.  

 

4.3 Shape-from-shading in Bronchoscopy 

The essence of shape-from-shading problem is to recover surface ( ),z x y  given image 

( ),E x y  and a reflectance map ( ),R p q . The image irradiance equation can be viewed as a 

non-linear first-order partial differential equation. Since the original development of shape-

from-shading in computer vision [116], many different techniques have been developed. 

Zhang et al. presents a survey of most well-known algorithms in the field. In general, each 

algorithm works well for a certain type of images, but can perform poorly for others. An 

early solution was based on singular points that have maximum brightness. The orientation 

of the surface can be determined directly and uniquely at these points because their normals 

are parallel to the principal axis of the camera. Subsequently, the solution can be extended 

from these points to the rest of the surface by using method of characteristic strips [118].  

The method of characteristic strips is classified as a propagation approach, because it 

propagates the shape information from a set of surface points to the whole image. The 

image irradiance equation provides a system of five differential equations, three related to 

the spatial coordinates of the system and two related to image gradients. A solution of these 

differential equations produces a curve on the surface of the object. These equations are 

integrated numerically along these curves of the object, and therefore called characteristic 

strips. The projections of characteristic strips on the image are called base characteristics. 

The direction of characteristic strips is identified as the direction of intensity gradients. To 

obtain the depth distribution of the whole surface, characteristics strips must be joined 

together. Each of them requires an initial starting position, possibly provided as a singular 

point of a boundary constrain. The method of characteristic strips has been refined from a 

number of research groups, among them Kimmel et al. [124], who suggested an Eulerian 
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formulation of the problem. Nevertheless, propagation approaches suffer from a number of 

problems, such as sensitivity to measurement errors and their accumulation by the 

numerical integration of the differential equations, as well as numerical instabilities.  

Alternative solutions can be found by forming a minimisation problem of the difference 

between the observed brightness and that predicted from the estimated shape, thus leading 

to relaxation/minimisation techniques [118]. In other words, an energy function, which 

consists of the brightness and the smoothness constraints, is minimised. Additional 

constraints based on the integrability of the surface and regularisation terms are also 

introduced. These techniques are also called variational approaches because they use 

calculus of variations to find the appropriate function to minimise. In general, minimisation 

approaches are more robust than propagation methods but they require a number of 

additional parameters to be estimated related to the constraints of the minimisation 

function. An important disadvantage of this method is that the image irradiance equation is 

not satisfied as a hard constraint. As a result, the reconstructed image can be different from 

the initial image.  

Most of the shape-from-shading algorithms assume that both the viewer and the lighting 

source are relatively far from the object’s surface, which suggests an orthographic 

projection and parallel illumination. Under orthographic projection, the position of an 

image projection is independent of the depth of the surface point. Note that parallel 

illumination light leads to uniform illumination intensity for the entire object surface. 

Therefore, the main analysis is based on the assumption that the angle between the viewing 

vector V̂ and the Z-axis, α , is negligible. However, this is only correct when the object 

size is small compared to its distance from the camera, and these assumptions are violated 

in endoscopic images.   

Recovering shape-from-shading from an endoscope images is a special case. In endoscope, 

both the camera and light source are close to each other and positioned in close proximity 

to vessel walls. Furthermore, the direction of the illuminating light coincides with the axis 

of the camera. Indeed, endoscopes usually have two light sources that they are 

symmetrically placed on either side of the lens. This light distribution can be approximated 

as a light source at the tip, which coincides with the centre of the lens [125]. In this case, 

the image intensity depends not only on the 3D shape of the object, but also on the distance 

between the light source and the surface. This is also apparent by studying the image 

formation equation. Even when the illumination is uniform, the term 
4cos α  implies non-

uniform image brightness. The wide-angle lenses of the endoscope also enlarge the error 
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assumed by orthographic projection. In this case, no assumption can be made on the angle 

between the viewing vector and the principal axis, α , being negligible and lighting being 

uniform. Conventional algorithms, such as of Bichsel et al. [126], Oliensis et al. [127], Tsai 

et al. [128],  and Worthington et al. [129] are not applicable. Although the light source 

distribution in endoscope images is not the same as in conventional shape-from-shading 

formulations, it offers an advantage to solve the problem as the direction, as well as the 

distance, from an object’s surface point to the light source and the projection centre is the 

same. Furthermore, the light is distributed in a rotationally symmetric way around the 

viewer that leads to a RSRM discussed earlier.   

Due to the fact that shape-from-shading is an ill-posed problem in a general context, the 

practical uptake of the technique is slow.  However, recently it has been shown that for the 

special lighting-camera configuration in endoscopy, the problem can be considerably 

simplified and constrained. There are a number of studies focused on 3D shape from 

endoscopic images [115, 130-132]. Their main objective of these studies is to reconstruct 

the 3D shape of an endoscopic view of the inner vessel wall, with applications to tumour 

assessment and surgical planning.  

In the work by Deguchi et al. [133] and Okatani et al. [130] is suggested an extension to the 

propagation technique based on the work of Kimmel et al. [124], which exploits the 

endoscopic configuration setup of the light source with relation to the camera. They 

introduce the notion of equal distance contours, which are space curves on the endoscopic 

surface with points at equal distance from the light source. In other words, they are the 

intersection of the object surface with a sphere whose centre is the light source. Based on 

the constraints introduced from the camera-lighting configuration, the surface normal at 

each point on the contour is completely defined. If an initial equal distance contour is 

given, the total surfaces can be recovered by propagating this contour with respect to the 

distance from the lighting source. Finally, a numerical algorithm is constructed based on 

finite difference approximation. To reconstruct the shape of an object with this method, it is 

necessary to determine at least one initial contour. This method suffers from the same 

problems as the propagation methods presented earlier. For example, error due to image 

noise can accumulate by the numerical integration involved.   

Henrique et al. extends the work of Okatani et al. [130] to account for the radial distortion 

of endoscopic images for non-Lambertian surfaces. Henrique et al. observed the strong 

radial image distortion in the endoscopic images. This is a result of the small focal length 

and the wide-angle lenses used. To correct for radial distortion, the work by Henrique et al. 

uses a model based on a spherical projection followed by an orthographic projection. 
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Concerning the Lambertian surface assumption, this work uses a dichromatic model to 

remove the specular reflection component present in the image to obtain a Lambertian 

surface equivalent. A dichromatic model suggests that light is reflected in one of two ways: 

surface reflection, which encompasses mirror surfaces and body reflection, which refers to 

matte surfaces. However, this work did not contribute to any substantial algorithmic change 

in the main algorithm of propagating equal distance contours introduced in the work be 

Okatani et al. [130]. In both studies by Okatani et al. and Henrique et al. the image 

formation model was based on the fact that the light source and the camera projection 

centres are at the same position and close to the surface. This can be described by the 

equation below: 

( ) ( )
( )

2

cos
, ,

G
E x y x y

r

ϑ
ρ=  (4.8) 

where ( ),E x y  is the image irradiance, ρ  is the surface albedo, ϑ  is the angle between the 

surface normal and the observed direction, coincident with the light source direction. In 

Equation (4.8), r  is the distance between the projection centre and the corresponding point 

on the surface, whereas function ( )cosG ϑ  models the BRDF under the assumption that it 

is monotonically decreasing with respect to ϑ . Note that this assumption is more general 

than the Lambertian model.  

Rashid et al. [115] also investigated the problem of reconstructing 3D shape from 

endoscopic images. The main objective of his study was to recover the gradient space (pq-

components) for each pixel of the image so that the surface can be reconstructed later by 

using an integration step. He also exploited the special camera-light configuration of 

endoscope and by considering a Lambertian surface property of the vessel lumen. To model 

the dependency between the distance of the 3D object to the light source, and the image 

intensity of the corresponding image patch he added one more factor to the image 

irradiance equation. This was a monotonically decreasing function ( )f r  between the 

surface point and the light source. Therefore, the image irradiance functionE is formulated 

as: 

( ) ( ) ( )
0, , cosE x y s x y f rρ ϑ= ⋅ ⋅ ⋅  (4.9) 

where 0s  is a constant related to the camera, ρ  is the surface albedo, and ϑ  is the angle 

between the incident light ray and the surface normal. The main advantage of his technique 

is in its mathematical simplicity, which leads to a system of linear equations. In this way, 



 

 96 

the pq-vectors can be calculated from a closed-form solution as it is shown in the following 

section. 

Recently, Prados et al. [132] studied the Lambertian shape-from-shading problem for a 

pinhole camera with a point light source located at the optical centre. Under these 

assumptions, the problem is well-posed and the solution can be found by solving the partial 

differential equation without additional constraints. Their main contribution of this work is 

that it proves the existence and uniqueness of the solution in the case of the light source 

locating at the same place as the camera. They also provide an iterative algorithm that is 

robust to image noise and errors on the estimation of intrinsic camera parameters and 

lighting configuration.  

 

4.3.1  A closed-form solution for extracting pq-components  

The method for pq-value extraction for 2D/3D registration in this thesis follows the work of 

Rashid et al [115]. It is a linear method of determining local surface orientation of a 

smooth, Lambertian surface and it does not require prior knowledge of the albedo or the 

illumination strength. Instead, it assumes that the light source coincides with the camera 

lenses, which is true for endoscopic procedures. The method accepts surfaces with a slowly 

varying (or locally constant) albedo and perspective image projection was used for the 

image irradiance equation, i.e.,   

( ) 0 2

cos
,E x y k I

r

ϑ
ρ= ⋅ ⋅  (4.10) 

where k  is a camera constant and 0I  the intensity strength of the light source, which is 

also assumed to be constant. In the above equation, ϑ  is the angle between the incident 

light ray and the surface normal defined as [ ]= -1p,q,n , whereas r  is the distance 

between the light source ( ),,S S SS X Y Z=  and a surface point ( ), ,P X Y Z= . The 

surface albedo ρ  is defined as a function of ( ), ,x y z . Subsequently, the cosine of ϑ  can 

be expressed by the normalised dot product of the surface normal and the vector that 

connects pointP  with the light source S : 
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(4.11) 

The distance from the light source is: 

( ) ( ) ( )2 2 22
S S Sr X X Y Y Z Z= − + − + −  (4.12) 

Based on these formulations, image irradiance at an image point ( ),x y  that corresponds to 

the brightness of the surface point P  can be written as: 

( )
( ) ( ) ( )
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0 3/21/2 2 2 22 2

,
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X X p Y Y q Z Z
E x y k
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 + + − + − + −  

 (4.13) 

Note that all distance measures have been normalised with respect to the focal length so 

that: 

0
0 2

I
k k

f
=  (4.14) 

By placing the point light source at the origin of the camera coordinate system simplifies 

these equations. As mentioned earlier, although physically the light source cannot be placed 

exactly at the same point as the camera, endoscopes have two light sources placed 

symmetrically on each side of the lens. This configuration can be approximated well with a 

system where both the camera and the light source are at the origin of the coordinate system 

and have the same direction pointing towards the -Z axis (principal axis) [115]. 

0S S SX Y Z= = =  (4.15) 

Furthermore, the well known relationship between P  and its image position ( ),x y  under 

perspective projection can be used to replace the 3D coordinates with the corresponding 

image coordinates. Subsequently, the image irradiance equation can be written as  

( )
( ) ( )0 1/2 3/22 2 2 2 2

1
,

1 1

p q
E x y k

Z p q x y
ρ

− −
=

+ + + +
 (4.16) 

By assuming a smooth surface and continuous differentiable function ( ),Z Z x y= , local 

Taylor series expansion at ( )0 0 0 0, ,P X Y Z=  can be used to derive Z, i.e., 
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( ) ( )0 0 0Z Z X X Z X Y Y Z Y= + − ∂ ∂ + − ∂ ∂ +�  (4.17) 

By omitting the higher order terms, we have: 

( ) ( )0 0 0 0 0Z Z X X p Y Y q= + − + −  (4.18) 

where the components of the normal vector [ ]0 0, , 1p q −  at the surface point 0P  are given 

by: 

0 00 ,|X X Y Y

Z
p

X
= =

∂
=
∂

 and 
0 00 ,|X X Y Y

Z
q

Y
= =

∂
=
∂

 (4.19) 

Function Z  can also be represented in terms of the image coordinates by taken into 

account the perspective projection, which yields  

( )0 0 0 0 0

0 0

1

1

Z p x q y
Z

p x q y

− −
=

− −
 (4.20) 

The substitution of the above expression into the image irradiance equation results in the 

following formulation: 

( )
( )

( ) ( ) ( )

3

0 0
0 1/2 3/222 2 2 2 2

0 0 0 0 0 0 0

1
,

1 1 1
av

p x q y
E x y k

Z p x q y p q x y
ρ

− −
=

− − + + + +
 (4.21) 

This equation represents image irradiance corresponding to a planar patch approximation of 

the surface around [ ]0 0 0 0 0 0, ,P x Z y Z Z= . In Equation (4.56), avρ represents the average 

albedo in the neighbourhood of 0P , and it is evident that the above image irradiance 

equation is a non-linear function of 0p , 0q , 0Z  and avρ .  

Further information about the local analysis of image irradiance is obtained from the 

directional derivatives. The variation of image irradiance along the x  and y  directions can 

be obtained by using the partial derivatives of the image intensity , i.e., 

E E
dE dx dy

x y

∂ ∂
= +

∂ ∂
 (4.22) 

By differentiating the image irradiance equation with respect to x and y , we have: 
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0 0 0 0
2 2

0 0 0 0 0 0

3
1 1

dE p dx q dy x dx y dy

E p x q y x y

 + + = − + − − + + 
 (4.23) 

There are two important outcomes from this formulation. Firstly, the derivative of the 

image irradiance equation is proportional to the image intensity itself. Secondly, the 

average albedo avρ  and the camera constant 0k  have been cancelled out. Subsequently, the 

surface information encoded in the normal components ( )0 0,p q  depends only on image 

intensities and the image coordinate position of the correspondent pixel. Since dx  and dy  

are in two independent directions, the x  and y  components of the normalised derivatives 

can be separated. Therefore, after some algebraic manipulations, a system of two linear 

equations with the two unknowns can be derived:   

1 0 1 0 1

2 0 2 0 2

0

0

A p B q C

A p B q C

 ⋅ + ⋅ + = ⋅ + ⋅ + =
 (4.24) 

where 
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 (4.25) 

In the above equation, x xR E E=  and y yR E E= are the normalized partial 

derivatives of the image intensities, E  is the intensity of the pixel under consideration and 

0x  and 0y  are the normalized image plane coordinates. In practice, the partial derivatives 

involved in the above equations can be estimated by convolving the image with a 3×3 

Sobel kernel.  

To demonstrate how the above algorithm works, Figure 4.2 demonstrates the derived pq-

distribution from in vivo bronchoscopic images. These values can be integrated to form a 

3D surface representation of the airways, as shown in Figure 4.2, where the reconstruction 

was based on the algorithm proposed by Agrawal et al [134]. This technique uses graph 
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theory to impose constraints and enforce integrability. The depth map shown in Figure 4.2 

also illustrates the potential problems associated with surface reconstruction from pq-

distribution. Usually, these reconstruction algorithms assume integrability of the vector 

field, which is not true in endoscopic images due to large surface discontinuities. 

Furthermore, the integration process exacerbates inherent inaccuracies of the shape-from-

shading algorithm due to specularities and deformation.  For this reason, we have therefore 

used the pq-distribution directly in deriving the registration algorithm. 

 

 

 

 

 

Figure 4.2: a) Example endoscopic video images. b) The derived pq-vectors based on the linear 

shape-from-shading algorithm of Rashid et al. c) The depth map derived from the integration of the 

pq-vectors. d-e) The reconstructed surface from two different viewing angles. 

a) 

b) 

c) 

d) 

e) 
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4.3.2 Extraction of pq-components from the 3D Model  
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Figure 4.3: a) A rendered pose of the 3D model and b-c) the corresponding p, q components, 

respectively. The p, q components have been derived by differentiating the z-buffer and the 

colormap encodes the value of p and q for each pixel.  

As for tomographic images, the extraction of the pq components from the 3D model is 

relatively straightforward as the exact surface representation is known. Differentiation of 

the z-buffer for the rendered 3D surface will result in the required pq distribution, which 

also elegantly avoids the tasks of occlusion detection. The effect of perspective projection 

has been taken into account during the rendering stage. An example of the extraction of the 

pq-components from the z-buffer is shown in Figure 4.3.  

p z x= ∂ ∂ , q z y= ∂ ∂  (4.26) 

 

4.3.3 Similarity Measure 

At a first glance, one would expect to use the angle ϑ  between the surface normals 

extracted from shape-from-shading and those from the 3D model for constructing a 

minimization problem for 2D/3D registration, i.e.,  

( )( )
3 3

2 2 2 2
3 3

1

1 1

img D img D

img img D D

p p q q

p q p q
ϑ

+ +
=

+ + + +
 (4.27) 

This, however, was proved ineffective because of the scaling problems and image noise 

involved. We used instead the pq components directly to formulate the similarity measure.    

a) b) c) 
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Analytically, for each pixel of the video frame, a pq-vector corresponding to the normalised 

surface normal, ( ) , ,, ,
T

img i j i jn i j p q =   , was calculated by using the linear shape-from-

shading algorithm described above. Similarly, for the current pose of the rendered 3D 

model, the corresponding pq-vectors ( )3 , ,, ,
T

D i j i jn i j p q ′ ′=    for all rendered pixels also 

extracted by differentiating the z-buffer. The similarity of the two images was determined 

by evaluating the dot product of corresponding pq-vectors as 

( ) ( )( )
( ) ( )

( ) ( )
3

3

3

, ,
, , ,

, ,

D img

D img

D img

n i j n i j
n i j n i j

n i j n i j
ϕ

⋅
=

⋅
 (4.28) 

By introducing a weighting factor that is proportional to the norm of 3Dn , the above 

equation can be reduced to:  

( ) ( )( )
( ) ( )

( )
3

3

, ,
, , ,

,

D img

w D img

img

n i j n i j
n i j n i j

n i j
ϕ

⋅
=  (4.29) 

In practice, the weight needs to be normalised to reduce the effect of spurious data due to 

noise amplified by the differentiation of the z-buffer. This is also necessary to avoid the 

degeneration of the similarity measure and the introduction of local minima. This problem 

is caused by low values of the pq components, such as when the camera directly faces the 

tracheo-bronchial wall. The normalised similarity measure can be represented as: 

( ) ( )( )
( ) ( )

( ) ( )

( )3 3

3
33

, , ,
, , ,

, ,

D img D

w D img

DD img

n i j n i j n i j
n i j n i j

Nn i j n i j
ϕ ′

⋅
=  (4.30) 

where 3DN  is the average length of the pq vectors derived from the 3D model. In this 

formulation, the pq vectors are also normalised, ( )3 ,D norm
n i j , based on an empirically 

chosen upper limit K . 

 
( )
( )

3

3

3,

,

,

D norm
D

D normi j

n i j
N

n i j K
=
∑

 (4.31) 

By incorporating the mean angular differences and the associated standard deviations σ, the 

following similarity function can be derived:  
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( ) ( )( )3Dw w
S Nϕ σ ϕ′ ′= ⋅ ⋅∑ ∑  (4.32) 

To formulate a minimisation problem, the above similarity measure takes the form as 

shown below: 

( ) ( )( )3

1

1 Dw w

S

Nϕ σ ϕ′ ′

=
⋅ − ⋅∑∑ ∑∑

 
(4.33) 

By minimising the above equation, the optimal pose of the camera for the video image can 

be derived. The reason for introducing a weighting factor is due to the fact that pq-

estimation from the 3D model is more accurate than that of the shape-from-shading 

algorithm. This is because it is not affected by surface textures, illumination conditions or 

surface reflective properties The weighting factor therefore reduces the potential impact of 

erroneous pq-values from the shape-from-shading algorithm and improves the overall 

robustness of the registration process. The standard deviation has been introduced to 

increase the specificity of the algorithm based on the premise that a systematic error may 

not always indicate pose misalignment. On the contrary, it may be due to inherent 

inaccuracies of the pq estimation technique. Based on the standard deviation, poses that 

introduce mis-alignment between the image and model pq-vectors are penalised.     

Figure 4.4 demonstrates the effect of the normalised weighting factor on the optimisation 

landscape. In this figure, the origin corresponds to the optimal pose based on visual 

inspection and manual refinement. By evaluating the similarity measure in a square area 

around this pose, the shape of the function to be optimised is revealed. The white square 

indicates where the minimum is located. The weighting factor bounds the minimum in an 

area that is close to the optimal position. Without the use of this factor, the similarity 

measure can easily slide to a minimum introduced by texture discrepancies.   

Ideally, the optimisation landscape should be smooth and free of local minima. For the pq-

based registration approach, this landscape depends also on the distinctive features of the 

endoscope image. Bifurcations tend to be the best example of optimisation landscape due to 

the uniqueness of the geometrical feature, whereas frames acquired when the camera faces 

the lumen exhibit a poor global minimum.   
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Figure 4.4: Examples demonstrating the effectiveness of the normalised weighting factor. On the 

left column is the similarity measure with the normalised weighting factor. On the right column is 

the similarity measure based on the angle. The position at (0,0) coordinates corresponds to the 

optimal pose based on visual inspection and manual refinement. By evaluating the similarity 

measure in a square area around this pose, the shape of the function to be optimised is revealed. The 

white square indicates where the minimum lie.   
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4.3.4 Tissue Deformation  

 

Figure 4.5: a) A video frame from a deformed airway phantom, b) the associated p-q space 

deformation map where bright intensity signifies the amount of deformation detected. (c-d) The 

superimposed 3D rendered image with pose estimated from intensity-adjusted registration and pq 

space registration with deformation weightings, respectively. 

By the use of the proposed pq-space representation, the angle between the normal vectors 

before and after rigid body transformation will remain the same for every surface point. 

Local deformation can therefore be identified at surface points where the angle diverts from 

the mean angle of the 3D model. Given the fact that the 3D model is more or less registered 

to the corresponded video frame, localized inter-frame deformation can be isolated and 

subsequently excluded from the pose estimation process. In this study, we used the pq 

deformation map as a weighting factor during the registration process such that the 

weighting provided was inversely proportional to the amount of deformation detected. 

The effect of localised deformation on the pq-space representation is illustrated in Figure 

4.5, where (a) is the original video bronchoscope image and (b) is the derived pq-space 

deformation map. Figure 4.5 (c) and (d) demonstrate the accuracy of the pose estimation 

with the traditional intensity based technique and the proposed pq-space registration with 

deformation weighting, respectively. It is evident that in the presence of tissue deformation, 

the intensity-based technique has introduced significant error, despite careful adjustment of 

illumination conditions.   
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4.3.5 Video Preprocessing  

 

Figure 4.6: The pre-processing steps applied to the bronchoscope videos before 2D/3D registration. 

a) Original video frame acquired from the prototype bronchoscope, b) de-interlaced video frame, c) 

after lens distortion correction, and d) final smoothed image by using an anisotropic filter that 

preserves local geometrical features. 

Pre-processing of the videos was necessary in order to alleviate the effects of interlacing, 

lens distortion and filter out redundant texture information. In Figure 4.6 the main steps 

involved in video pre-processing are illustrated, which include de-interlacing, distortion 

correction, and anisotropic filtering.  

Digital camcorders and VCRs that use either NTSC or PAL format interlace two 

consecutive frames into one such that one video frame contains the even and the next the 

odd lines. We used VirtualDub filter (http://biphome.spray.se/gunnart/video/) to remove 

interlacing. Furthermore, the wide angle lens of the bronchoscope camera can cause severe 

barrel distortions. In general, methods that correct for ‘barrel’ distortion must calculate the 

centre of distortion and correct for both radial and tangential components. Radial distortion 

is the most commonly seen distortion and it causes the actual image plane to be displaced 

radially in the image plane. Tangential distortion is due to ‘decentering’ or imperfect 

centring of the lens or other manufacturing defects. For camera calibration, we used the 
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OpenCV matlab toolbox, which includes both radial and tangential distortion correction 

steps.  

The initialization of the calibration parameters is similar to Zhang et al. [135] based on a 

closed-form solution after distortion correction. The intrinsic parameters of the camera have 

been estimated along with the first five coefficients that characterise the distortion of the 

lens. Subsequently, the distortion parameters are used to restore each endoscopic frame, 

and the  intrinsic camera parameters are used to derive the perspective projection. The 

mathematical details involved in this step are provided in Appendix A.  Finally, a structure 

adaptive anisotropic filter was applied to the video image to remove image noise and 

artefacts [136]. The method uses a local orientation and an anisotropic measure of level 

contours to control the shape and extent of the filter kernel, and thus ensures that corners 

and edges are well preserved through out the filtering process. 

 

4.4 Experiments and Results 

The proposed method was implemented in Microsoft Visual C++ on a conventional PC 

machine (2 GHz Intel Pentium 4 processor, 512MByte main memory, nVidia GeForce 4 

MX 440 graphics card, with Microsoft Windows 2000 operating system). Surface rendering 

was implemented using OpenGL. The interface was based on FLTK (www.fltk.org). The 

technique has been validated both with phantom data and in vivo data. For the phantom 

validation ground truth data are acquired from a 6DoF EM tracker attached to the camera. 

For the in vivo study ground truth data has been collected by manually registering selected 

poses and interpolating the intermediate points. 

 

4.4.1 Phantom Study  

In order to assess the accuracy of the proposed algorithm, an airway phantom made of 

silicone rubber and painted with acrylics, as shown in Figure 4.7 (a), was constructed. The 

phantom has a cross sectional diameter of 12cm at the opening and narrows down to 5cm at 

the far end. The inside face was coated with silicone-rubber mixed with acrylic for surface 

texturing and left to cure in the open air. This gives the surface a specular finish that looks 

similar to the surface of the lumen. A real-time, six degrees-of-freedom Electro-Magnetic 



 

 108 

(EM) motion tracker (FASTRAK, Polhemus), shown in Figure 4.7 (b), was used to validate 

the 3D camera position and orientation. The EM-tracker has an accuracy of 0.762mm RMS.  

The tomographic model of the phantom was scanned with a Siemens Somaton Volume 

Zoom four-channel multi-detector CT scanner with a slice thickness of 3mm and in-plane 

resolution of 1mm. A CMOS camera and NTSC standard with frame rate of 29.97fps was 

used. 

 

  

 

Figure 4.7: a) An airway phantom made of silicon rubber and painted with acrylics was constructed 

in order to assess the accuracy of the pq-based registration. b) A real-time six DOF EM tracker 

motion tracker (FASTRAK, Polhemus) was used to validate the 3D camera position and orientation.  

 

a) 

b) 
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4.4.2 In vivo Validation  

   a) 

 

   b) 

Figure 4.8: Assessment of manual alignment error compared to the EM tracker as assessed by 

using the 3D bronchial model. a) Euclidean distance between the first and subsequent camera 

positions as measured by the EM tracker and after manual alignment with step equal to 10. b) Inter-

frame angular difference between manual alignment and readings from the EM tracker. 

For preliminary in vivo validation, bronchoscopy examination was performed in one patient 

according to a conventional clinical protocol. During the bronchoscope procedure a 

prototype videoscope (Olympus BF Type; with field of view 120°) was used. Video images 

from the bronchoscopic examination were transferred to digital videotapes in PAL format 

at 25fps. Since the original endoscopic video frames contain both the endoscopic image and 

redundant black background, only the endoscopic view was digitised and cropped to 

images of 454×487 pixels. All images were converted to greyscale before the pq-space 



 

 110 

analysis. Similar to the phantom study, the CT images were acquired from the Siemens 

Somaton Volume Zoom four-channel multi-detector CT scanner with a slice width of 3mm 

and collimation of 1mm, and the acquisition volume covered from the aortic arch to the 

dome of hemi-diaphragm. 

The technique has been evaluated both with qualitative and quantitative analyses. 

Quantitative results were obtained with gold standard data derived from manual alignment 

of the 3D model to the video frames. Manual alignment always entails an error. To assess 

this, the distance from the initial reference position and the angle from the initial vector are 

displayed in Figure 4.8 for both the EM tracking data and the manual alignment. The 

measurements have been done by using the airway phantom and the EM tracker. Analogous 

to phantom validation, a video sequence has been tracked for more than 400 frames using 

the EM tracker. For the same sequence we used manual alignment for every 10frames to 

get the position of the virtual camera that matches best the corresponding video view. The 

average positional error is equal to 3mm with STD 2.26mm and the angular error is 

0.0381rad with STD 0.0285rad. This indicates that the error is consistent throughout the 

video sequence and relatively small. We expect that this error will be smaller in real 

bronchoscope images as the phantom’s scale is greater than the real size of the airways.   

 

4.5 Results 

4.5.1 Phantom study 

To assess the accuracy of the proposed algorithm in tracking camera poses in 3D, Figure 

4.9 and Figure 4.10 compare the relative performance of the traditional intensity based 

technique and EM tracked poses against those from the new method. Since the tracked pose 

has six degrees-of-freedom, we used the distance travelled and inter-frame angular 

difference as a means of error assessment. The video acquired has 1.73 minutes duration 

(25fps). A continuous part of 40 sec (1000 frames) has been used for tracking. Traditional 

cross-correlation with the illumination conditions manually adjusted failed when the 

bronchoscope gets through the main bifurcation to the left bronchi and faces directly the far 

end of the tubular phantom airway, (394 frame). Three different variations of the pq-space 

technique were tested and compared against the gold standard EM tracker data (black line) 

and the intensity based technique (blue line). As expected the intensity-based technique is 

highly sensitive to lighting condition changes, and with manual intensity adjustments, the 
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convergence of this method is improved. However, the proposed pq-space registration has 

significantly consistent results, which were close to those measured by the EM tracker. It is 

also evident that the weighting factor affects greatly the performance of the method and can 

enhance significantly its accuracy. By choosing a weight related to the z-buffer variations, 

errors caused by variations in texture and surface reflection can be minimised.  

 

 

Figure 4.9: Euclidean distance between the first and subsequent camera positions as measured by 

four different tracking techniques corresponding to the conventional intensity based 2D/3D 

registration with or without manual lighting adjustment, the EM tracker and the proposed pq space 

registration technique. 

 

 
Figure 4.10: Inter-frame angular difference at different time of the video sequence, as measured by 

the four techniques described in the above figure. 
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Figure 4.11: In vivo validation results for a patient study. The left column shows examples of real 

bronchoscopic images. The right column presents the virtual bronchoscopic images after pq-space 

based 2D/3D registration. 

 

4.5.2 In vivo validation 

Qualitative results from the in vivo validation are demonstrated in Figure 4.11, where 

sample frames from the video sequence are displayed. The proposed pq-space based 

registration has been applied to a video sequence of 31sec (797 frames) of the one-patient 

study. The bronchoscope video sequence starts from the main bifurcation and continues 

through the left bronchi. Visual inspection of the real and the virtual endoscope images 

proves that the pq-based registration technique can track the tip of the bronchoscope 

relatively accurately and is stable under sudden movements or large rotation angles. 
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However, similar to Mori, when mis-tracking occurs in one frame, tracking of subsequent 

frames almost always fails, as the initial starting position deviates too far away from the 

correct result. The reason that the tracking sequence is limited to only 31sec (797frames) is 

that bubbles and deformation occlude and distort the anatomical features, respectively and 

thus pq-based registration fails to work under these conditions.   

Figure 4.12 and Figure 4.13 demonstrate the quantitative comparison between pq-based 

registration and manual alignment, similar to that of phantom validation (Figure 4.9 and 

Figure 4.10). The experimental results suggest that the proposed method can track the 

bronchoscope tip satisfactorily. The average positional error is equal to 3.5mm with STD 

2.42mm and the angular error is 0.059 rad with STD 0.058 rad.    

We also investigated the limitations of the proposed technique in a clinical environment. 

Fluids such as blood and mucus dynamically change the appearance of the lumen, as shown 

in Figure 4.14. Appearance of bubbles is common and usually covers the whole video 

frame resulting in a failure of the registration algorithm. Respiratory motion and extreme 

breathing patterns deform the airways significantly and distort severely the anatomical 

features that are essential in 2D/3D registration. An example of large tissue deformation is 

also shown in Figure 4.14. A process of identifying these phenomena combined with 

temporal information would facilitate tracking of the bronchoscope during the whole 

procedure. 
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Figure 4.12: In vivo validation: Euclidean distance between the first and subsequent camera 

positions as measured by the pq-based 2D/3D registration and from manual alignment for ten 

random frames of the sequence. 

Figure 4.13: In vivo validation: Inter-frame angular difference at different time of the video 

sequence, as measured by the two techniques described in Figure 4.12. 

 

 

Figure 4.14: Common image artefact that can affect image-based 2D/3D registration techniques: a) 

excessive bleeding due to pathology, b) appearance of bubbles when patient coughs, and c-d) large 

tissue deformation between successive image frames. 
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4.6 Discussions and Conclusions 

In this chapter, we have proposed a new pq-space based 2D/3D registration method for 

recovering camera poses of bronchoscope videos. The results indicate that based on the pq-

space and the 3D model, reliable bronchoscope tracking can be achieved. One major 

advantage of the method is that it is not affected by illumination conditions. This is a 

condition that the traditional intensity-based techniques fail due to dynamic changes in the 

overall illumination parameters when the bronchoscope passes through the main bifurcation 

to the bronchi. The pq-space based technique is less sensitive to these changes and it does 

not require the extraction and matching of explicit feature vectors. 

However, pq-based registration can be influenced by the surface texture of the endoscopic 

images. For this reason a weighting factor has been incorporated into the similarity 

measure. This factor is estimated from the salient features that are present in both the 

projected images of the 3D model as well as those that appear in the endoscopic video. In 

this way, erroneous surface normals due to noise and texture discrepancies are ignored. 

Phantom as well as in vivo validation has shown that the similarity measure is robust and 

resilient to variations of surface texture details.  

Another important implication of the incorporation of surface normals in the registration 

scheme is the ability to identify airway deformation between successive image frames. 

Preliminary results indicate that deformation of the airways can be identified and excluded 

from the registration process. However, in doing so we have assumed that the 

bronchoscope moves smoothly through the airways and the deformation is only limited to a 

small part of the video frame. Further investigation of the accuracy of the method for large 

tissue deformation is required. To this end, explicit airway deformation modelling may 

become necessary.  

It should also be noted that there are a number of factors that can affect the accuracy of the 

pq-space algorithm. The 3D reconstruction of the tracheo-bronchial tree can involve 

artefacts due to respiratory motion and partial volume effects. Since the respiratory status 

during imaging and that during video bronchoscope examination are not matched, the 3D 

airway anatomy can differ significantly from the dynamic appearance of the tracheo-

bronchial tree during the examination. Furthermore, bronchoscope cameras typically have a 

wide angle coverage, which can also cause adverse effects on the accuracy of pq-space 

estimation despite the use of distortion correction.  
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With the proposed method, the intrinsic robustness of the technique is dependent on the 

performance of the shape-from-shading method used.  The use of camera/lighting 

constraints of the bronchoscope greatly simplifies the 3D pose estimation of the camera. 

Nevertheless, it is important to note that shape-from-shading is also affected by 

specularities and inter-reflectance caused by mucus and the lumen surface.  A number of 

improvements need to be introduced for further enhancement of the accuracy of the 

proposed framework by explicit incorporation of the effect of mutual illumination, inter-

reflectance and the specular components.   

Overall, the most severe artefacts encountered in bronchoscopy are due to bleeding, 

mucosa, and large deformation of the tracheo-bronchial tree. In these cases, it is necessary 

to introduce temporal constraints to stabilise the registration results. In the following 

chapter, we will show that temporal information can be utilised through a probabilistic 

framework. Another means of enhancing the robustness of the 2D/3D registration is by 

incorporating EM tracking devices, which are capable of real-time tracking of the 

bronchoscope tip. As will be discussed later, EM tracking facilitates registration even in the 

presence of large tissue deformation and allow for a robust non-rigid registration scheme. 
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Chapter 5   
 

 

Integration of Temporal Information  

ince 2D bronchoscope video only provides localised views of the inner surface of the 

lumen, the exact 3D location of the structure it represents is ambiguous. Different 

segments of the airways may well have a similar local structure. An example is illustrated 

in Figure 5.1, which shows bronchoscope frames from different parts of the tracheo-

bronchial tree. It is evident that the bronchus is a relatively symmetrical structure. 

Therefore, visual tracking should not depend only on a frame-by-frame analysis. It should 

also consider the path followed by the camera and its motion characteristics. The use of 

temporal information to derive the trajectory of the bronchoscope in 3D space is important. 

Another advantage of the use of temporal correspondence is that the estimates of the 

camera’s orientation and position can be used to accelerate the registration and tracking of 

consecutive video frames.  

For video bronchoscope navigation, Naga et al [137] used Kalman filtering to exploit 

temporal information in order to increase the speed and accuracy of the registration process. 

Kalman Filtering was introduced in 1960 by Rudolph Kalman as an optimal linear 

estimator. It is a recursive data processing algorithm which makes optimal use of imprecise 

data on a linear (or nearly linear) system with Gaussian errors to continuously update the 

best estimate of the system's current state. Kalman filter is statistically optimal in that it 

minimizes the mean-square error and incorporates all available information to estimate the 

current value of the variables of interest. The information used includes (1) knowledge of 

the system and measurement device dynamics; (2) the statistical description of the system 

noises, measurements errors and uncertainty in the dynamics models; and (3) information 

about initial conditions of the variables of interest. In other words, Kalman filter is, in fact, 

a learning method. It uses a model of the estimation problem that distinguishes between 

S 
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what is observed, what is really going on, and the state of knowledge about the real status 

of the system and the one that can be deduced from the observations. That state of 

cognition is represented by probability distributions that correspond to knowledge of the 

real world.  

Kalman filtering is a viable framework for tracking the bronchoscope camera, since it 

provides a means of inferring the missing information from indirect and noisy 

measurements. However, practical application of Kalman filtering requires careful 

consideration of underlying statistical modelling and numerical precision. Typically, 

Kalman filtering is based on the assumptions of linearity, white noise and Gaussian noise 

[138]. These assumptions cannot always be fulfilled in a real situation. The robustness of 

Kalman filtering in practice depends on the extent of these assumptions being violated. 

There are methods for extending Kalman filtering to more general cases but usually they 

compromise the optimal behaviour of the filter and lead to considerably more complex 

systems. Furthermore, these approaches do not take into account all prominent statistical 

characteristics of the process under consideration, and hence they often yield poor results. 

In bronchoscopy, tissue deformation, inter-reflection, multi-texture background, and view 

dependent specularity due to mucosa can limit the accuracy of image-based algorithms. 

Kalman filtering does not provide a mechanism to overcome this problem and the 

effectiveness of the method has so far been limited. Dis-occlusion is common in 

bronchoscopy navigation, since bubbles and luminal fluids can cover partially or 

completely a video segment. Although dis-occlusion often lasts only for a few seconds, 

during this time, the position of the bronchoscope camera can be moved significantly. 

Without temporal tracking, the current techniques can only work for relatively short 

segments. Furthermore, the potential artefacts described above can result in a multi-modal 

distribution of the probability density function of the state vector. Therefore, the 

observation probabilistic model cannot be approximated as a Gaussian distribution. It is 

also important to note that the assumptions of linearity and whiteness may be also violated 

in bronchoscope tracking.   

To circumvent the above problems, we aim to develop in this thesis a predictive tracking-

algorithm to propagate the probability distribution of the state space based on the 

Conditional Density Propagation (Condensation) algorithm [139]. The method is designed 

to cater for the general situation when several competing observations forming a non-

Gaussian state-density are encountered. It uses a stochastic approach that has no restriction 

on the system/measurement models used and the distribution of error sources. Therefore, 

none of the assumptions about linearity, gaussianity and whiteness needs to hold.  
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For the tracking method proposed, an autoregressive algorithm is used as a predictive 

model [139]. This is based on the fact that during bronchoscope navigation, the motion is 

restricted within a bounded area of the lumen, and a rapidly moving camera is more likely 

to slow down or change direction, rather than accelerate further. The proposed method 

provides a systematic learning procedure with modular training from the ground truth data 

such that information from different subjects can be integrated for creating a dynamical 

model that accommodates the learnt behaviour [140, 141]. Experimental results from both 

phantom and patient data demonstrate a marked improvement in tracking accuracy 

especially in cases where there is airway deformation and image artefacts.  

 

 

Figure 5.1: Image frames demonstrating the local ambiguities during endoscope navigation due to 

the relatively symmetrical branching structure of the tracheobronchial tree. For example, frames a) 

and c) show the left and right bronchi after passing through the main bifurcation (b). It is difficult to 

locate the position of the camera by inspecting individual image frames.   

 

a) b) c) 

d) e) f) 
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5.1 A Probabilistic Framework in Visual Tracking 

Most of 2D/3D registration applications use either image-based techniques and/or 

incorporate positional information from tracking devices. Both of these approaches have 

their limitations in terms of accuracy and computational complexity. Image-based 

registration techniques are derived from mathematical models that are not perfect. They 

depict only those characteristics of direct interest and under essential simplifications in 

terms of lighting conditions and camera modelling. As described in Chapter 4, Lambertian 

surface properties and a pinhole camera model are usually assumed, and inter-reflections, 

dis-occlusion due to bleeding and mucosa fluids, and deformation are typically ignored. 

Image-based registration is also prone to local minima due to ambiguities of the local 

structure, such as when the endoscope is very close to the tracheo-bronchial wall. Once the 

tracking fails, the registration process cannot be re-initialised automatically and manual 

intervention is necessary.   

The use of physical tracking devices can potentially solve the problems stated above. The 

technique, however, also has certain limitations. For example, accurate mapping of the EM 

tracking world coordinate system to the CT coordinate system under deformation is not 

trivial, as will be shown in the following chapters. Nevertheless, a probabilistic framework 

that combines the measurements of the tracking device and the estimations of the image-

based technique in an optimal fashion is desirable. To provide current estimates of the 

system variables a statistical model should be designed to properly weight each new 

measurement relative to past information.   

The basic concept of a probabilistic tracking framework is summarised in Figure 5.2. The 

camera pose is estimated using one or more measurement models. These measurement 

models are based either on image features or data provided from tracking devices. These 

measurements, also called observations, are inputs to the probabilistic model that 

incorporates information about the error both in the prediction and the observations so as to 

derive a better estimation of the pose for the next image frame. The prediction model is the 

combination of two components: (1) a mathematical model that approximates the camera 

motion based on previous measurements; and (2) an uncertainty term that accounts for the 

inherent incapacity of such a model to describe, for example, the unknown and the inherent 

inaccuracy of the model. The parameters related to the prediction/state model and the 

observations uncertainty are estimated or approximated prior to the actual tracking process, 

either with a systematic training approach or performed empirically when the motion is 

simple to describe.  
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Observation uncertainty factors can also be updated on-line, according to how close the 

predicted pose is to the actual measurements. System observability also plays an important 

role in system analysis and parameter estimation [142]. It relates to the amount of 

information contained in the measurement about the state of the system, and decides 

whether the system state is recoverable from the measurements. In other words, if the 

system is not observable, its state cannot be completely determined from the measurements, 

and additional or alternative measurements should be considered. This can be used as an 

evaluation metric of the 2D/3D registration performance.  

In summary, the role of the suggested stochastic framework is to estimate the state of 

dynamic systems. For the case of bronchoscopy tracking, this state would most probably be 

the position and orientation of the camera during navigation. This state can also encode 

other information, such as the speed and acceleration of the camera tip. In general, the 

dynamic aspects of a system cannot be estimated precisely. This stochastic framework 

allows expression of this partial ignorance using probabilities. Therefore, the state of 

dynamic systems with certain types of random behaviour can be approximated using 

statistical information. Furthermore, this scheme also has the ability to analyse and evaluate 

the performance of its components. This analytical capability allows a system designer to 

assign an uncertainty factor to subsystems of an estimation system, and to trade off between 

computational complexity and real-time processing to optimize the overall system 

performance.  
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Figure 5.2: A schematic diagram of the proposed framework.  
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5.2 Endoscope Tracking Based on Particle Filtering 

In visual tracking, it is generally recognised that designing effective tracking algorithms is 

difficult, requiring mechanisms to deal with issues such as weak image features, 

background clutter, erratic and discontinuous motion, multiple occluding and deforming 

objects. Some of these effects are prominent in endoscope tracking and as a result the 

typical assumptions of linearity, gaussianity and whiteness do not hold. Filters based on 

Bayesian theory, known as the Condensation algorithm or particle filtering, utilise a more 

general approach, without over-simplifying the underlying hypothesis. This method can be 

seen as a generalisation of Hidden Markov Models in that it allows a discrete set of states 

with probabilistic transitions between states. These approaches are flexible, easy to 

implement and parallelisable.  

The Condensation algorithm is the extension of a sequential Monte Carlo algorithm for 

visual tracking of outlines and features of foreground objects, modelled as curves. It has 

been introduced by Isard et al. [143] for developing agile trackers that are immune to 

distraction from background clutter. The Condensation algorithm is designed to 

accommodate complex posterior distributions, non-linear dynamics and ambiguous image 

data [144]. Therefore, it is capable of addressing the more general situation of a non-linear 

system with non-Gaussian state distributions. Nevertheless, it is considerably simpler than 

the Kalman filter. Despite the use of random sampling which is often thought to be 

computationally inefficient, the algorithm can be executed in near real-time. This is because 

tracking over time maintains relatively tight distributions for the position of the camera at 

successive time-steps, which is the case, given the availability of accurate, learned models 

of the camera motion. 

The algorithm uses factored sampling to stochastically propagate a non-Gaussian, multi-

modal estimate of the target posterior with a stochastic differential equation model for 

camera motion. To deal with non-Gaussian observation distributions, it maintains multiple 

hypotheses, particle sample, and automatically focuses more on the most likely ones. The 

weight of each particle is represented by the likelihood of that particular state variable. This 

likelihood value is determined by comparing the observed data with the measurement data. 

Each hypothesis/particle is propagated through a dynamical model of the camera motion. 

The random component of the dynamical model leads to increasing uncertainty while the 

deterministic component causes the density function to drift bodily. 
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The main stochastic mechanism that constitutes the probabilistic endoscope tracking 

framework developed in this thesis can be summarised into the following three steps: (1) 

sampling, where N  particles from the original set are chosen, with the probability of 

selecting each item being proportional to its weight; (2) evolving, where the dynamic 

model is applied to the selected particles; and (3) measuring the coefficients based on the 

observations, so the weights of the new density are estimated. Since this includes multi-

modal distributions, particle filters can cope effectively with temporarily ambiguous image 

support. 

The main idea of the statistical framework is to maintain a time-evolving probability 

distribution ( )|t tp x Z  of the tracker state tx  over time t . The a posteriori density 

( )|t tp x Z  represents knowledge about tx  deducible from the observation 

history { }1, ,t tZ z z= … . The effective prior distribution ( )1|t tp x Z −  in the dynamic case 

is unknown and therefore cannot be represented with a closed-form solution. The 

Condensation algorithm does not explicitly represent the density function. It uses instead 

statistical factor sampling, which provides a way of approximating ( )1|t tp x Z −  by using a 

random number generator for sampling ( )tp x . The sampling technique is based on the 

Bayesian theory which states [145]: 

( ) ( ) ( )| |p x z p z x p x∝  (5.1) 

Bayesian theory allows a prediction model to incorporate inherent knowledge, while 

improving its ability to make decisions through the seamless integration of auxiliary 

information. 

Factored sampling needs to be extended to be applied iteratively to the image sequence. 

The process at each time-step is a self-constrained iteration of factored sampling [146]. In 

order for the algorithm to run under a constant computational complexity, the sample sets 

should be retained at a fixed size N . During statistical factored sampling, a sample set 

( ) ( ){ }1 , , Ns s…  is generated from the prior density ( )tp x , where N  is the number of 

sample sets (particles). A weight is subsequently assigned to each particle according to the 

observation density 

( )

( )( )
( )( )

1

|

|

n

n

N n

j

p Z x s

p Z x s
π

=

=
=

=∑
 (5.2) 
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The weighted point set is then used as a representation of the posterior density, which is 

becoming more accurate as N  increases.  

Therefore, the procedure is to sample with replacement N  times from the set 
( ){ }1
n

ts − , 

choosing an element with probability
( )

1
n

tπ − . Elements with high weights are more likely to 

be chosen several times, leading to identical copies of elements in the new set, while others 

with relatively low weights may not be chosen at all. Subsequently, each element chosen 

from the new set is subjected to a predictive step, which corresponds to sampling from the 

distribution ( )1|t tp x x − . In this way, the sample set 
( ){ }n

ts  for the new time-step is 

generated but without its weights. Finally, the observation step from factored sampling is 

applied, generating weights from the observation density ( )|t tp z x  to obtain the sample-

set representation 
( ) ( ){ },n n

t ts π  of the state density for the new time-step. By evaluating the 

moments of the state density, it is possible to extract the current state. As an 

observation/measurement model, the pq-space based 2D/3D registration technique 

described in the previous chapter has been used.   

 

5.3 Prediction Model for the Bronchoscopic Camera 

In the Condensation algorithm, if the prediction model is too simplistic or its parameters 

are not tuned properly then it might not be able to represent the dynamics of the system 

adequately. In that case, the estimated posterior gradually drifts away from the observation 

value, which can result in a zero weighting factor that completely spoils the outcome of the 

algorithm. Therefore, it is important to develop a prediction model and a training system 

that can model the motion of the endoscopic camera adequately.  

In bronchoscope tracking, the estimated pose in the ( )1 th
t −  frame of a sequence is the 

initial pose for the 
tht  frame. In a probabilistic context, this is equivalent to applying a 

Gaussian prior distribution to each frame with fixed covariance but whose mean is simply 

the estimated pose from the previous frame. When temporal tracking is employed, we could 

take the posterior from the ( )1 th
t −  frame as the prior for the 

tht  frame rather than fixing 

the prior via one constant covariance for all image frames. However, this idea is not 

effective for inferencing the motion between successive time-steps, which is reasonable 

only when the camera moves slowly and the registration process is accurate. Furthermore, 
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as the posterior at one time-step is regarded as the prior of the next, statistical information 

from measurements steadily accumulates. In other words, the pq-space registration results 

will have a time-decreasing influence on the estimated pose. An adequate statistical 

framework for motion tracking must provide not only a prior for the first frame, but also a 

prior for possible motions, in the broad sense of rigid motion. This dynamical prior 

distribution should apply between all successive frames. It needs to have a deterministic 

part, giving the expected displacement between successive image frames, as well as a 

stochastic component to counteract the otherwise unlimited accumulation of information.  

For building a dynamical model for tracking the pose of the bronchoscope camera, it is 

important that successive positions are tightly constrained. Rather than using only the 

global prior distribution ( )p x . A Markov chain model assumption is therefore more 

meaningful. A Markovian assumption presumes that the present state of a system can 

always be predicted given the previous n  states. A Markov analysis looks at a sequence of 

events, and analyses the tendency of one event to follow another. In this way, a new 

sequence of random but related events can be produced to have properties similar to the 

original. A first-order Markov chain model correlates the distribution of the vector state at a 

given time with the immediate predecessor only: 

( ) ( )1 1 1| |t t t tp x x x p x x− −=…  (5.3) 

where ( )1|t tp x x −  is the conditional distribution, which indicates the probability of tx  

given 1tx − . This is an assumption that can greatly simplify the probabilistic model. Note 

that a second-order Markov model taking two predecessors into account can also apply.  

A simple, isotropic, first-order Gaussian Markov process is defined as: 

( ) 2

1 12

1
| exp

2
t t t tp x x x x

b
− −

 ∝ − −   
 (5.4) 

where b  is the average root-mean-square step length and ‘isotropic’ has the meaning of 

steps equally likely to occur in all directions. This type of motion is known as Brownian 

motion. Such a distribution is too random to be useful for modelling of real object motion. 

Instead, a constrained Brownian process is adopted. Although, it initially appears to behave 

randomly, in the long-term it is limited within a restricted area of a Gaussian envelope. 

All these Markov processes belong to a broader family that is called Auto-Regressive 

(ARG) processes and they meet some of the requirements of dynamic modelling by 
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simulating the entire family of motions. The first-order ARG processes deal with changes 

in position and can impose strong incremental constraints when global constraints are 

weak. They allow a global distribution to be chosen in addition to, and independently of, 

the local process. Although, they appear to be the simplest available models that can 

achieve these properties, they do have certain limitations. A first-order ARG process seems 

to model noisy directional motion at a constant average velocity. However, it has an 

average direction that is fixed over time and must be known in advance.  

Substantial changes in velocity components over time and oscillations are beyond the scope 

of the first-order model. This can limit the applicability of the system in a bronchoscopy 

application where the respiratory motion results in a periodic movement of the 

bronchoscope tip. A second-order dynamical model is a natural extension of a first-order 

ARG process and it can give a much improved result, while it has the potential to specify 

an ARG process representing a second-order Markov chain. In other words, the state vector 

at a given time depends on two previous time-steps, rather than just one as in the first-order 

process.   

In order to construct a motion model for the endoscope camera that moves freely in the 3D 

tracheo-bronchial tree, a second order auto-regressive model is used [139]. This is in 

contrast to the ‘constant acceleration’ model used in [137], which effectively implies that 

the camera acceleration is expected to be constant during bronchoscope tracking. In this 

study, the auto-regressive model takes into account that during bronchoscope navigation, 

motion occurs within a bounded area, and a rapidly moving camera is expected to slow 

down or change in direction rather than accelerate further [147]. This ensures smooth 

navigation of the camera, and with modular training [140], multiple training sets can be 

used to obtain a more general model of the motion behavior. For a 2
nd
-order auto-regressive 

model, the following equation can be used:  

2

1

t k t k t

k

x A x Bw−
=

= +∑  (5.5) 

where kA  represents the collection of damped harmonic oscillators associated with  

vibrational modes and w  the white noise with covariance coefficient B . 

In Figure 5.3, an example of the application of a first, as well as a second order ARG 

model is demonstrated. The first order ARG model fails to follow the position of the 

camera even during the phase of training. 
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a) b) 

c) d) 

Figure 5.3: a-b) Training results based on a first order ARG model. c-d) Training results based on a 

second order Autoregressive Model.  

5.4 Learning Dynamics of Bronchoscope Navigation  

In practice, it is possible to build a tracking model by approximating its general behaviour 

to intuitive expectations of the observed motion. Hand-built models are often used when 

the prediction model is described by a first-order autoregressive process. However, for the 

purpose of bronchoscopy navigation it is difficult to use this approach due to the high-

dimensionality and complex motion involved. Instead, a training sequence (gold standard 

data) can be used. Mathematically, learning motion characteristics from a training sequence 

is effectively to estimate the coefficients kA , the mean value X , and the random 

component B of an autoregressive process that best model the motion in a training 

sequence involving camera poses of 1, , Mx x… . The problem can be expressed in terms of 

maximising the log likelihood function L  over all coefficients [140]. For a second order 

autoregressive model this takes the form: 
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( )

( ) ( )

1 1 2

2
1

2 2 1 1
3

, , | , , ,

1
2 log det

2

M

M

t t t

t

L x x A A C X

B x A x Ax M B−
− −

=

=

′ ′ ′− − − − −∑

…

 (5.6)  

where  

t tx x X′ = −  (5.7)  

and  

C BBΤ=  (5.8)  

In general, this in a non-linear problem, because L  is quartic in the unknowns, due to the 

fact that X  is explicitly estimated together with 1A , 2A  and B . The non-linearity can be 

removed by defining the constant parameter D  [140]:  

( )1 2D I A A X= − −  (5.9)  

The values of 1A , 2A , B  and D  that maximise the likelihood function L  can be found by 

solving the linear system of equations below [140]: 

( )2 1 0 2 1

20 1 00 2 10

21 1 01 2 11

2 0

0

0

R AR AR D M

R AR AR

R AR AR

 − − − − = ′ ′ ′− − = ′ ′ ′− − =

 (5.10)  

The auto-correlation coefficients ,i jR  and ,i jR′  can be computed for i, j = 0, 1, 2 as:  

3

M

i t i

t

R x −
=

=∑ , ,
3

M
T

i j t i t j

t

R x x− −
=

=∑ , , ,

1

2
T

i j i j i jR R RR
M

′ = −
−

 (5.11)  

Subsequently, 1A , 2A  and D  are given by: 

( )( )
( )

( )1

11 1
2 02 01 11 12 22 21 11 12

1
1 01 2 21 11

0 2 2 1 1
2

A R R R R R R R R

A R AR R

D R AR AR
M

−− −

−

 ′ ′ ′ ′ ′ ′ ′ ′= − − ′ ′ ′= − = − − −

 (5.12)  
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The mean of the ARG process, on the other hand, is calculated as below, given that 

( )1 2I A A− −  is not singular.  

( ) 1

2 1X A A D
−

= − −I  (5.13)  

Finally, the covariance coefficient B  is estimated as a matrix square root of C : 

( )00 2 20 1 10 0

1

2
TC R AR AR DR

M
= − − −

−
 (5.14)  

Note that parameter B , which expresses the stochastic part of the ARG process, cannot be 

determined uniquely, but any solution that satisfies C BBΤ= is acceptable.  

Another important issue to consider is the dimensionality of the data. For a system with just 

one degree-of-freedom, the situation is relatively straightforward, while multi-dimensional 

motion is more difficult to describe. A 6-DoF pose estimation problem is easier to handle if 

it is described by a two independent 3-DoF tracking problems that model the position and 

the orientation of the camera separately. This implies that for each of these systems the 

second order equation can be described from different parameters, thus being more flexible 

and easier to train. This is illustrated in Figure 5.4, where for three in-vivo datasets the 

Euclidean distance is estimated for both a 6DoF ARG model and a 3DoF-3DoF model.   

 

5.4.1 Modular Training  

Usually, it is desirable to broaden the dynamical model to include more than a specific 

motion. For the purpose of bronchoscope simulation, it is more meaningful to collect 

several training sets from the same as well as different operators in order to construct a 

more representative dynamic model. In this case, the problem becomes how to combine 

multiple training sets in order to gain knowledge of a more general behaviour. Modular 

learning cannot be addressed by simply concatenating the different training sets and then 

treating them as one because the abrupt transition between different data sets would be 

interpreted as an actual behaviour of the system [139]. To this end, the auto-correlation 

coefficients of each training set can be calculated individually and then combined in a 

linear fashion. This is similar to the multi-variate algorithm that Reynard et al. [148] and 

Wildenberg et al. [140] have used for motion tracking over classes of objects with variable 

mean shapes and positions. 
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a) b) 

c) d) 

e) f) 

Figure 5.4: (a,c,e) Training results based on a 6DoF, second order Autoregressive Model. (b,d,f) 

Training results based on two simultaneously second order Autoregressive Models of tracking the 

position and the orientation of the camera separately.  

In the work presented by Wildenberg et al. [140], modular learning is also based on the 

maximum likelihood estimation to find the best model that fits all the training sequences. 

The extension of the training algorithm for a single to multiple training sets is presented in 

Blake et al. [139] and it is straightforward when the mean of the state vector, X , is 
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simultaneously estimated with the covariance matrix, B , and the coefficients of the 

deterministic part, 1A  and 2A . Therefore, the learning algorithm for a set of training 

sequences is formed as follows. Given training sequences numbered as: 1, ,γ = Γ… , with 

the 
thm  data point of the 

thγ  sequence represented by mX
γ
 and the 

thγ  sequence having 

M γ data points, the S moments− from the 
thγ  data sequence are defined to be: 

2

1

M

i m i

m

S X
γ

γ γ

−

+
=

= ∑  and ( )
2

,
1

M
T

i j m i m j

m

S X X
γ

γ γ γ

−

+ +
=

= ∑ , where , 0,1,2i j =  (5.15) 

Assuming that all of the training sequences have exactly the same dynamical model, 

including the sameX , the moments describing the cumulative system can be written as the 

sum of the moments of each individual data sequence. A correction for the effect of X  on 

,i jS  moments should also be taken in consideration. That is: 

1
i iS S γ

γ

Γ

=

=∑  and , ,
1

T

i j i j i jS S S S γ

γ

Γ

=

=− +∑ , where , 0,1,2i j =  (5.16) 

Finally, the unknown parameters are estimated by the following linear equations: 

( )1 0D I A A X= − −  (5.17) 

The covariance matrix 0B  is determined as a solution of 
TBB C=  and it is not unique, 

where 

2

1

1

2

M
T

m m

m

C R R
M

−

=

=
− ∑  (5.18) 

In the above equation, mR  is an instantaneous measure of error of fit of the autoregressive 

process, which can be written in a linear form:  

2 1 1 0m m m mR x Ax A x D+ +≡ − − −  (5.19) 

Finally, to calculate 1A , 2A , B  and X  the following equation system needs to be solved.  
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( )2 0 0 1 1

2,0 0 0,0 1 1,0

2,1 0 0,1 1 1,1

2 0

0

0

S A S AS D N

S A S AS

S A S AS

 − − − − = − − = − − =

 (5.20) 

 

a) b) 

c) d) 
Figure 5.5: Four sequences of the camera position during in vivo navigation have been used for 

modular training. These have been extracted from four different subjects. This figure presents the 

Euclidean distance from an initial reference point of each of these training sequences.  

 

5.4.2 Model Dynamic Variability 

In the work presented by Wildenberg et al., it is also noted that the mean of the sequence is 

not the mean of the system. However, the mean of the sequence are often used as a good 

estimation when the training data are stable over a long time period: 

1

1
lim

N

i
N i

X X
N→∞ =

=∑  (5.21)  
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Nonetheless, if the training sequence is short and weakly damped there is a systematic error 

in X . It can cause the rest of the terms to be falsely estimated. In practice, the numerical 

error can be large enough to change the overall characteristics of the system, causing 

erroneous damped behaviour and shifts of the phase and the frequency. This is profound 

when several training sequences are employed. Since each of these dynamic systems may 

have a different mean value, the use of pre-estimated mean value of the system can result in 

a strongly biased prediction. Alternatively, X  can be estimated on-line as part of the state 

vector. In this way, the state vector is extended by regarding X  as a variable, rather than a 

constant [140, 148]. Hence the prediction model can be written as: 
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 (5.22)  

Here X  is not known as a priori but it is updated during tracking, and X  is initialized 

with its estimated mean value 0X  and its associated variance and covariance.  

The ground truth data of the camera pose from four different patients have been used to 

train the auto-regressive model. This data are displayed in Figure 5.5. Figure 5.6 illustrates 

the effectiveness of the training process involved in this study. The performance of the 

trained model was evaluated on a different subject. The Euclidean distance between the 

first and subsequent camera positions predicted from the Condensation algorithm was used 

for error analysis. Similar analysis for the error in orientation was also performed. In Figure 

5.6 (a), the system mean has been predefined according to the training sequences, whereas 

for (b), it was included in the state vector of the predictive model such that it was updated 

in real-time. It is evident that without continuous updating of X , the derived tracking value 

is heavily biased.  
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a) 
 

b) 

Figure 5.6: Assessment of the accuracy of the training model and the effect of excluding a), and 

including b), mean value estimation of X  as part of the state vector. 
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5.5 Experimental Design  

In order to assess the accuracy of the proposed algorithm, an airway phantom made of 

silicone rubber and painted with acrylics was constructed. The phantom has a cross 

sectional diameter of 12cm at the opening and narrows down to 5cm at the far end. The 

inside face was created such to give the surface a specular finish that looks similar to the 

surface of the lumen. This phantom has been described in details in Chapter 4. A real-time, 

six degrees-of-freedom Electro-Magnetic (EM) motion tracker (FASTRAK, Polhemus) was 

used to validate the 3D camera position and orientation. The EM-tracker has an accuracy of 

0.762mm RMS.  The tomographic model of the phantom was scanned with a Siemens 

Somaton Volume Zoom four-channel multi-detector CT scanner with a slice thickness of 

3mm and in-plane resolution of 1mm. A CMOS camera and NTSC standard with frame 

rate of 30fps was used.  

For in vivo validation, bronchoscopy examination was performed in five patients according 

to a standard clinical protocol. During the bronchoscope procedure two similar type 

videoscopes (Olympus BF Type; with field of view 120°) were used. Video images from 

the bronchoscope examination were transferred to digital videotapes in PAL format at 

25fps. Since the original endoscopic video frames contain both the endoscopic image and 

redundant black background, only the endoscopic view was digitized and cropped to 

images of 454×487 pixels. All images were converted to grayscale before the pq-space 

analysis. Similar to the phantom study, the CT images were acquired from the Siemens 

Somaton Volume Zoom four-channel multi-detector CT scanner with a slice width of 3mm 

and collimation of 1mm, and the acquisition volume covered from the aortic arch to the 

dome of hemi-diaphragm. Pre-processing of the video images was necessary in order to 

alleviate the effects of interlacing, lens distortion and unnecessary texture information. To 

remove noise and image artifacts, anisotropic filtering was applied to each image. 

 

5.5.1 Obtaining the Training Sequences  

Training sequences were produced by the manual alignment of selected key frames. 

Subsequently, both the position and orientation of intermediate frames can be estimated by 

interpolating the measurements. For positional interpolation, cubic spline-based, piecewise 

cubic Hermite and linear interpolation have been tested. Spline-based interplation can cause 

some artefacts that do not reflect the actual dynamic motion behaviour of the camera. This 
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is apparent in Figure 5.7. The piecewise cubic Hermite interpolation was preferred, as it is 

also smoother than linear interpolation and it does not introduce erroneous oscillations. In 

order to interpolate the orientation of the camera, the Euler angles were transformed into 

quaternions and subsequently, spherical linear interpolation was applied. Both Euler angles 

and quaternions can represent an orientation. However, quaternions provide a unique and 

intuitive representation of an angle and thus they are preferred in interpolation problems. 

Note that spherical interpolation may result in discontinuities. It is also feasible to obtain in 

vivo ground truth data with the incorporation of EM trackers as it will be shown in Chapter 

7.   

 

a) 

b) 
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c) d) 

Figure 5.7: The effect of the interpolation on the dynamics of the prediction model. (a,c) correspond 

to B-spline interpolation and (b,d) correspond to Piecewise Hermite interpolation. 

 

5.6 Results  

The detailed assessment results for the phantom and patient studies are summarized in 

Table 5.1 and Figure 5.8. It is evident that in both cases the 2D/3D registration accuracy 

has been increased significantly by the use of the proposed predictive tracking algorithm. 

More notably, the method permits more stable tracking results in patients where image 

artefacts (e.g. partial occlusion of the images due to mucosa or bleeding) and sudden airway 

deformation due to coughing can introduce large propagation errors to the original pq-space 

registration technique. In Figure 5.9, we demonstrate the extent of this effect on the actual 

bronchoscope views. The left column shows the original frames from the bronchoscope 

video, whereas the middle and right columns are the virtual views of the 3D model by using 

pq-space registration without and with predictive camera pose tracking. It is worth noting 

that pre-processing, including radial distortion correction, de-interlacing and anisotropic 

filtering, has been applied to the real bronchoscope images before the registration step.  

Absolute Error 

Position (mm) Angle (rad) 

Pq CD Pq CD 
Case Frames 

Mean ±Std Mean ±Std Mean ±Std Mean ±Std 

Phatom 300 36.5 22.7 5.89 5.5 0.14 0.1 0.12 0.07 

Pat1 100 7.0 2.0 3.3 2.2 0.8 0.2 0.03 0.02 

Pat2 120 13.3 5.8 2.6 1.7 0.35 0.14 0.11 0.06 

Pat3 243 26.98 13.0 1.9 1.52 1.02 0.6 0.11 0.06 

Pat4 144 5.87 5.5 3.15 2.1 0.06 0.1 0.05 0.04 

Pat5 100 14.4 10.12 2.26 1.65 0.7 0.4 0.19 0.15 

Table 5.1: Quantitative assessment of the pq-space based registration with and without the 

Condensation algorithm (pq-CD), respectively.  
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Figure 5.8: Bar chart showing the quantitative assessment of the pq-space based registration with 

and without the condensation algorithm.  
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5.7 Discussions and Conclusions 

In this chapter, we have described the use of predictive camera tracking for increasing the 

general accuracy and robustness of 2D/3D registration involved in virtual bronchoscope 

modelling. A stochastic filter is used to resolve the inherent global ambiguity in tracking by 

exploiting the temporal coherence of the camera tip. Particle filters, particularly the 

Condensation algorithm, permits the use of multi-modal probability distributions and it is 

not restricted to linear systems and white noise. Instead, it uses statistical factor sampling to 

approximate any form of probability distribution without any assumptions. The results from 

both phantom and patient data demonstrate a significant improvement in tracking accuracy 

especially in cases where there is slight airway deformation and image artefacts. The 

method effectively avoids the registration algorithm being trapped in local minima and 

increases the overall accuracy. It is also able to recover when the image-based registration 

has failed, because it does not use the previous camera pose to initialise the following 

registration step.  

It has been shown that the use of a second order ARG model is particularly effective for 

bronchoscope camera motion prediction that it is highly restricted inside the tracheo-

bronchial tree. Another important feature of this model is the use of two previous camera 

poses to estimate the subsequent camera positions. This contributes to the robustness of the 

proposed framework against failures of the image-based algorithm. This is because the 

system has a memory encoded in the form of particles. Particles tend to concentrate around 

the areas indicated by the measurements. Subsequently, erroneous measurements that are 

completely outside of the underlying neighbourhood of possible positions are rejected as 

outliers.  

The estimation of the parameters of both the auto-regressive motion model and the noise 

distribution plays an important role in the algorithm proposed. In this work, the parameters 

are estimated through a systematic procedure based on the principles of the maximum 

likelihood learning. The main advantage of this approach is that it extends modular 

learning. Modular training facilitates the incorporation of multiple sequences from different 

patients during training. In bronchoscopy, ground truth data are difficult to be obtained. 

Therefore, it is desirable to create a prediction model that is not patient specific. Our results 

indicate that modular training can be successfully implemented when the mean of the 

system is also a part of the state space. In practice, the mean typically varies from system to 
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system and it cannot be estimated by simply averaging the individual mean values. If the 

mean value is not calculated properly, it can cause the rest of the terms to be falsely 

estimated. In this case, the numerical error can be large enough to change the overall 

characteristics of the system.   

It should be noted that the proposed method can be further extended to multi-class motion 

description such that the dynamic behaviour of camera navigation in different parts of the 

tracheo-bronchial tree can be incorporated [141]. In this way, several auto-regressive 

models can be utilised and trained to allow for more accurate predictions. It is also 

necessary in practice to take into consideration of the technical skills of the operators and 

separate them into different groups.  It is also worth noting that temporal tracking has also 

its limitations. Although it improves 2D/3D registration under airways deformation and 

occlusion, it may also fail when prolonged image artefacts are encountered. The actual 

quality of modular training also reduces with the number of degrees-of-freedom. Therefore, 

it is more efficient to propagate separately the positional information from the angular state 

space. Nevertheless, there is a relationship between changes in the camera position and 

changes in the orientation. Further investigation is required to clarify how this information 

can be incorporated in an efficient way.   
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Figure 5.9: The effect of airway deformation and partial occlusion of the image due to mucosa and 

blood on the accuracy of the 2D/3D registration technique without (mid-column) and with (right-

column) predictive camera tracking. 
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Chapter 6   
 

 

 

EM Trackers in Bronchoscope 

Navigation  

n the last two chapters, we have developed a pq-space based framework for 2D/3D 

image registration. We have also demonstrated how temporal tracking can be used to 

improve the overall system accuracy and robustness when severe artefacts are encountered. 

From the in vivo experiments, it has become clear that image-based techniques have certain 

limitations. Although the proposed pq-space based similarity measure is immune to lighting 

parameters, airway deformation has so far only been considered qualitatively in an ad hoc 

manner. In Chapter 4, local deformation of the airways is detected from temporal variations 

of the pq distribution and the registration algorithm assumes that this deformation is 

relatively small. For patient-specific bronchoscope tracking and modelling, however, 

respiration and patient motion can introduce significant distortions to the tracheo-bronchial 

tree. For the proposed algorithm to be clinically useful, further enhancement in effective 

motion handling is necessary.   

To this end, EM tracking devices offer an attractive solution. The latest generation of 

miniaturised catheter tip EM tracking devices allow the insertion of the EM sensor into the 

biopsy channel of the endoscope. This offers the potential for significantly improving the 

robustness and accuracy of current registration techniques in the presence of large tissue 

deformation. In this way, the camera position can be tracked during the whole procedure 

with sub-millimetre accuracy and real-time response. The major advantage of these systems 

is their immunity to the quality of the video frames, as well as the imaging artefacts 

involved.   

I 
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However, there are several challenges need to be addressed before these systems can be 

safely applied to clinical simulation. The choice of the tracking system is influenced by a 

number of parameters that depend both on the nature of the application and the required 

level of accuracy. Ferromagnetic distortion, tissue deformation and patient movements 

reduce the accuracy of these systems in clinical environments. Particularly in 

bronchoscopy, respiratory motion and global shifting of the position of the patient can 

interfere with the measurements of the EM tracker and subsequently reduces its 

effectiveness. In this chapter, we will address the technical issues related to the use of EM 

tracking devices for bronchoscope tracking, and emphasise on the issue of how to decouple 

global and respiratory motion of the EM tracking data such that its reading can be 

effectively used to guide the 2D/3D registration algorithm.  

 

6.1 Positional Trackers in Medical Applications 

Tracking devices are well known in image-guided surgery because they provide real-time 

measurement and have stable performance compared to image-based fusion techniques 

[149, 150]. In many surgical applications, it is important to correlate in real-time the intra-

operative field with the imaging space. For example, in neurosurgery tumours identified in 

CT or MR images may be visually difficult to distinguish from the surrounding normal 

tissue during surgery. In neurosurgery, optical tracking devices were developed in the early 

1990’s and they gradually replaced neuronavigator arms, which have been used since the 

end of 1980’s as passive intraoperative position systems. The main advantage of optical 

tracking is that they are easy to handle and have fewer restrictions to the surgeon’s 

movements.  

Optical tracking systems provide the most reliable and precise position sensors available in 

medical applications [151]. Objects are tracked by rigidly attaching retro-reflective spheres 

or active infrared LED’s. The spheres can be detected by the camera system and used to 

determine the location and orientation of the object. Infrared light is used for maximal 

accuracy and decreased sensitivity to ambient light. Optical tracking provides an attractive 

solution for tracking rigid tools due to its linearity, stability and accuracy. Compared to 

ultrasound and EM trackers it offers a great potential in terms of accuracy and speed of 

acquisition. Subsequently, it has been popular in surgical operations related to brain, spine 

and general orthopaedics, in which it has been established as part of the standard clinical 

practice. However, the method is constrained to the line-of-sight applications and thus it is 

inappropriate for tracking flexible instruments inserted into patients.   
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6.2 Miniaturised Electro-magnetic Trackers 

Recently, Electro-magnetic Tracking (EM) has made significant advances both in terms of 

its accuracy and miniaturisation. Examples of such systems that can be used for MIS 

include Aurora
®
 (NDI), MiniBird

®
 (Ascension) and Magellan

®
 (Biosense Webster). They 

are equipped with cylindrically shaped sensor coils to the size of the tip of a biopsy tool so 

that they can be embedded in catheters and thin needles. The advent of miniaturised 

trackers has a variety of potential clinical applications in computer aided interventions. The 

needle probe is suited to computer-assisted minimally invasive drug delivery, biopsy, cyst 

drainage, and electrode placement. The position and orientation of the flexible instrument 

tip, such as endoscopes and catheters can be tracked accurately within the body. EM 

trackers use the attenuation of oriented Electro-magnetic signals to determine the absolute 

position and orientation of a tracker relatively to a source. The induced voltage level 

provides information about both the distance from the transmitter to the receiver and the 

axis-alignment between them. Boundaries of equal accuracy are found along a hemisphere 

or sphere around the transmitter.  

Although EM trackers are susceptible to ferromagnetic interference they can achieve a high 

application accuracy after careful in situ calibration [152]. The potential clinical 

applications of EM systems have already extended well beyond optical and mechanical 

positional systems. Electro-magnetic systems that provide simultaneous 

electrophysiological and spatial information have been approved for patient care and are 

used in clinical practice. Such systems have been used in cardiac interventions, endonasal 

sinus surgery and bronchoscopy [152-154]. EM systems also facilitate the development and 

expansion of new diagnostic techniques and imaging modalities, such as Laparoscopic 

Ultrasonography and neurorsurgical applications [155, 156]. This paragraph presents a brief 

overview of the clinical applications and studies and the related challenges in EM tracking. 

Electro-magnetic tracking technology (InstaTrack
R
 CAS system) has been employed for 

endonasal sinus surgery [152]. Endonasal sinus surgery is challenging because of the 

presence of a variety of endangered vascular and neural structures in a very confined space 

of the anterior skull base. For this kind of operations, computer-aided surgery is an 

important tool for increasing the accuracy of orientation and becomes mandatory for 

specific patient cases. For these systems, two EM sensors provide positional information 

relative to the CT images. One sensor is located to the standard suction chamber and the 
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other is located on a headset worn by the patient during the surgical procedure. Similarly, 

the possibility of extending the use of EM trackers in neurology has been shown in a 

number of feasibility studies [156]. In the work by Zaaroor et al., the accuracy of an EM 

system (Magellan system, Biosense Webster) is measured for image-guided neurosurgical 

applications. The Magellan system was developed to provide real-time tracking of the distal 

tips of flexible catheters, steerable endoscopes, and other surgical instruments, using ultra-

low electro-magnetic fields and a novel miniature position sensor for image-correlated 

intra-operative navigation and mapping applications.  

This EM system has been also tested for anatomically targeted ablations of the fossa ovalis, 

which is found in the right atrium of the heart, and the left atrium [157]. Transvenous 

catheter ablation is a treatment for many arrhythmias that involves the surgical removal part 

of body tissue. Anatomical knowledge has important role in treating arrhythmias, such as 

atrial fibrillation and non-idiopathic ventricular tachycardia. Although fluoroscopy is the 

main intra-operative imaging modality, it provides limited information to localise the 

catheter position in relation to the cardiac structures and expose both the patient and 

medical staff to high doses of ionising radiation. Furthermore, the arteries can only be made 

visible by inhaling a contrast agent, which subjects the patient to additional risks. Dickfeld 

et al. [157] suggests stereotactic catheter guidance for cardiac applications. The EM system 

is superimposed on three-dimensional MR images using fiducial markers. This allowed the 

dynamic display of the catheter position on the true anatomy of previously acquired MRI in 

real-time.  

In surgery, EM tracking technology has also been used to provide surgeons with important 

spatial cues during Laparoscopic Ultrasonography (LUS), so they can orient oblique 

images with few constrains on positioning the laparoscopic port [155]. The key component 

of this visualisation technique is that it shows how the ultrasonography plane interacts with 

the aorta and thoracic skeletal anatomy. LUS is the most sensitive method for detecting 

hepatic metastasis and it is also a mean of identifying stones during laparoscopic 

cholecystectomy. However, one of the major problems is in interpreting LUS images 

because they are not obtained in conventional orientations, such as transverse or sagittal 

planes. This limits the adaptation of LUS in clinical practice, since both novice and 

advanced ultrasonographers experience difficulty. 
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6.2.1 Accuracy Assessment and Metal Calibration of EM Trackers 

There are a number of evaluation criteria for EM trackers:  

(1) Resolution - It is related to the ability of the tracker to measure different points in 

space, and subsequently, the numerical accuracy of the system. The accuracy of a 

system is usually affected by whether the sensor moves or not and thus, it is 

described as static or dynamic, respectively.  

(2) Registration - It refers to the correspondence between actual position and 

orientation and reported position and orientation. Calibration processes are used to 

measure and adjust for the differences between reported and actual position. 

(3) Drift - It is a gradual increase in tracking error over time. 

(4) Jitter - It is a fluctuation in the reported position/orientation of the sensor.   

(5) Phase Lag - It is the time that takes the sensor to report its position and it is related 

both with the data generation and the transmission process.  

(6) Update Rate - It is the number of tracker position/orientation samples per second 

that are transmitted to the receiving computer. Higher update rates do not 

necessarily imply better accuracy. An upper bound is determined by the 

communications rate between computer and tracker and the number of bits that 

encode the pose information.  

(7) Range - Positional range refers to the working volume of the system, since the 

accuracy of EM tracking systems decreases with distance. Orientation range refers 

to the set of sensor orientations that the tracking system reports with a given 

resolution.  

(6) Interference and noise. Inaccuracies might occur due to external object and Electro-

magnetic fields. Random variations in an otherwise constant reading may also 

occur and they are related to the static accuracy of the system.  

(8) Physical dimensions - This refers to the size, mass and any other special 

characteristic that affects the feasibility and function of the tracking system under a 

specific application.  
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(9) Multiple sensors - This is related with the ability of the system to track multiple 

points within the same volume.    

Although AC magnetic trackers are accurate and can provide high update rates, they are 

particularly sensitive to eddy-currents and ferromagnetic environment. The Aurora EM 

system has been evaluated by a number of research groups [158-163] and has been used in 

numerous clinical as well as phantom studies of image-guided applications [154, 164-166]. 

It represents a new generation of DC magnetic trackers with increased accuracy and 

stability even in ferromagnetic environments [164]. The basic system consists of a control 

unit, sensor interface devices and field generator and it enables the coils to be tracked in 

five degrees-of-freedom (three spatial and two rotational coordinates). The sensors can be 

as small as 0.9mm in diameter and 8mm in length. According to manufacturer’s 

specifications, the sensors have a positional accuracy of 1-2mm and angular accuracy of 

0.5-1 degree. The system’s dynamic rate is its maximum data rate, which is equivalent to 

45Hz. The measurement volume is 50 by 50 cm, located 50mm from the field generator.  

Typically, in the operating room there are various materials, such as closed metallic loops, 

wire guides, catheters and monitors that interfere and distort the EM sensor measurements. 

In addition, their accuracy depends on the distance between the transmitter and the sensor. 

As opposed to optical tracking, the useful field-of-view is rather small. One possible 

approach to overcome this problem is to design a hybrid tracking system, using an 

additional optical tracking tool to monitor displacements of the emitter [158]. Nevertheless, 

the susceptibility of EM tracking systems to EM interference is by far the greater obstacle 

in the acceptance of these systems in standard clinical practice. Subsequently, there are 

numerous studies testing the nature of the EM distortion caused by the presence of different 

ferromagnetic materials in the operating room, as well as the development of techniques 

that improve the measurement accuracy.  

Hummel et al. [158] has tested the Aurora system to examine its accuracy under the 

influence of: (1) closed wire loops with different radii, (2) guiding wires (endoscopes) with 

different configurations of loops, (3) ultrasound scan probes near to the emitter and sensor, 

(4) a mobile C-arm fluoroscopy unit, (5) an optical tracking tool, (6) an endoscope with a 

radial ultrasound scan head, and (7) a needle holder, biopsy forceps and a drill handle. 

Wilson et al. [163] also tested Aurora within a CyberKnife radiosurgery suite. CyberKnife 

is a non-invasive, frameless, stereotactic radiosurgery device used to ablate tumours within 

the brain, spine, chest and abdomen. One of the aims of the work was to determine the 

accuracy and device behaviour with the presence of ionising radiation. Although, there are 

noticeable trends in the Aurora system performance with and without the presence of 
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ionising radiation, the overall effect of measurement accuracy is minimal. On the other 

hand, the tracker is more sensitive to distortions caused close to the emitter rather than to 

the sensor. The deviations also depend on the relative orientation between emitter and 

sensor, with the worst orientation having the sensor directed towards the field generator and 

the best orientation being orthogonal. In the case of a biopsy tool close to the sensor the 

distortion is negligible. 

Collecting precise information on the nonlinear local error and calibrating the EM tracking 

system can compensate the influence of the metallic equipment. An effective way to collect 

reliable positional information is by using an optical tracking system, such as Polaris, 

which determines the orientation and position of tracked objects relative to a camera system 

[160, 167]. Robotic arms can be also used but they carry the risk that their metal bases 

interfere with the EM tracking measurements. Once the data have been collected, several 

tracking calibration methods can apply to find a mapping function between the gold 

standard data provided from optical tracking and the EM data distorted from EM 

interference. Kindratenko [168] presents a good survey on Electro-magnetic position 

tracker calibration techniques, which are mainly used in virtual reality applications, such as 

the CAVE (Cave Automatic Virtual Environment). Most methods, however, assume that 

position displacements depend only on position and do not change with orientation.  

Wu et al. [167] indicates that this assumption may be true for smooth distortions, but it 

does not hold for the Aurora in a clinical setup. Chung et al. [160] also suggests that it may 

not be adequate to obtain static measurements when performing the calibration, since the 

accuracy of EM trackers is reduced when tracking objects are in constant motion. 

Subsequently, Chung et al. [160] proposes a freehand calibration technique that 

incorporates these requirements. It allows for free movements of the calibration object and 

provides a mechanism of interdependence between positional and angular correction. To 

ensure smooth interpolation of 
2C  continuity over the six degrees-of-freedom that 

describes the position of the EM sensor, a radial basis spline framework is extended to cater 

for the non-Euclidean nature of orientation space. While current calibration techniques 

offer a factor of improvement of around 1.5, the second generation of extra-immune EM 

systems has also become available recently [161]. These systems report accuracy of sub-

millimiter in the presence of ferromagnetic objects common in the operative room and open 

the way of wider use of EM systems in computer aided surgery.   
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6.2.2 EM Tracking under Tissue Deformation and Patient Movements 

Crucial to the success of EM endoscope tracking is the alignment between the EM data and 

the pre-operative images. When the anatomical structure depicted on the pre-operative 

images does not deform during operation then a rigid transformation between the EM 

tracking coordinate system and 3D data can easily established based on landmark 

correspondences. Subsequently, a least-square approach is used similar to [169, 170], 

which offers an optimum in least-square sense closed-form solution and it requires a 

minimum number of three non-collinear point correspondences. This methodology is 

common in orthopedics and neurosurgery and generaly in optical tracking, because the 

related anatomical structures are relatively rigid and apparent landmarks in both pre-

operative data and intra-operatively are easily identifiable. Furthermore, the position of the 

patient can be easily tracked, by introducing additional sensors, for example attached to the 

head and so on. 

However, relating the EM tracking data to a static pre-operative scan can be particularly 

challenging when flexible instruments and catheters are tracked inside the body. This is due 

to tissue deformation and global shift of the position of the patient during operation. Tissue 

deformation can result from tissue-tools interaction, cardiac contraction, respiratory motion, 

organ function and internal shift of the organ as the patient changes position. This problem 

has been reported to numerous research studies [154, 157, 171] and various motion 

compensation techniques have been developed [166]. For example, Dickfeld et al. 

investigated whether stereotactic catheter guidance based on EM tracking can place 

radiofrequency (RF) ablations at well-defined anatomical targets, within the lateral wall of 

left atrial appendage, identified on MRI. In the work by Dickfeld et al. [157] is recognised 

the effects of respiratory motion to the accuracy of the technique and attached a reference 

catheter on the chest of the animals to improve the accuracy of image registration during 

respiratory or animal position changes. Respiratory motion compensation is well known in 

radiotherapy, where a certain dose of radiation needs to be delivered in the cancerous target 

with minimal effect on the surrounding healthy tissue.   

In the work by Timinger et al. [166] also used an EM system (Aurora) to locate the catheter 

during navigation within the coronary tree. The image-guided system was extended to 

compensate for cardiac contraction and respiratory motion. Cardiac contraction is 

compensated by gating the catheter position. In this process only those images acquired 

during the rest phase of the heart are used for the image-guided system. An affine model is 

used to compensate for the respiratory motion. This model is driven by a parameter, which 

indicates the current state of the motion. Such a parameter can be the location of the edge of 
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the diaphragm, which moves along with respiration. However, a correlation between this 

parameter and the resulting effect on the organ has to be identified. Assuming that this 

correlation can be described by an affine model, point correspondences of the cardiac 

phantom between fully exhaled phase and fully inhaled phase was extracted and 

subsequently a least square minimisation approach was employed to recover the parameters 

of the affine model. The work by Timinger et al. [166] based their methodology on the fact 

that the movements of the heart and those of the diaphragm are similar due to the 

anatomical neighbourhood. Subsequently, they simulated respiratory motion induced to the 

artificial coronaries by a rotation.   

There is high correlation between the motion of the needle placed in the liver and the 

motion reported from a sensor attached on the sternum of the patient [172]. Subsequently, 

an affine model was used to compensate for the error. However, it was also indicated that 

there is the need to create more sophisticated models that account for tissue warping. In 

general, motion of internal human organs may be complex with high non-rigid components. 

This implies that simple mathematical models may fail to predict the deformation of more 

complex anatomical structures, such as the tracheo-bronchial tree. For this reason it may 

neither be adequate nor straightforward to associate the motion of an externally tracked 

point to the internal motion of an organ. Nevertheless, the importance of motion 

compensation in successful integration and clinical application of EM medical devices has 

been widely recognised. 

 

6.3 EM Tracking in Image-Guided Bronchoscopy 

Miniaturised EM trackers have been also used in image-guided bronchoscopy to accurately 

display the position of the tip of the flexible endoscope in pre-operative CT images [74, 

154]. Bronchoscopists mainly rely on the endoscopic view to navigate in the airways and 

acquire tissue samples. However, this results in poor diagnosis when transbronchial needle 

aspiration is performed to detect extraluminal lesions. Moreover, during transbronchial 

forceps biopsy the bronchoscopist relies on a C-arm fluoroscopy for guidance. Two-

dimensional fluoroscopy cannot accurately provide the 3D position of the lesion, which 

frequently results in missing the target. EM tracking has the potential to facilitate 

bronchoscopy procedures by tracking the tip of the flexible instruments.  
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It has been postulated that in the presence of airway deformation, one can readily use the 

EM tracking data and subsequently apply image registration to recover the unknown axial 

camera rotation (AURORA) [75]. In the work by Solomon et al. an additional EM tracker 

is placed on the patient chest to partially compensate for respiratory motion [154]. 

Measurements taken repeatedly at the same point showed that an error of 3.6 2.6± mm 

still exists, indicating that further improvements to the method should be considered. This 

issue will be investigated more in the following chapter, where the tracheo-bronchial tree 

reconstructed from a CT scan, will be deformed to accommodate anatomical changes due to 

respiration. However, before any solution can apply global motion of the patient should be 

monitored and decoupled from the EM data.  

 

6.4 Decoupling of Global and Respiratory Motion  

 

Figure 6.1: A diagrammatic illustration of the EM tracking sensor setup, where one catheter tip 

sensor is inserted into the patient’s lungs and another is attached on the chest of the patient to 

monitor global and respiratory motion. 

Additional positional sensors can be introduced to extract respiratory motion by tracking 

the position of external fiducial markers attached on the skin of the patient. However, this 

technique compromises the accuracy of the system, since the human skin is easily 

deformable, especially in obese individuals [154]. Moreover, the introduction of extra 

tracking devices complicates the experimental procedure and may not be practical in 

clinical examinations. Due to the different frequency characteristics of the respiratory and 

global motion, it is possible to simultaneously acquire and decouple these motions by using 

a single sensor. This is not trivial as global and respiratory motion is intertwined depending 



 

 152 

on the projection axes. In the subsequent sections, we will present a new technique that 

uses wavelet analysis to identify and filter out episodes related to coughing and extreme 

breathing patterns, and a principal component analysis based method to retrieve the hidden 

respiratory pattern of the EM position sensor. 

 

6.4.1 Principal Component Analysis 

Given that the dominant variation of the signal is due to respiratory motion and it has a 

constant direction during a given time window, then principal component analysis can be 

employed to decouple it. The principal vector is expected to lie on the same plane over time 

and, thus projecting the signal on this plane can isolate the signal variations due to 

respiration. We define as f  the positional vector over time of the MagTrax (Traxtal 

Technology) reference sensor attached to the chest. Typically, the respiratory pattern has a 

higher frequency than positional drift of the patient, a box kernel ( )tδ  is convolved to each 

axis of the motion sensor such that  

( ) ( ) ( ) ( )*f t f t f t tδ= − ∗  (6.1) 

The width of the kernel ( )tδ  is chosen to be approximately half respiration cycle (3sec) so 

that the DC component is filtered out. Here the DC component includes the static position 

of the patient, as well as the positional drift and the motion of the bronchoscope with lower 

frequency than respiration.  

In discrete form, the samples over time can be represented as: 

( ) ( ) ( )* * *f , f , .... ft w t t w t t t w t− ⋅∆ − ⋅∆ +∆ + ⋅∆  (6.2) 

where t∆  expresses the sampling time interval and w  is an integer that corresponds to 

each sample in a kernel that has a typical length of 30 sec.  

Subsequently, a matrix h  is defined for each time sample as: 

( ) ( ) ( ) ( )* * *f , f , .... f
T

h t t w t t w t t t w t = − ⋅∆ − ⋅∆ +∆ + ⋅∆    (6.3) 
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h  has dimension of ( )2 1 3w + ⋅ , because it includes positional information of the 

bronchoscope in a 3D coordinate system ( ), ,x y z . Note that ( )h t  is the mean of ( )h t . 

Therefore, the covariance matrix is produced as: 

( ) ( ) ( )( ) ( ) ( )( )TM t h t h t h t h t= − ⋅ −  (6.4) 

The principal vector ( )p t  is estimated from the eigen-decomposition of the covariance 

matrix. Finally, r  is a scalar vector, which represents the decoupled respiratory motion. 

Each element of r , ( )r t  , is estimated as the projection of ( )*f t  on the principal vector 

( )p t .  

( ) ( ) ( )*fr t t p t= ⋅  (6.5) 

 

6.4.2 Wavelet Analysis 

During bronchoscope examination, coughing involves major distortion of the airway thus 

those video sequences should be isolated during image based modelling. In order to 

identify these episodes wavelet analysis was used [173]. Wavelet analysis provides a 

localised frequency analysis and has the potential to analyse signals that contain multiple 

non-stationary or transitory signal characteristics, such as drift and abrupt changes. On the 

other hand, Fourier transform assumes that a signal is stationary, which implies that it has 

constant statistical parameters over time. The issue of stationarity depends on the size of the 

sampling window. During bronchoscope examinations, the signal cannot be approximated 

as stationary and thus the wavelet analysis is inherently more suitable. The main 

advantages of the method are both its ability to perform local analysis and to preserve time 

information. In the other words, wavelets represent a windowing technique with variable-

sized regions that allow the use of long time intervals when low frequency information is 

available, and shorter intervals when high frequency information is present.   

Let ( )tψ  be a function in the Hilbert space ( )2L R  of measurable, square-integrable one-

dimensional functions with an average of zero. The wavelet transform of a function ( )f t  at  

scale j  and position t  is given by the convolution product:  

( ) ( )
j jW f t f tψ= ∗  (6.6) 
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Figure 6.2: Wavelet analysis: X, Y and Z positional data has been acquired from an EM tracker 

attached on the skin of a healthy subject in order to assess the wavelet technique of filtering sudden 

movements similar to those that are introduced in a bronchoscopy session when the patient coughs. 

We used Daubechies (db10) mother wavelets to analyze the signals.  

In multiscale edge analysis, ( )tψ  is usually chosen to be the derivative of some smoothing 

function, and thus the local maxima of ( )Wf t  indicate the positions where sharp signal 
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variations occur. In order to identify these variations, we define an energy function e  with 

threshold ξ .  

( ) ( )
10

j

j

e t W f t ξ
<

= >∑  (6.7) 

 

6.5 Experimental Design  

Two experiments have been conducted in order to validate our technique. Firstly, the EM 

tracker was attached on the subject chest to monitor normal breathing and coughing. The 

subject was asked to cough at a particular time, while slight global motion was introduced. 

An example is demonstrated in Figure 6.2 and has been used to validate the wavelet 

technique. Secondly, positional data has been acquired from two Aurora EM trackers. The 

first sensor was placed on the chest of the immobile volunteers to be used for respiratory 

gating. The second one was placed on the chair, in order to monitor the global motion used 

for validation. In this case, the positional difference of the two sensors should be purely due 

to respiration. Subsequently, we applied the decomposition method mentioned above to 

extract respiration from just one sensor attached to the chest. The aim is to see the extent to 

which the respiratory motion can be recovered from this sensor alone. Eight subjects have 

been recruited for this study. During the experiment, they were asked to keep their body 

completely immobile, while they were breathing normally. Their respiration has been 

monitored for about 2 minutes. Global motion was introduced either by moving the EM 

field emitter or the base of the chair smoothly.  

 

6.6 Results  

Figure 6.2 and Figure 6.3 demonstrate the wavelet analysis of the X, Y and Z positional 

data that have been acquired from an EM tracker attached on the skin of a healthy subject. 

The wavelet coefficients are plotted for each signal component. Figure 6.3 represents the 

energy function of the X-wavelet coefficient graph that has been defined within equation 

(6.7). The time interval where the patient coughs shows up clearly as a pick at around 1000 

time samples that corresponds to 88 sec.  
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Figure 6.3: The enrgy function after analyzing the X-motion signal. Similar results have been 

acquired from analyzing either the Y or the Z component. 

In Figure 6.4, the respiratory motion decoupling technique is demonstrated. Figure 6.4 (b) 

illustrates the x, y, z positional component of the data received from the EM tracker 

attached on the chest of one of the subjects, while Figure 6.4 (a) illustrates the x, y, z 

positional component of the data received from the EM tracker attached on the chair. 

Global motion has been introduced by moving slightly the field emitter (Aurora). Figure 

6.4 (c) represents the recovered respiratory component after applying the proposed 

technique of Section 6.4 to the data received from the EM tracker on the subject’s chest. In 

order to validate our technique the correlation between the recovered waveform (Section 

6.4) and the waveform estimated by applying principal component analysis to the vector 

between the two EM tracker tool tips has been calculated for eight subjects. Table 6.1 

demonstrated the results, which indicate a high degree of correlation. 

 

Subjects 1 2 3 4 5 6 7 8 

Correlation 0.918 0.962 0.805 0.794 0.879 0.791 0.786 0.687 

Table 6.1: Correlation of the waveform estimated by the suggested respiratory decoupling motion 

technique with the waveform estimated by relative position of two sensors. 
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a) 

b) 

c) 
Figure 6.4: Example position traces sampled by the EM tracker and the extracted respiratory motion 

pattern. 

 

6.7 Discussions and Conclusions 

Thus far, tracking devices have been integrated into a number of image-guided surgery 

applications. The most successful examples are in neurosurgery and orthopaedic surgery. 

Accuracy and stability of these systems is critical to patient health and the outcome of the 
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operation. Currently, the most reliable and precise position sensors available in surgical 

applications are optical tracking systems. The main advantage of these methods is that they 

are not affected from ferromagnetic distortions, while they have a large operative volume. 

Unfortunately, optical trackers are limited to the line-of-sight applications and thus they are 

inappropriate for tracking flexible instruments inserted in patients.  

Recently, the technological advances of miniaturised EM tracking sensors have allowed 

their insertion in the biopsy channel of flexible endoscope and permit real-time tracking of 

the endoscope tip inside the body cavity. Although the inherent mechanism of EM tracking 

devices is inferior to the corresponding mechanism of optical trackers, it does not imply 

that their application accuracy is always inferior. In fact, optical trackers can only be used 

to track fiducial markers that are always rigidly attached on the skin or on the rigid surgical 

tools. Nevertheless, this is compromised by the deformable nature of soft tissue and the 

non-perfect rigidity of the tools. Furthermore, continuous tracking is also compromised 

from the line of sight constraint.  

It is important to realise that mechanical accuracy of a positional system is different from 

application accuracy. For example, an EM system with manufacturing specifications of 

sub-millimetre accuracy, under the influence of metal and tissue deformation, it may 

provide measurements that are several centimetres away from the correct positions. This 

indicates that the limiting factors in the use of these systems in practice are not their 

inherent inaccuracy but the lack of appropriate methods to exploit their capabilities. Most 

of the current image guided systems rely on a preoperative-static scan without any update 

to allow for tissue deformation with relation to patient movements during the procedure. 

Therefore, methods should be developed to compensate for tissue deformation and to 

monitor the global position of the underlying anatomy with relation to a fixed coordinate 

system. This, however, is not a trivial task, particularly in bronchoscopy. The internal 

motion of the airways is difficult to be modelled adequately and it is not straightforward 

how it correlates with the motion of externally tracked points. There are two goals to be 

achieved. The first aims to decouple global from respiratory motion and the second is to 

model the tracheo-bronchial tree motion during respiration.  

In the work presented in this chapter, we have developed a novel method of decoupling 

respiratory motion from the signal received from an EM tracker attached to the chest. We 

used wavelet analysis to filter out episodes due to coughing and other extreme breathing 

patterns. Principal component analysis has been employed to decompose the respiratory 

cycle from global motion. It should be noted that the basic assumption used for respiratory 
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motion decoupling is that the global positional drift has a relatively low frequency in 

comparison to respiratory cycles. When there is sudden motion involving large 

acceleration, it is likely that rapid changes in sensor readings will be introduced. In this 

case, the algorithm based on principal component analysis will lead to detection errors. 

Since we have used wavelet analysis to sense rapid sensor movement, these events will also 

be isolated along with coughing and extreme respiratory motion. The results in this study 

indicate that episodes related to coughing can easily identified and filtered out and the 

respiratory motion component can be reliably extracted. The suggested technique can 

facilitate a 2D/3D registration regime under deformation and increase the accuracy of the 

registration process. Further clinical approval needs to be done to investigate its efficiency. 

In the next chapter, we will demonstrate that it is also possible to capture the airways shape 

variability during respiration and use this prior knowledge to facilitate the non-rigid 2D/3D 

registration framework. In this way, the EM devices can be utilised directly in the 

registration process to further enhance the registration accuracy of the proposed pq-space 

2D/3D registration method.  
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Chapter 7   
 

 

Non-Rigid 2D/3D Registration with 

Statistical Shape Modelling and EM 

Tracking 

n the previous chapter, we have demonstrated the potential value of EM tracking for  

2D/3D registration. We have shown that continuous tracking of the bronchoscope is 

difficult with image-based registration algorithms alone and the method can fail if extreme 

breathing patterns are encountered. Image artefacts caused by mucosa, bubbles and 

bleeding during a typical bronchoscopy examination can also pose significant challenges. 

The introduction of in vivo catheter tip EM tracking means that it is now possible to 

explicitly incorporate airway deformation into the registration framework.  

The incorporation of airway deformation to the existing 2D/3D registration framework, 

however, is a difficult task. This is due to the potentially very large degrees of freedom 

involved in simultaneous tracking of the camera pose and structural changes. At first 

glance, it may seem that the use of a 5 DoF catheter tip EM tracker reduces the original 

2D/3D registration to only a 1D problem. It has been postulated that in the absence of 

airway deformation, one can readily use the EM tracking data to recover the unknown axial 

camera rotation [75]. For situations where large non-linear deformation is encountered in 

vivo experiments, however, the nature of the problem is much more difficult than what it 

first appears. This is because the EM tracker reports only the position and orientation of the 

bronchoscope camera in relation to the fixed, world coordinates. When this information is 

used to guide the registration of the airway structure reconstructed from the tomographic 

data, a large displacement due to airway deformation can be observed. When this EM 

tracking information is used to initialize the 2D/3D registration, it has been found that the 

I 
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initial view can often be completely outside of the bronchial tree. This initialization is in 

fact inferior to the traditional image based approach, as in this case the camera view is 

always in synchrony with the moving frame of reference of the deforming airways. For this 

reason, direct mapping of the EM tracking measurements to the static preoperative CT 

images is not appropriate, and its practical use must be considered with the deformation of 

the airways. 

In this chapter, we will present a non-rigid 2D/3D registration framework and its phantom 

validation for subject-specific bronchoscope simulation. The method makes use of a 5 DoF 

miniaturised catheter tip EM tracker such that the position and orientation of the 

bronchoscope can be accurately determined. This allows the effective recovery of unknown 

camera rotation and airway deformation, which is modelled by an Active Shape Model 

(ASM). It is demonstrated that ASM can capture the intrinsic variability of the tracheo-

bronchial tree during breathing. ASM is specific to the class of motion it represents and this 

enables the reduction of the number of parameters that control the deformation. 

Subsequently, the optimisation procedure is greatly simplified and pq-based registration as 

described in Chapter 4 is performed to recover both the camera pose and parameters of the 

ASM. Detailed assessment of the algorithm is performed on a deformable airway phantom, 

with the ground truth data being provided by an additional 6DoF EM tracker to monitor the 

level of simulated respiratory motion.  

 

7.1 Deformable 2D/3D Registration 

Figure 7.1 provides a schematic illustration of the proposed registration framework. Given 

a number of volumetric images at different respiratory phases of the tracheo-bronchial tree, 

an ASM capturing the intrinsic deformation of the airway is created. Based on the control 

points of the ASM, Radial Basis Functions (RBFs) are used to warp the 3D mesh to reflect 

the structural deformation induced. 2D/3D registration is then used to recover both the 

parameters of the ASM and the pose of the bronchoscope camera. We demonstrate that by 

modelling the deformation of the airways with ASM, it is possible to capture intrinsic 

variabilities of the tracheo-bronchial tree based on images acquired at different phases of 

the respiratory cycle. In this way, the dimensionality of the non-rigid 2D/3D registration 

problem can be significantly reduced, thus leading to a more robust registration framework 

that can be deployed to patient bronchoscope examinations.  
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Figure 7.1: A schematic illustration of the proposed non-rigid 2D/3D registration framework with 5 

DoF EM tracking and ASM for deformation modelling. 

 

7.1.1 Deformation Modelling of the Airway Tree 

In order to design an efficient non-rigid 2D/3D registration, prior knowledge about the 

airways deformation during respiratory motion is required. Deformable models can 

accommodate the variability of biological structures over time and across different 

individuals. As it has already been mentioned in Chapter 3, deformable models have been 

proved to be effective in tracking anatomical structures and they are used extensively in 

non-rigid registration for formulating transformation models. Deformable models are 

constructed under the influence of geometry, physics and approximation theory [91]. 

Geometry serves to represent object shape, physics imposes constraints on how the shape 

may vary over space and time, and optimal approximation theory provides the mechanisms 

for fitting the models to the measured data.  

As an example, prior knowledge about the deformation of the lungs can be derived by 

monitoring the tracheo-bronchial tree during respiration in order to determine how the 

shape changes over time. This can be accomplished by scanning lungs in different 

respiratory phases [95]. Alternatively, anatomical and physiological models of respiration 

can be incorporated [174, 175]. In the work by Kaye et al. [50], a simulation system that 

combines anatomy and respiratory mechanics has been developed based on a physical 

model. The lungs are considered as a single-compartment, viscoelastic structure, and the 

classic mechanical model based on observable variables such as pleural pressure change, 

lung volume change, and airway pressure is used. However, the contraction of the intra-

thoracic tree depends on the surrounding structure and the biomechanical properties of the 
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elastic tissue. In practice, biomechanical modelling of the airways is not trivial because it 

requires in vivo measurements of the tissue properties of the vessel lumen.    

In the work by Garrity et al. [95], a dynamic model for the lung lobes and the airway tree 

has been developed. A model of the first four to five generations of the airway tree has been 

created by segmenting the visible human CT data. The algorithm assumes that each branch 

is a rigid cylindrical tube with a constant diameter and a dichotomous subdivision system. 

Parameters for the daughter branches are determined by equations defining the 

relationships between the air flow and the diameter, angle, and length of the branches. Once 

the lung lobes and airway tree are finalized, the respiratory motion is modelled based on 

high-resolution 4-D respiratory-gated CT data obtained from a normal human subject. The 

data consists of two CT scans taken at two different time points of the respiration cycle. 

One scan was taken at 5% of total lung capacity (TLC) and the other scan was taken at 40% 

of TLC. The limitations of this approach are that the parameterisation is based on splines  

and requires a large amount of parameters. Furthermore, the airways are over-smoothed and 

the method does not offer a patient specific deformation model of the lungs.   

 

7.1.2 Active Shape Models 

In this thesis, we suggest using the Point Distribution Model (PDM) of the ASM for the 

modelling of airway deformation to ensure that a compact representation of the deformation 

of all the control points can be captured by the principal modes of shape variation. In this 

way, the degree-of-freedom during deformable 2D/3D registration is only dictated by the 

number of modes chosen plus the extra degree-of-freedom introduced by the unknown axial 

rotation of the endoscope.   

ASMs are parametric deformable models that deform in ways that are consistent with the 

class of shape and motion they represent [40]. This is defined by the boundary point 

distribution of a number of shapes, called a training set. To ensure that the ASM captures 

the intrinsic shape rather than the corresponding landmark point variations, all shapes in the 

training set should be aligned so as to minimise the distance variance of corresponding 

control points. Subsequently, Principal Component Analysis (PCA) is applied to the PDM 

to extract the statistical modes of variations that describe these shapes.  

The intuitive benefit of ASM derives from the fact that for most deformable models the 

landmark points are not moving independently, so the intrinsic dimension is significantly 
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lower than the number of control points. Let is  be a vector describing the n  control points 

of the i
th
 shape of the deformable model. 

( )0 0 0 1 1 1, , , , , , , , , ,
T

i i i i ik ik ik in in ins x y z x y z x y z− − −= … …  (7.1) 

Each sample in the training set can therefore be represented by a single point in a 3n-

dimensional space. A set of N  deformable shapes (6 for this study) results in N  points in 

the 3n-dimensional space. These points in general lie within a region of the shape space, 

which is called the ‘allowable shape domain’. Given that every 3n-dimensional point within 

this domain gives a set of landmarks whose shape is similar to those in the original training 

set, the variability of the shape can be modelled in a systematic way in the remapped space. 

By assuming that the allowable shape domain is approximately ellipsoidal, its centre can be 

calculated as the mean shape s , i.e.,  

0

1 N

i

i

s s
N =

= ∑  (7.2) 

Subsequently, the principal axes of the ellipsoid fitted to the data are calculated by applying 

PCA to the data. Each axis gives a mode of variation, which represents the way that the 

landmark points tend to move together as the shape varies. For each shape in the training 

set, the deviation from the mean ids  is calculated to form the covariance matrix S : 

0

1 N
T

i i

i

S ds ds
N =

= ∑  with i ids s s= −  (7.3) 

In this way, any point in the allowable shape domain can be modelled by taking the mean 

shape and adding a linear combination of the eigenvectors of the covariance matrix, i.e., 

s s Pb= +  (7.4) 

where ( )1, , tP p p= …  is the matrix of the first t  eigenvectors. Therefore, new shapes are 

generated by varying the parameters kb  within the suitable limits for them to fit to the 

training set. The limits for 
k
b  are derived by examining the distributions of the parameter 

values required to generate the training set. In this study, the set of the parameters 

{ }1, , tb b…  is chosen by assuming that the plausible shape variations lie within three 

standard deviations of the mean.  
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3 3k k kbλ λ− ≤ ≤  (7.5) 

where kλ  is the k
th
 eigenvalue. This choice covers the plausible shapes between the two 

extreme shapes at maximum ‘exhalation’ and ‘inhalation’ of the phantom. 

 

7.1.2.1 Point Correspondence for the Active Shape Model 

As mentioned earlier, in practical implementations the quality of a statistical shape model 

relies heavily on the accuracy of the landmark correspondence across the 3D model with 

different levels of structural deformation. In order to establish correspondence between a 

set of control points across the 3D meshes, the skeleton of the airway was first extracted 

from the 3D data. The skeleton points were estimated from each slice as the geometric 

centroid of the surface extracted from the marching cube algorithm. Manual interaction was 

required to define the bounding box of each branch. The bifurcations of the airway tree 

were then used as the landmarks for establishing the correspondence across the skeletons.  

This technique is demonstrated in Figure 7.2, where the x, y and z values are measured in 

mm. In Figure 7.2 (a), the extracted geometrical centroids of each airway branch of each 

CT slice (red dots) are shown for six 3D airway meshes that correspond to different phases 

of the movement cycle as illustrated in Figure 7.4. An algorithm has been developed to 

automatically connect the skeleton points (red dots) and identify bifurcation and terminal 

points. The blue line represents the extracted skeletons, whereas the bifurcation and 

terminal points are indicated by yellow markers. In Figure 7.2(a), the green lines show the 

correspondence between the extracted points defined from the bifurcation points. A 

graphical user interface has been designed to permit manual interaction and efficient 3D 

visualisation. Each skeleton can be extracted in less than twenty minutes.  

For each of the skeleton points, the surface perpendicular to the skeleton axis was 

subsequently defined and its intersection with the 3D mesh was estimated. A Gaussian 

filter has been used to smooth the skeleton line and improve the quality of the 

correspondence. For simplicity, four surface control points corresponding to each skeleton 

landmark were used Figure 7.2 (b). This in general is sufficient to define a branching 

generalised cylinder for the airways.  
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a) 

b) 

Figure 7.2: a) The extracted geometrical centroids of the airway branch for each CT slice (red dots) 

for six 3D airway meshes that correspond to different phases of the simulated respiratory cycle of the 

phantom. The blue line represents the extracted skeletons, whereas the bifurcation and terminal 

points are indicated by yellow markers. The green line shows the correspondence between the 

extracted points. b) For each of the skeleton points, the surface perpendicular to the central axis is  

subsequently defined and its intersection to the 3D mesh is estimated. For simplicity, four surface 

control points corresponding to each skeleton landmark are used. 
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7.1.3 Mesh Warping with Radial Basis Functions 

The application of ASM to the skeleton and surface control points results in intermediate, 

deformed airway structures. To generate a smooth 3D mesh of the airways, Radial Basis 

Functions (RBFs) are used. An RBF is a continuous function, of at least 
1C  continuity that 

provides smooth, controllable deformation. It maps each control point in one domain to the 

corresponding control point in the other with interpolation of the mapping at intermediate 

points. An RBF spatial transformation in d  dimensions, denoted ( ),T x y , is composed of 

1, ,k d= …  mapping functions [176], such that: 

( ) ( ) ( ) ( )[ ]1
, , , ,

k d
T x f x f x f x=
� � � �

… …  (7.6) 

With RBFs, each of the mapping functions can be decomposed into a global component 

and a local component, and this decomposition enables a family of transformations to be 

defined where the influence of each control point can be determined. Given n  pairs of 

corresponding control points, each of the k  mapping functions of the RBF takes the 

following form: 

( ) ( ) ( )
1

n

k mk ik i

i

f x P x A g r
=

= +∑� �
 (7.7) 

where ( ), ,x x y z=
�

, ( )
mk
P x

�
, is a polynomial of degree m , ( )

i
g r  is a radial basis 

function, ir  denotes the Euclidean norm defined by  

i ir x x= −
� �

 (7.8) 

and iA  corresponds to the i
th
-column of the parameter array W . It is worth noting that the 

polynomial term has been omitted and ( )ig r  is a linear radial basis function that expresses 

the contribution of each control point on the original vertex.   

In the 3D case represented in this study and ignoring the polynomial term of Equation 7.7, 

the RBF transformation is determined by n  coefficients in each dimension. The 

coefficients of the function ( )
k
f x
�
 are determined by constraining ( )

k
f x
�
 to satisfy the 

interpolation conditions and solving the following linear system of equations: 
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1W G Y−=  (7.9) 

where ( ) ( ), ijG i j g r= , and Y  is a matrix with the deformed points. Intuitively, ( )ijg r  

measures the effect of the j
th
 control point on the transformation at the i

th
 control point. The 

above equation is typically solved by using Singular Value Decomposition (SVD) and the 

new position of each vertex is then calculated from Equation 7.7. During calculation, since 

the vertices have been changed the normals also need to be recalculated. In this study, the 

normals for each rendered scene are implicitly estimated as part of the registration 

procedure. 

 

7.1.4 A pq-based Similarity Measure 

The basic principle of constructing a similarity measure for the 2D/3D registration is based 

on the original pq-based framework suggested in Chapter 4. In this technique, surface 

normals of the video endoscopic image are extracted by using a linear shape-from-shading 

algorithm, which exploits the unique endoscopic camera/lighting special configuration. 

During registration, these vectors are matched to the surface normals of the 3D model with 

its deformation controlled by the ASM and axial camera rotation. The similarity measure of 

the two images was determined by evaluating the dot product ϕ  of the corresponding pq-

vectors. By incorporating the mean angular differences and the associated standard 

deviations σ , the following similarity function is used:  

( ) ( )( )
1

31w w DS nϕ σ ϕ

−   = ⋅ − ⋅    
∑∑ ∑∑  (7.10) 

where 3Dn  is the surface normals derived from the 3D model and wϕ  stands for the 

weighted dot product. With this scheme, neither the lighting parameters nor the other 

rendering parameters need to be adjusted during registration. The similarity measure is 

weighted according to the 3D model surface vectors, such that it is relatively immune to 

texture discrepancies that are common to the endoscopic images. For optimising the above 

similarity measure, the Simplex algorithm by Nelder and Mead was used [177]. 
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7.2 Incorporating EM Tracking Devices 

In previous chapters, we have emphasised the fact that an EM tracker reports only the 

position and orientation of the bronchoscope camera in relation to fixed, world coordinates. 

For this reason, direct mapping of the EM tracking measurements to the static preoperative 

CT images is not appropriate, and its practical use must be considered in relation to both 

the deformation of the airways and the global motion of the patient. In the last chapter, it 

has been demonstrated how to utilise the measurements of a positional sensor attached on 

the patient chest to decouple global and respiratory motion. Subsequently, this information 

can be used to remove the global motion component from the EM data. In this chapter, 

ASM is used to model the motion of the airways during respiration.  

The next step of this approach is to transform the EM data from the EM coordinate system 

to the preoperative image coordinate system. To this end, three landmarks have been added 

to the phantom such that can be accurately identified in the pre-operative scans. By 

marking them with the tip of the EM tracker, their positions can be determined in the EM 

tracker coordinate system. In a real-case scenario, three or more reliable landmarks should 

be identified during a bronchocopy session and then matched to the pre-operative images. 

Subsequently, a rigid transformation between the two coordinate systems can be 

determined based on a close-form solution. In this method, a rigid-body transformation is 

expressed as a combination of a rotation R  and a translation t . So a point Ar  from A  

coordinate system is transformed to Br  in B  coordinate system by the following formula: 

B AB A ABr R r t= +  (7.11) 

Consequently, a rigid-body registration seeks the values of R  and t  that minimize the 

mean square error given 3D point correspondences 
iA

r and 
iB

r , i.e., 

( )
2

,
1

min
i i

N

B A
R t

i

r R r t
=

− ⋅ +∑  (7.12) 

In the work by Horn et al. [169, 170] showed that it is possible to reformulate the problem 

to decouple the computation of R  and t  and solve it with a closed form solution. This can 

be done by referring the coordinates to the respective centroids of each point set, leading to 

the minimization of the following equation: 
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( )
2

,
1

min
i i

N

B A
R t

i

r R r
=

′ ′− ⋅∑  (7.13) 

1

1
i i i

N

A A A

j

r r r
N =

′ ′= − ∑  (7.14) 

1

1
i i i

N

B B B

j

r r r
N =

′ = − ∑  (7.15) 

Subsequently, the translation is given by the difference of centroids:  

1 1

1 1
i i

N N

B A

j j

t r R r
N N= =

= −∑ ∑  (7.16) 

Subsequently, the rotation can be represented by either orthonormal matrices or quaternions 

[169, 170]. However, quaternions offer a more stable solution than orthonormal matrices as 

for the latter the orthonormality contraint should be maintained in each step. Once the 

quaternion representation has been adopted, the solution is obtained by the most positive 

eigenvalue of the matrix N . 

xx yy zz yz zy zx xz xy yx

yz zy xx yy zz xy yx zx xz

zx xz xy yx xx yy zz yz zy

xy yx zx xz yz zy xx yy zz

S S S S S S S S S

S S S S S S S S S
N

S S S S S S S S S

S S S S S S S S S

 + + − − −
 
 − − − + + 

=  − + − + − − 
 
 − + − − − +  

 (7.17) 

where the elements of the matrix S  are estimated as: 

1
i i

n

xx B A

i

S x x
=

′ ′= ⋅∑  and 
1

i i

n

xy B A

i

S x y
=

′ ′= ⋅∑  (7.18) 

 

7.3 Incorporating Temporal Tracking 

The use of ASM allows the incorporation of deformable modelling into the registration 

process. This enables the efficient use of EM tracking data to further improve the 

registration accuracy. In Chapter 5, it has been emphasised that both image-based and EM 

tracking techniques have certain limitations. A probabilistic tracking framework based on 
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the Condensation algorithm is used to allow the use of multi-modal probability 

distributions, which is essential to track the camera position under airway deformation and 

image artefacts. This framework provides an effective way of combining the results from 

pq-space registration with EM tracking to enhance the robustness of the non-rigid 

registration processing. In essence, temporal tracking uses a prediction model to evolve a 

number of particles and a measurement model to assign a weight to each particle. 

Subsequently, by evaluating the given moments of the state density, it estimates the most 

probable state.  

It should be noted, however, the observation model of Chapter 5 was based only on the 

image-based registration results. In this chapter, the observation/measurement model needs 

to combine both the EM tracker measurements and the image-based registration results. 

Generally, the observation density ( )|t tp z x  defines the likelihood that a state tx  causes 

the measurement tz . This is typically achieved by assuming that the measurements are 

statistically independent both mutually and with respect to the process model. Furthermore, 

both the EM tracker and the image-based registration measurements are imprecise. In this 

study, the uncertainty is quantified with a Gaussian probability density function 

( )0,p N σ∼ , where the variance σ , depends on the reliability of the different sensors 

measurements. The observation density for a particular state is estimated by integrating 

over the space of sensors measurements: 

( )| m
tt t z

m

p z x p=∑  (7.19) 

The state of the system has been defined as the 6 DoF pose of the camera. For the process 

model, a second order auto-regressive model was used to describe the motion of the 

endoscopic camera. A detailed description of this model is provided in Section 5.3. 

Training of this model is based on the algorithms also described in Chapter 5 and the 

training sequences have been constructed based on the EM tracking data. since EM tracking 

data are available only for 5 out of 6 DoF, the last degree-of-freedom was tracked 

independently.  
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7.4 Experimental Design 

 

Figure 7.3: The bronchoscope navigation paths involved in this study, where the camera travels 

from the right branch (frame-9780) to the trachea (frame-10845) and then continues to the left 

branch (frame-12501). 

In order to assess the registration accuracy of the proposed algorithm, a dynamic phantom 

was constructed to imitate the airway deformation during respiration. An optical 

bronchoscope has been used to navigate inside the phantom tree. Figure 7.3 illustrates the 

path that has been followed during the experiment. The bronchoscope travels from the end 

of the right branch back to the trachea and then continues to the left branch. A 5DoF EM 

tracker was inserted in the biopsy channel to facilitate the 2D/3D registration. The ground 

truth data for the non-rigid parameters of the 2D/3D registration has been provided from an 

EM sensor attached on the phantom to monitor the deformation phase during navigation.  

To validate the accuracy of the non-rigid 2D/3D registration technique two experiments 

have been designed. Firstly, the 5DoF’s of the rigid registration that define the position and 

two of the rotation angles have been directly recovered from the 5DoF EM tracker. The 

sixth DoF, which defines the rotation of the camera around its axis, as well as the 

deformation parameters have been recovered by optimising a pq-based similarity measure. 
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Quantitative results have been provided for the recovered deformation parameters in 

Section 7.5.4. This section also provides with qualitative results of the overall accuracy of 

the non-rigid 2D/3D registration.  

A second experiment has been designed to show the effectiveness of the temporal tracking. 

Temporal tracking has been applied to only the rigid motion of the camera and not to the 

deformation parameters. The EM tracking data have not been used directly to define the 

pose of the camera, but they were combined probabilistically with the image-based 

registration results to provide the optimal pose.   

 

7.4.1 Video Preprocessing  

Prior to 2D/3D registration, pre-processing of the videos was necessary in order to alleviate 

the effects of interlacing, lens distortion, and image artefact. Preprocessing of the 

endoscopic frames is similar to Section 4.3.5. De-interlacing can be achieved by separating 

odd/even scan lines, which is particularly important to minimise the comb effect during fast 

advancement or retraction of the bronchoscope. To correct for barrel distortion due to the 

wide angle bronchoscope camera used, the camera model suggested by Heikkil, which 

includes both radial and tangential distortion of the video image, was used. The 

initialization of the calibration parameters follows the work by Zhang et al. Finally, to 

improve the SNR of the video image, a structure adaptive anisotropic filter was used [136]. 

The method uses a local orientation and anisotropic measure to control the shape and extent 

of the filter kernel and thus ensures that salient image features are well preserved whilst 

removing image artefacts.  The method generally provides a smoother optimisation 

landscape, and brings improved convergence of the 2D/3D registration algorithm. 

 

7.4.2 Phantom Setup  

In this study, the airway phantom was made of silicon rubber and painted with acrylics. The 

inner surface was coated with silicon-rubber mixed with acrylic to give it a textured and 

specular finish that is similar to the bronchial lumen. The phantom surface was finished 

with red colour splashes to imitate the blood and texture discrepancies during a 

bronchoscope examination. The distal ends of the airway-phantom have been fixed and a 

balloon is located below the main bifurcation to simulate respiratory-induced airway 
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deformation as shown in Figure 7.4. The navigation paths used for validation are also 

indicated in Figure 7.3. The extent of the airway motion is regulated by a valve controlling 

the amount of air in the balloon. The tomographic model of the phantom was scanned with 

a Siemens Somaton Volume Zoom 4-channel multi-detector CT scanner with a slice 

thickness of 1 mm and in-plane resolution of 1 mm. A total of six CT volumes were 

acquired at different stages of the motion cycle. 

 

 

 

Figure 7.4: Illustrations of the phantom setup during two different deformation stages. a) The 

maximum level of deformation is achieved when the balloon is full of air, and b) shows the resting 

state when the balloon is empty.  

a) 

b) 
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7.4.3 Ground Truth Data 

To track the pose of the bronchoscope camera, an NDI (Northern Digital Inc, Ontario) 

Aurora EM tracker was used. The Aurora system is particularly suited for tracking flexible 

endoscopes during minimally invasive intervention. This typically employs a single coil 

sensor due to size restrictions imposed by the biopsy channel. Having only a single coil, 

however, the sensor is limited to reporting position and direction only (i.e. 5 DoF with 

unknown axial rotation). The working volume of the Aurora system is within 500mm cube 

located 50mm from the field generator. In an environment that is free from Electro-

magnetic interference, the Aurora has a static positional accuracy of 0.9-1.7mm and an 

orientation accuracy of 0.5 degrees. 

In order to obtain the ground truth deformation data, a real-time, 6 DoF EM tracker tool 

was used to track the deformation of the balloon so that the deformation of the phantom 

airway can be indexed back to the 3D CT data. An Olympus bronchoscope (Olympus BF 

Type, with a field of view 120°) operating in PAL recording mode (25fps) was used to 

capture the 2D bronchoscope video. 

In this study, the ground truth data used was provided by the 6-DoF EM tracker attached to 

the balloon controlling the level of simulated respiratory motion. This permits the direct 

association of the deformation of the airway phantom during bronchoscope examination 

with the exact 3D geometrical shape captured by CT. The projections of the deformation as 

mapped onto the principal axes defined by the ASM were used in this study to provide a 

quantitative measure of the effectiveness of the registration process, i.e.,   

( ) 1

1
T

r r rb M p p p
−

= ⋅ ⋅ ⋅
�

 (7.20) 

where rp  is the eigenvector that corresponds to the point rs  of the 3D mesh that is nearest 

to the position of the 6-DoF EM tracker, and M
�
is the vector between these two points. 
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7.5 Results 

For the results presented in this chapter, a conventional PC with an AMD Athlon
TM
, 

2.19GHz, 1GB RAM and a graphic card NVIDIA GeForce 6800 Ultra was used. The 

rendering was based on OpenGL and the graphical interface is designed using FLTK (Fast 

Light ToolKit). The airway mesh consisted of 13,101 vertices and 26,101 triangles. The 

code has not been optimised and each frame took around 3 minutes to optimise. For the 

ASM, 301 control points have been used and the RBF has been implemented such that the 

initialisation step is calculated only once to estimate the inverse of G  matrix of Equation 

(7.9), which represents the topology of the initial control points. The rest part of the 

calculation was almost completely dedicated to the deformation of the vertices based on 

Equation 7.7. 

 

7.5.1 Assessment of Phantom Visual Reality   

 

Figure 7.5: Example bronchoscope video frames acquired during the phantom experiment where the 

images have been pre-processed to alleviate the effect of de-interlacing and lens distortion. 
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To demonstrate the general visual appearance of the phantom airway model, Figure 7.5 

illustrates 9 example frames of the video sequence after pre-processing, which includes de-

interlacing, lens distortion, and anisotropic smoothing. Red stains have been added on the 

inside phantom walls to imitate vessels and texture discrepancies. The accuracy of the 

registration scheme does not degrade in the parts of the phantom where these features are 

eminent. This indicates that the registration algorithm is relatively immune to texture 

discrepancies as it has been also demonstrated in Chapter 4.  

 

7.5.2 Phantom Deformability  

 

Figure 7.6: The normalised mesh displacement between successive deformation stages of the 

phantom. 

To demonstrate the amount of deformation introduced, the normalised mesh displacement 

map at five different deformation positions of the phantom are shown in Figure 7.6, 

illustrating the non-linear, localised deformation at different branches of the airway. By 

reference to the navigation paths shown in Figure 7.3, it is evident that we have chosen the 

most deformed part of the airway phantom for the validation purpose. 

In this study, the main purpose of the phantom design is to assess the extent of free-form 

deformation and its effect on the accuracy of 2D/3D registration. It should be noted that the 

phantom is not a complete representation of the airway structure and its physiological 

response. The air flow patterns and the force distribution on the airway conduits are patient-
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specific and they vary significantly across different subjects [178]. Since the ASM model is 

to be constructed on a patient-specific basis, the proposed phantom validation framework 

should provide a good indication of the achievable accuracy of the algorithm for in vivo 

applications. 

 

7.5.3 Modelling of the Airways Respiratory Motion  

 

Figure 7.7: The result of applying the ASM to the reconstructed 3D volumes, illustrating the warped 

3D mesh by using the RBF along the first principal mode of the shape variation. The red, green, and 

blue meshes correspond to varying 13 λ− , 0, and 13 λ+ from the mean shape. 

Table 7.1 shows the total modelling error associated with each eigenvalue. It is evident that 

the first principal component captures most of the airway deformation, which means that 

even by varying the first mode alone, most of the structural deformation as reconstructed by 

RBF can be used to control the subsequent 2D/3D registration process. This was also 

convenient for validating the deformation parameters with ground truth data derived from 

one sensor attached on the phantom. However, further investigation needs to decide 

whether in clinical practice more parameters should be taken into consideration to 

adequately model the deformation of an in vivo tracheo-bronchial tree during respiration. 

This is not expected to change the overall accuracy of the suggested non-rigid registration 

framework but it will considerably increase the time of the optimisation convergence.  
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The result of applying the ASM to the reconstructed 3D volumes are also shown in Figure 

7.7, illustrating the warped 3D mesh by using the RBF along the first principal mode of the 

shape variation in the sagittal, coronal and axial views. The red, green, and blue meshes 

correspond to varying 13 λ− , 0, and 13 λ+  from the mean shape, respectively. These 

are the extreme values of the allowable shape domain. The quality of the ASM depends on 

the extraction of correspondence features between the avaluable set of 3D CT data. The 

overall results indicate that the ASM adequately captures the variability induced in the 

phantom airways. Most, errors are consentrated in the bifurcation points because the angle 

between the skeleton and the perpendicular plane at these points is not well defined.  

 

EigenValues in Descending order 1st 2nd 3rd 4th 5th 6th 

Error in mm 4.3542 0.7723 0.6170 0.1482 0.055 0.0 

Error in percentage (%) of the phantom diameter 10.88 1.93 1.54 0.3706 0.1392 0.0 

Table 7.1: Modelling error associated with omitting each eigenvalue individually 

 

7.5.4 Accuracy of Deformable 2D/3D Registration  

The performance of the proposed registration algorithm by using the EM tracking data 

combined with the deformable model as determined by ASM can be examined in Figure 

7.8. In this figure, the top row is the bronchoscope view of the phantom airway, whereas 

the middle row illustrates the corresponding view of the 3D model determined by the 5 

DoF catheter tip EM tracker. Significant mis-registration is evident due to the unknown 

rotation and airway deformation. It is evident that the position of the camera changes 

rapidly due to the respiratory motion in the world coordinates, and a direct use of the EM 

data can result in initial camera position located completely outside of the bronchial tree. 

The result of applying the proposed registration algorithm is shown in the bottom row of 

Figure 7.8, demonstrating the visual accuracy of the method. The frames shown have been 

acquired at different parts of the tracheo-bronchial tree as it is depicted in Figure 7.3. 

Generally, the algorithm performs better when prominent features are apparent in the 

endoscopic images. Such features can visually describe bifurcations or protuberances on 

the phantom airway walls due to simulated lesions or natural surface folding. The larger 

inaccuracies occur when the camera is facing the wall and the light diffuse in such a way 

that it is not able to distinguish any surface details.  
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In order to provide a detailed quantitative validation of the method, Figure 7.9 illustrates 

the recovered deformation as projected onto the first principal axis of the ASM model. In 

other words, this reflects how parameter 1b  controls the shape of the mesh based on 

Equation (7.5). The corresponding ground truth value as determined by the 6 DoF EM 

tracker from Equation (7.21) is also provided for comparison. It is evident that the 

reconstruction result followed the ground truth reasonably well. Further details of the error 

analysis are illustrated in Figure 7.10, which provides a Bland-Altman plot of the errors of 

the recovered deformation as compared to the ground truth. The Bland-Altman plot reveals 

how well two datasets agree with each other.   

 

Figure 7.8: The performance of the proposed registration algorithm by using the EM tracking data 

combined with the deformable model as determined by ASM. Left-column: the bronchoscope view 

of the phantom airway; Mid-column: the corresponding view of the 3D model determined by the 5 

DoF catheter tip EM tracker where significant mis-registration is evident due to unknown rotation 

and airway deformation; Right-column: the result of applying the proposed registration algorithm 
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demonstrating the visual accuracy of the method. 

 

Figure 7.9: The recovered deformation as projected onto the first principal axis of the ASM model 

where the corresponding ground truth value (dotted curve) as determined by the 6 DoF EM tracker 

from Equation (7.21) is provided for comparison. 
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Figure 7.10: Bland-Altman plot of the non-rigid registration results as compared 

to the ground truth. 
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7.5.5 Temporal Tracking  

0

10

20

30

40

50

60

0 100 200 300 400 500 600 700 800

Frame Number

D
is
ta
n
c
e
 (
m
m
)

EM Tracking Data

Condensation

 

Figure 7.11: Euclidean distance between the first and subsequent camera position as it has been 

predicted from the Condensation algorithm with relation to the EM tracking data. 

Figure 7.11 illustrates the results by applying the Condensation algorithm to a video 

segment as compared to the ground truth data recovered from the EM data. The results 

show that this scheme was effective because it has the ability to correct errors and failures 

of both techniques. It is able to recover even if either of them fails. Tracking of the camera 

based only on the EM tracker device’s results in errors due to inaccuracies in the initial 

coordinate transformation. This is more prominent when the airways deform dynamically 

due to the bronchoscope itself. Currently, the suggested registration scheme cannot recover 

these deformation parameters. Subsequently, temporal tracking improves the overall 

accuracy by relying on both measurements.  

 

7.6 Discussions and Conclusions 

In this chapter, we have proposed a deformable 2D/3D registration framework based on 

ASM. Despite the prevalence of tissue deformation in most surgical navigation and 

planning applications, its incorporation into the 2D/3D registration framework has been 

limited. This is due to the large degrees-of-freedom involved in the registration parameters, 

which make a stable implementation of the algorithm difficult.  
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The recent advance of miniaturised catheter tip EM trackers has greatly simplified the 

2D/3D registration process. For rigid registration, existing 5 DoF EM tracker inserted into 

the biopsy channel of the endoscope can provide much improved results as the remaining 1 

DoF is relatively easy to optimise. For deformable airways, however, existing research has 

shown that complex deformation of the anatomical structure still represents a major 

problem to the registration process despite the use of the catheter tip EM tracker [75]. In 

this case, direct application of local deformation to the 3D structural mesh to match to that 

of the bronchoscope video is computationally impractical due to the large number of 

control points involved. Furthermore, issues such as mesh folding also need to be carefully 

addressed. Although it is possible to use the finite element model to provide bio-

mechanically plausible model to define airway deformation, its practical implementation 

can be difficult due to the general lack of detailed tissue mechanical property, as well as the 

prohibitive computational cost involved.  

In this study, we have demonstrated that the use of ASM provides a simple yet effective 

framework for a compact representation of the airway deformation. This allows 

deformation to be modelled by the limited principal modes of variation such that 

conventional optimisation processes can be effectively applied. Statistical shape models 

and PDMs in particular, provide an effective means of capturing statistically plausible 

variations of the shape of the object. The ASM combines a model-based approach similar 

to template models that allow for large variability with a prior knowledge incorporated 

through a number of previous observations. It has a number of advantages for its use in a 

non-rigid 2D/3D registration framework. The method describes both typical shape and 

intrinsic deformation and the motion variability is accommodated through prior knowledge 

incorporated through the 3D data. Therefore, they can effectively model the deformation of 

the structure even though the motion mechanisms are not sufficiently understood, or too 

complex to derive. Furthermore, they are specific to the class of motion they represent, and 

hence can be implemented in a subject specific manner. 

It should be noted, however, that the effectiveness of the method depends on the ability of 

the 3D models in capturing possible structural deformations during video bronchoscope 

examination. For the phantom experiment presented in this chapter, we have used CT to 

provide the structural information of the airways. This, however, may not be suitable for 

patient studies as the capture of airway deformation at different phases of the respiratory 

cycle for constructing the ASM model can involve significant ionising radiation. A more 

practical choice would be to use the recent developments of MRI that permits the 

visualisation of the lung parenchyma and airways during normal physiological motion [51]. 
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The combination of respiratory navigator echoes will allow the imaging of the intra-

thoracic tree at different stages of the respiratory motion, and therefore the construction of a 

complete deformable model of the airways on a subject-specific basis. 

It is also important to note that with the proposed registration framework, the global motion 

of the patient must be monitored during bronchoscope examination such that it is removed 

from the catheter-tip EM tracking data for localising the catheter tip in relation to the CT 

scan volume. This is an issue not encountered in the traditional image registration 

framework as global motion of the patient will result in a synchronous movement of the 

bronchoscope and the airways. This problem, however, can be addressed by tracking 

externally the position and orientation of the patient during bronchoscope examination 

[154]. The advantage of the proposed method is that it provides a practical way of handling 

airway deformation and continuation of the registration process when extreme breathing 

patterns and artefacts caused by mucosa, bubbles, bleeding are encountered. In a typical 

examination, these effects account for 20-30% of the procedure and they can reach almost 

100% in extreme cases, such as profuse haemoptysis. These effects interleave during 

common bronchoscope procedures, thus providing only short video sequences where 

image-based registration approaches are successful. When the registration fails it is not 

trivial to recover the camera position and re-initialise the algorithm. EM tracking, however, 

is much more immune to these problems [154]. The use of 5 DoF catheter tip EM tracker 

combined ASM can provide a closer approximation of the camera pose such that the exact 

solution to the problem can be limited to a localised search space. Patient data also 

indicates that at the bifurcation/turning points, a rigid model is relatively difficult to 

smoothly follow the video frames, since the pre-operative and intra-operative 3D structures 

may not be in correspondence. 

In terms of localised airway deformation, one additional problem that deserves 

consideration is that in typical tomographic imaging the patient is in a supine position, 

whereas in bronchoscope examinations the patient typically adopts an upright posture. It is 

feasible that the deformation of the intra-thoracic airways due to the gravity effect may be 

different due to the variation in pose. This, however, is a problem that is encountered by all 

2D/3D registration techniques.  

It should also be noted, that the success of ASM depends on the number and quality of 

correspondent landmarks across the observable shapes. A simplistic method was used to 

extract the skeleton of the tracheo-bronchial tree and subsequently correspondence was 

established based on the matching of the bifurcation points. The identification of optimal 
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control points for ASM for complex topological shapes, however, is a significant challenge 

[179].  

Since the ASM is based on landmark correspondence, an effective way of smoothly 

interpolating the mesh points with regard to the motion of the control points is necessary. 

RBFs have been used for a number of reasons. Firstly, the distribution of the control points 

can be both sparse and irregular. RBF provides an easily controllable behaviour that can be 

tailored to meet specific requirements. It may be purely deformable, or contain some forms 

of linear component to allow for both localised and global deformations [176]. Other 

techniques such as the one presented by Garrity et al. [95] uses NURBS  based surface 

representation are also possible for creating the dynamic model of the airway. The actual 

computational complexity for estimating each new vertex with RBFs is ( )O nN , where n is 

the number of control points and N is the number of vertices. The solution of the equation 

system in the pre-processing step requires an additional 
3( )O n . Here we calculate the SVD 

only at the initialisation stage of the algorithm since the topology of the points does not 

change. Therefore, the time required depends mainly on the number of vertices of the 3D 

model, which are usually much larger than the number of control points. These time 

requirements can also be optimised. For example, the mesh can be deformed only locally 

since the bronchoscope only provides a localised view of the airways. Other improvements 

such as to bind locally the radial basis functions and use of parallel processing can also be 

introduced [176].  

In conclusion, we have developed a non-rigid 2D/3D registration framework that models 

the respiratory motion of the intra-thoracic tree which incorporates the EM tracking data for 

improved robustness and accuracy. ASM has been used to capture the intrinsic variability 

of the airways across different phases of the respiratory motion and it also constrains the 

motion they represent to be specific to the subject studied. This allows the subsequent non-

rigid registration implemented in a much reduced dimensional space, and thus greatly 

simplifies the 2D/3D registration procedure. The detailed phantom validation of the method 

in this study demonstrates the potential clinical value of the technique. 
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Chapter 8   
 

 

Conclusions and Future Work 

n this thesis, we have developed a registration framework for constructing subject-

specific simulation models for virtual bronchoscopy. By fusing real bronchoscopy video 

with 3D tomographic data of the same patient, it is possible to generate photorealistic 

models that allow high fidelity, patient specific bronchoscope simulation. In order to match 

video bronchoscope images to the geometry extracted from 3D reconstructions of the 

bronchi, robust registration techniques have to be developed. This is a challenging problem 

as it implies 2D/3D registration with certain degrees of deformation and different 

physiological responses. In this thesis, we have proposed a new pq-space based 2D/3D 

registration method for camera pose estimation in endoscope tracking. The proposed 

technique involves the extraction of surface normals for each pixel of the video images by 

using a linear local shape-from-shading algorithm derived from the unique camera/lighting 

constrains of the endoscopes. We demonstrate how to use the derived pq-space distribution 

to match to that of the 3D tomographic model. The registration algorithm is further 

enhanced by introducing temporal constrains based on particle filtering. For motion 

prediction, a second-order auto-regressive model has been used to characterize camera 

motion in a bounded lumen as encountered in bronchoscope examination. The proposed 

method provides a systematic learning procedure with modular training from ground truth 

data such that information from different subjects are integrated for creating a dynamic 

model that accommodates the learnt behaviour. To cater for airway deformation, an active 

shape model (ASM) driven 2D/3D registration has been proposed, which captures the 

intrinsic variability of the tracheo-bronchial tree during breathing and it is specific to the 

class of motion it represents. The method reduces the number of parameters that control the 

deformation, and thus greatly simplifies the optimisation procedure. The method also 

exploits the recent development of 5 DoF miniaturised catheter tip electro-magnetic 

I 
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trackers such that the position and orientation of the bronchoscope can be accurately 

determined under dis-occlusion and bleeding. The accuracy of the proposed method has 

been assessed by using both a specially constructed airway phantom with an electro-

magnetic tracker, and in vivo patient data. The original contribution of this thesis includes 

the following aspects. 

 

8.1 Main contributions of the thesis   

 

8.1.1 A novel pq-space based registration scheme 

A novel similarity measure has been introduced in Chapter 4 based on the angular 

differences between pq-vectors derived from the video image and the 3D model. Surface 

information is extracted from a robust linear shape-from-shading technique that exploits the 

camera and lighting configuration of bronchoscope. These pq-vectors are used to match to 

the normals specified from the 3D model. For the similarity function developed, it also 

involves a weighting factor that accounts for texture variations of the tracheo-bronchial 

tree, which are absent from the 3D CT model. The main advantages of the proposed 

technique are that there is no need to adjust the illumination conditions in 3D rendering and 

the method does not require feature extraction and matching. The method is also superior to 

the alternative approach of surface-to-surface registration. This is because surface 

reconstruction from pq-vectors requires an integration step, which is error prone. The 

technique was validated with phantom data with known ground truth. In vivo bronchoscope 

data has also been used to assess the practical value and potential pitfalls of the technique. 

It has been shown that handling large tissue deformation and occlusion artefacts are major 

obstacles of the proposed method when applied to in vivo bronchoscope sequences. To this 

end, temporal information must be integrated into the proposed registration framework for 

it to be practically useful.   
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8.1.2 Incorporation of temporal constrains based on particle filtering 

The incorporation of temporal constraints is based on particle filtering in this thesis. A 

probabilistic framework has been developed in Chapter 5 to utilise the inherent in 

bronchoscope camera motion between successive video frames to improve the accuracy of 

the 2D/3D registration algorithm. Although the concept of particle filtering itself is not 

new, we have tackled the difficult problem of dynamic model building and modular 

learning. A second order autoregressive (ARG) model has been used to evolve the 

underlying model through time, and the method weights the propagated hypotheses for 

accurate pose estimation. A systematic training procedure has been developed to tune the 

parameters of the ARG model based on modular learning. There are two main advantages 

of the probabilistic tracking algorithm suggested. Firstly, there are no restrictions on the 

measurement models used and the distribution of error sources. This allows the handling of 

non-linear dynamics during endoscope navigation. Secondly, modular training facilitates 

the incorporation of multiple sequences from different patients. In this way a generic 

motion prediction model can be developed. 

 

8.1.3 Miniaturised EM tracking and motion decoupling 

The challenges involved in incorporating EM trackers into bronchoscope navigation have 

been investigated in Chapter 6. Although, EM tracking devices have the potential to 

enhance real-time 2D/3D registration, ferromagnetic interference and tissue deformation 

can limit their practical accuracy in clinical environments. For the proposed 2D/3D 

registration framework, it is also necessary to decouple local deformation from global 

motion. To this end, we have developed a new motion decoupling scheme based on 

principal component analysis to identify the variation of the EM signal due to respiration 

and global patient movements. The method has also been used to identify extreme 

breathing patterns so that these segments can be treated separately during 2D/3D 

registration.   

 

8.1.4 Deformation modelling based on statistical shape models   

Conceptually, the development of statistical shape models for deformation modelling 

during 2D/3D registration is the most significant part of the thesis. Currently, most of 
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2D/3D registration methods are based on rigid or affine models and the high degrees of 

freedom involved in free-form deformation models are both technically and 

computationally prohibitive. In Chapter 7, we have used statistical shape modelling 

combined with EM tracking to significantly reduce the number of degrees-of-freedom 

involved in the registration process.  In this thesis, deformation modelling has been 

implemented by extracting the skeleton of the tracheo-bronchial tree and establishing 

surface point correspondence based on bifurcation points. Radial Basis Functions (RBFs) 

have been used to warp the mesh in intermediate positions. Motion compensation is 

attained with the recovery of the deformation of the tracheo-bronchial tree along with the 

pose estimation. In this way, EM tracking data can be directly applied to guide the 

registration process. We have shown  that for the phantom model that involves extensive 

non-linear deformation, the degrees of freedom has been reduced to only two – one for the 

unknown rotation of the camera and the other for the principle mode of variation describing 

the deformation of the airways. For in vivo data, the principle modes of variation are 

expected to be higher. Nevertheless, this is likely to be limited to only a few rather than the 

otherwise thousands of DoFs.   

 

8.2 Discussion and Conclusions 

Despite the achievements made, there are several major improvements that can be made for 

future research. In Chapter 4, we suggested a pq-space similarity measure. However, by the 

nature of the shape-from-shading algorithms, specularities and inter-reflections have been 

ignored. In bronchoscopic images, strong reflections are common due to mucosa and 

surface properties of the lumen.  Conventional shape-from-shading techniques can mistake 

the presence of local specularities as high curvature surface features [180]. Although we 

have directly used pq distribution during registration to minimise this effect, its explicit 

consideration needs to be taken into account. For human observers, we in fact rely on 

specular reflection to provide an additional visual cue for the 3D surface, such information 

can potentially be utilised to further enhance the 3D structural reconstruction process.   

In practice, the detection of specular highlights can be achieved by a dichromatic model but 

it is also possible to factor in the reflectance properties into the shape-from-shading 

algorithm itself. There are several ways in which surface reflectance properties can be 

approximated. If a surface is too difficult to be described by a particular model then a 

general approach can be used to acquire empirical estimates of the Bidirectional 
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Reflectance Distribution Function (BRDF). This is an expensive and time consuming 

process because BRDF is described from a large number of degrees of freedom. But 

empirical and physical-based methods can be used to simplify its derivation. In 

bronchoscope procedures, the light coincides with the viewer and this can simplify the 

estimation of the surface properties.       

Another issue that deserves extensive future research is the effective handling of local 

minima of the registration process. Although the use of global optimisation techniques can 

help the overall consistency of the registration process, a systematic approach needs to be 

adopted to combine the construction of the similarity measure with the subsequent 

optimisation landscapes. In this thesis, the construction of the similarity measure is 

empirically designed but the parameters involved are not determined systematically. The 

integration of temporal information partly alleviates the problem of local minima but 

further investigation of using a learning based framework is necessary so that the overall 

robustness of the algorithm can be further enhanced.  

In this thesis, the integration of temporal information for the registration scheme is 

presented. One of the major advantages of this probabilistic framework is that it 

incorporates modular training. This allows the learning of the dynamic motion 

characteristics of the endoscope from several training sets, so that a more representative 

dynamic model can be created. However, a problem arises when more complex dynamics 

involving multiple classes of motion [141]. In this work, the dynamic motion 

characteristics are modelled as a second order autoregressive model. This is a versatile tool 

that can impose strong constraints on the camera movements and it allows the motion to 

change rapidly both in speed and in direction. However, modelling of multi-class dynamics 

has yet to be fulfilled. The models developed assume that the training sequences have 

similar statistical patterns, which may not be true when the endoscope camera explores 

different parts of the tracheo-bronchial tree. Further investigation is required to overcome 

this problem. 

For the ASM used in deformation modelling, we extracted the tracheobronchial skeleton 

manually in order to establish the correspondence based on the matching of the bifurcation 

points. However, manual segmentation of each tracheo-bronchial branch in each slice is 

tedious and time consuming. A fully automated method that incorporates structural features 

such as mediality and  homotopy needs to be developed. This can be particularly useful for 

segmenting distal airways as consistent manual segmentation is difficult, if not impossible. 

Another important issue to consider is point correspondence of the ASM model. 

Furthermore, it is well-known that the success of the ASM depends on the quality of the 
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control point correspondences. In this work, we have used bifurcation landmarks to achieve 

the overall structural correspondence of the 3D models. Alternatively, optimal and dense 

shape correspondence can be achieved by optimising the correspondence on a parametric 

space with respect to some objective functions. This implies that the tracheo-bronchial 

surface should be parameterised onto a manifold with minimal distortion. These techniques 

has been successfully applied in myocardium motion modelling but their application in 

more complex structures, such as the airways is a challenging research issue [179].     

In conclusion, we have addressed several major issues related to the construction of patient-

specific models for bronchoscope simulation. Although the technical components 

developed in this thesis are only validated with airway phantom and in vivo bronchoscope 

data, its applicability to general MIS simulation is evident. It must be noted that the work 

presented in this thesis is part of a larger project within the Royal Society/Wolfson MIC 

Laboratory where other issues related to photorealistic modelling, finite-element tissue 

deformation modelling, and visual perceptual behaviour of MIS simulation are addressed. 

  

 

 

 



 

 192 

Appendix A  

 

 

Construction of the Projection Matrix  

D/3D registration of the endoscopic video with the 3D operative data relies on the 

comparison between several projections of the 3D data with the endoscopic image. 

In order to obtain a correct match, a projection should be recoveverd by calibrating 

the endoscopic camera and this should be applied in rendering the 3D surface 

tracheobronchial data. In this paragraph, we will derive the equations that directly link the 

OpenGL rendering parameters with the intrinsic parameters calculated with OpenCV 

camera calibration toolbox for matalb.  

Let’s assume that the focal length is defined as cf  and it is described in pixels, such as 

c cx cyf f f
Τ =    . Similarly, the principal point is also expressed in pixels as 

c cx cyc c c
Τ =    . Let 

T

c c cP X Y Z =     be a point in space in the camera reference 

frame and nX  is its normalized pinhole image projection: 

/

/

c c

n

c c

X Z
X

Y Z

 
 =  
  

 (A.1) 

If we ignore lens distortion and assume skewing coefficient is equal to zero then the space 

point P  is projected to the pixel coordinates ,
T

p p pX x y =    through the camera matrix: 

2 
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/0

0 /

1 0 0 1 1

c cp

p c c

Camera Matrix

X Zfcx ccxx

y fcy ccy Y Z

     
     
     = ⋅     
     
               �������	������


 
(A.2) 

OpenGL, however, follows different notation, so that the coordinate axes are flipped 

around the horizontal axis, as it is shown in Figure A.1.  

 

(0,0) (nx-1,0)

(0,ny-1) (nx-1,ny-1)

(0, ny-1) (nx-1, ny-1)

(nx-1,0)

OpenGL

(0,0)

 

Figure A.1: In OpenGL, coordinates are flipped around the horizontal axis.  

 

Therefore, the camera matrix takes the form: 

/0

1 0 1 /

1 0 0 1 1

c cp

y p y c c

Camera Matrix

X Zfcx ccxx

n y fcy n ccy Y Z

     
     
     − − = − − ⋅     
     
               �����������	����������


 
(A.3) 

Subsequently, the space point [ ]1 , ,
T

P left top znear=  corresponds to [ ]1 0,0
T

pX = and 

the above equation is written as: 

/00

1 0 1 /

1 0 0 1 1

y y

left znearfcx ccx

n fcy n ccy top znear

     
     
     

− = − − ⋅     
     
               

 (A.4) 

Similarly, the space point [ ]2 , ,
T

P right bottom znear=  corresponds to 

2 1, 1
T

p x yX n n = − −  and the projection equation is written as: 
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/01

0 0 1 /

1 0 0 1 1

x

y

right znearfcx ccxn

fcy n ccy bottom znear

     −     
     

= − − ⋅     
     
               

 (A.5) 

Based on the later two equations, we have: 

ccx
left znear

fcx

ccy
top znear

fcy

− = ⋅ = ⋅

 and 

1

1

x

y

n ccx
right znear

fcx

ccy n
bottom znear

fcy

− − = ⋅ − + = ⋅

 (A.6) 

Subsequently the OpenGL command glFrustum can be used directly to render the 3D 

model.   
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Appendix B  

 

 

Kalman Filtering   

alman Filtering solves the problem of estimating the state of a linear stochastic 

system by using measurements that are linear functions of the state. Differential 

equations have provided concise mathematical models for many dynamic systems of 

importance to humans. The dependent variables of the differential equations become state 

variables of the dynamic system. Essential to Kalman Filtering is the development of the 

state-space representation for dynamic systems described by a set of linear differential 

equations. 

The state, 
nX ∈ ℜ  , of a discrete-time controlled process can be described by the linear 

stochastic equation: 

1 1 1k k k kX AX Bu w− − −= + +  (B.1) 

with a measurement 
mZ ∈ ℜ that is: 

k k kZ HX v= +  (B.2) 

The n n×  matrix A  in the difference equation relates the state at the previous time-step to 

the state at the current time-step. The n l×  matrix B  relates the optional control input 

lu ∈ ℜ  to the state X . The m m×  matrix H  is the measurement sensitivity matrix, 

which relates the state to the measurement, kz , and kv  represents the process measurement 

noise. n , m  and l  are the dimensionalities of the state, measurement and optional input 

K 



 

 196 

vector, respectively. The random variables w  and v  represent the process and 

measurement noise, correspondingly. They are assumed to be independent, white and with 

normal probability distributions of covariance Q  and R , respectively.  

Kalman filtering can be also interpreted as a mechanism of propagating and combining 

Gaussian densities. We define / 1
ˆ
k kX −  to be the a priori state estimate at step k  given 

knowledge of the process up to the ( )1k −  step. Furthermore, /
ˆ
k kX  is the a posteriori 

state estimate at step k  given measurement kZ . In order to derive the equations for the 

Kalman filter, we compute the a posteriori state estimate /
ˆ
k kX  as a linear combination of 

the a priori estimate / 1
ˆ
k kX −  and a weighted difference between an actual measurement kZ  

and a measurement prediction / 1
ˆ
k kHX − : 

( )/ / 1 / 1
ˆ ˆ ˆ
k k k k k k kX X K Z HX− −= + −  (B.3) 

The n m×  matrix K  is called the gain or blending factor and it minimizes the a posteriori 

error covariance.  

The last equation elucidates that the Kalman Filter uses a form of feedback control to 

estimate the process state at a particular time. The feedback is in the form of noisy 

measurements. Therefore, the filter is composed of two parts: (1) the time update equations 

that are responsible for propagating the current state and error covariance measurements, 

and (2) the measurement update equations that implement the feedback mechanism. It is 

also apparent that a number of parameters need to be calculated before the actual operation 

of the filter.  

These parameters are the measurement and process noise covariance, R  and Q , 

respectively and the process of training is called system identification and it is about 

inferring mathematical models from observations of a system. In general, it is easier to 

estimate the measurement error covariance rather than the process error covariance, since 

usually it is not possible to directly observe the estimated process. It is important, however, 

to note that usually a relatively simple process model can produce acceptable results if the 

uncertainty of the process has been tuned properly via the selection of the process noise 

covariance Q . This fact highlights the significance of a successful system identification 

procedure and generally applies to any probabilistic model. In this section the main 
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assumptions of Kalman Filtering is reviewed and it is underlined their importance in 

tracking the endoscopic camera.  

 

B.1 Limitations of Kalman Filtering 

Kalman filtering assumes that the system is described from a set of linear equations. A 

linear system model is adequate in most applications and it is preferable because of its 

simplicity. When a system cannot be modelled as linear, Kalman filter concept can be 

extended to some nonlinear applications by linearized them about some nominal points or 

trajectory. A Kalman filter that linearizes about the current mean and covariance is called 

an extended Kalman filter (EKF) [181]. Generally, a non-linear model will be governed 

by a non-linear stochastic difference equation of the form:  

( ) ( ) ( ) ( )( )1 , 1 , 1x t f x t u t w t= − − −  (B.4) 

with a measurement z that is 

( ) ( ) ( )( ),z t h x t v t=  (B.5) 

Linearization can be performed about the current state estimate using the partial derivatives 

of the process and measurement functions to compute predictions in face of non-linear 

relationships:  

( ) ( ) ( ) ( )( ) ( )1 1 1x t x t A x t x t Ww t≈ + − − − + −� �  (B.6)  

with a measurement z : 

( ) ( ) ( ) ( )( ) ( )z t z t H x t x t Vv t≈ + − +� �  (B.7) 

A  is the Jacobian matrix of partial derivatives of f  with respect to x , W is the Jacobian 

matrix of the partial derivatives of f  with respect to w , H  is the Jacobian matrix of 

partial derivatives of h with respect to x , and V  is the Jacobian matrix of partial 

derivatives of h  with respect to v .  

The square of the difference between measured value ( )z t  actually obtained at the current 

time and measurement estimate calculated from the estimated state variable is normalized 
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with the error variance of measurements. Then the square of the difference between the 

state variable ( )1x t −  at the current time calculated from the state variable estimated at a 

previous time and the estimated state variable ( )x t  is normalized with the error covariance 

matrix of ( )1x t − . The sum of these two values is the cost function, and the state variable 

is estimated such that the cost function becomes the minimum. Therefore, the prediction 

error takes the form of: 

( ) ( ) ( )
x te x t x t≡ −� �  (B.8) 

with a measurement z that is 

( ) ( ) ( )
z te z t z t≡ −� �  (B.9) 

This approach gives a simple and efficient algorithm to handle a nonlinear model. In 

general, the extended Kalman filter is not optimal [182].  

Various improvements have been introduced by iteratively updating the linearization, 

starting with an initial guess. In other words, a linear Taylor approximation of the system 

function is considered at the previous state estimate and that of the observation function at 

the corresponding predicted position. However, convergence may not be achieved if the 

initial guess is poor or if the disturbances are so large that the linearization is inadequate to 

describe the system, introducing accumulated errors. The difference between the estimate 

and minimum position of the cost function is amplified with the increase of the function’s 

non-linearity. In the case of the cost function of EKF, past measurements are not 

accumulated; instead information on the cost function is stored as the estimate. Therefore, 

as the error of the estimate increases, the cost function itself contains an error. If estimation 

is repeated in this status, the error gradually accumulates. Even if new measurements are 

acquired, information on the cost function looses accuracy, influenced by the estimate that 

has accumulated the error thus far [183]. There are also non-linear algorithms, which 

involve collections of EKF. Although, these approaches are more powerful, there are also 

more complex. 

Kalman Filtering also assumes a white noise source. This implies that the noise value is not 

correlated in time and thus it has equal power at all frequencies. This results in a noise with 

infinite power, which obviously cannot exist in real systems. However, any physical system 

of interest has a certain frequency bandwidth, which is a frequency range of inputs to which 

it responds. Above this range, the input either has no effect, or the system so severely 

attenuates the effect that is essentially does not exist. Within the bandwidth of the system of 
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interest the assumed white noise would look identical to the real wideband noise. 

Moreover, it turns out that the mathematics involved in the filter is vastly simplified. There 

are cases in which the noise power level is not constant over all frequencies within the 

system bandwidth, or in which the noise is in fact time correlated. For such instances, a 

white noise put through a small linear system can duplicate virtually any form of time-

correlated noise. This small system, called a ‘shaping filter’, is then added to the original 

system, to achieve an overall linear system driven by white noise. 

Finally, the last assumption states that the noise follows a Gaussian probability density. The 

probability density of Gaussian noise amplitude takes on the shape of a normal bell-shaped 

curve. This assumption can be justified physically by the fact that a system or measurement 

noise is typically caused by a number of small sources. Mathematically, when a number of 

independent random variables are added together, the summed effect can be described very 

closely by a Gaussian probability density, regardless of the shape of the individual 

densities. Furthermore, in most applications, the first and second order statistics (mean and 

variance or standard deviation) of a noise process are known. In the absence of any higher 

order statistics, there is no better form to assume than the Gaussian density. The first and 

second order statistics completely determine a Gaussian density, unlike most densities that 

require an endless number of orders of statistics to specify their shape entirely. Therefore, 

the Kalman filter, which propagates the first and second order statistics, includes the whole 

information contained in the conditional probability density. 
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