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Abstract. This paper exploits the use of temporal information to minimize the 
ambiguity of camera motion tracking in bronchoscope simulation. The 
condensation algorithm (Sequential Monte Carlo) has been used to propagate the 
probability distribution of the state space. For motion prediction, a second-order 
auto-regressive model has been used to characterize camera motion in a bounded 
lumen as encountered in bronchoscope examination. The method caters for multi-
modal probability distributions, and experimental results from both phantom and 
patient data demonstrate a significant improvement in tracking accuracy 
especially in cases where there is airway deformation and image artefacts. 

1   Introduction 

In surgery, the value of minimally invasive procedures in terms of reduced patient 
trauma and recovery time has been established for many years. The limitation of the 
technique due to the complexity of instrument control and a loss of 3D vision and 
tactile feedback means effective training of visual spatial perception and hand-eye 
coordination is crucial to its safe practice. Flexible fiber-optic bronchoscopy, for 
example, is normally performed on patients who are fully awake or with light 
conscious sedation. The procedure can therefore entail considerable discomfort if it is 
not handled properly. Training according to the classical apprenticeship scheme is 
useful but can result in prolonged surgical procedures with increased patient 
discomfort and a potential risk for further complications.  The use of computer 
simulation, particularly the reliance on patient specific data for building anatomical 
models both in terms of biomechanical fidelity and photorealism has attracted 
extensive interests in recent years [1],[2, 3]. Existing work has shown that by fusing 
real-bronchoscopy video with 3D tomographic data with the same patient, it is possible 
to generate photorealistic models that allow high fidelity, patient specific bronchoscope 
simulation [3]. The prerequisite of the technique, however, is accurate 2D/3D 
registration for recovering the pose of the camera in video bronchoscope sequences [2, 
4]. Since bronchoscope images only provide localized views of the inner lumen, 
image-based technique cannot guarantee the convergence of the registration algorithm. 
To circumvent this problem, temporal constraints can be used to provide a predictive 
model by exploiting the temporal coherence of the camera movement.  
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For video bronchoscope navigation, Naga et al used Kalman filtering to increase 
the speed and accuracy of the registration algorithm [5]. Kalman filter, however, is 
generally restricted to situations where the probability distribution of the state 
variables is unimodal [6]. In bronchoscopy, tissue deformation, inter-reflection and 
view dependent specularity due to mucosa can limit the accuracy of image-based 
algorithms. The resultant probability density function of the state vector is typically 
multi-modal. Therefore, the observation probabilistic model cannot be approximated 
as a Gaussian distribution. The purpose of this paper is to develop a predictive 
tracking algorithm based on the Condensation algorithm [7]. The method is designed 
to cater for the general situation when several competing observations forming a non-
Gaussian state-density. It uses a stochastic approach that has no restriction on the 
system/measurement models used and the distribution of error sources. An 
autoregressive algorithm is used as a predictive model [8], which is based on the fact 
that during bronchoscope navigation, the motion is restricted within a bounded area 
and a rapidly moving camera is more likely to slow down or change direction, rather 
than accelerate further. The proposed method provides a systematic learning 
procedure with modular training from the ground truth data such that information 
from different subjects are integrated for creating a dynamical model that 
accommodates the learnt behavior [9], [10]. 

2   Method 

2.1   Temporal Tracking with the Condensation Algorithm  

The main idea of the statistical framework is to maintain a time-evolving probability 
distribution ( )tt Zxp |  of the tracker state tx  over time t . The a posteriori 

density ( )tt Zxp |  represents knowledge about tx  deducible from the observation 

history { }tt zzZ ,,1 K= . The Condensation algorithm, also known as Sequential 

Monte Carlo Tracking and particle filter, does not explicitly represent the density 
function. It uses instead Statistical Factor Sampling, which provides a way of 
approximating ( )1| −tt Zxp  by using a random number generator for sampling ( )txp . 

The sampling technique is based on the Bayesian theory which gives [11]: 

( ) ( ) ( )xpxzpzxp || ∝  (1) 

During statistical factored sampling, a sample set ( ) ( ){ }Nss ,,K1  is generated from the 

prior density ( )txp , where N  is the number of sample sets. A weight is subsequently 

assigned to each particle according to the observation density of 
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The weighted point set is then used as a representation of the a posteriori density, which 
is becoming more accurate as N  increases. By evaluating given moments of the state 
density, it is possible to estimate the most probable state. During prediction, the method 
involves the evolution of the state vector with time. Sampling methods based on spatial 
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Markov processes are generally used for the Condensation Method to represent the 
dynamics of a moving object/camera. As an observation/measurement model, a pq-
space based 2D/3D registration technique developed by Deligianni et al has been used 
[2]. The state of the system has been defined as the 6DoF pose of the camera. 

2.2   Prediction Model 

In order to construct a motion model for the endoscope camera that moves freely in 
the 3D tracheo-bronchial tree, an auto-regressive model is used [8]. This is in contrast 
to the ‘constant acceleration’ model used in [5], which effectively implies that the 
camera acceleration is expected to be constant during bronchoscope tracking. In this 
study, the auto-regressive model takes into account that during bronchoscope 
navigation, motion occurs within a bounded area, and a rapidly moving camera is 
expected to slow down or change in direction rather than accelerate further [12]. This 
ensures smooth navigation of the camera, and with modular training [9] multiple 
training sets can be used to obtain a more general model of the motion behavior. For a 
Kth-order auto-regressive model, the following equation can be used:  

∑
=

− ++=
K

k
ktkt BwtdxAx

1
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where kA  represents the collection of damped harmonic oscillators associated with  

vibrational modes, d is a drift per unit time, and w the white noise with covariance 
coefficient B .  

2.3   Training 

In practice, it is possible to build a tracking model by approximating its general 
behavior to intuitive expectations of the observed motion. However, a hand-built model 
is a difficult in this study due to the high-dimensionality and complex motion involved. 
Mathematically, learning motion characteristics from a training sequence is to estimate 
the coefficients kA , the mean value X , and the random component B of an 
autoregressive process that best model the motion in a training sequence involving 
camera poses of Mxx ,,1 K . The estimated pose tx can be treated as the exact 
observation of the physical process, and by following the multi-variate algorithm of [8], 
the auto-correlation coefficients jiR ,  and jiR ,′  can be computed for i, j = 0, 1, 2  as  
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Subsequently, 1A , 2A  and D  are given by: 
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The mean of the AR process, on the other hand, is calculated as 

( ) DAAX 1
12

−−−= I  (6) 

Finally, the covariance coefficient B  is estimated as a matrix square root of C  
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M

C 0101202002

1 −−−
−

=  (7) 

For the purpose of bronchoscope simulation, it is more meaningful to collect 
several training sets from the same as well as different operators in order to construct 
a more representative dynamic model. To this end, the auto-correlation coefficients of 
each training set have been calculated individually and then combined in a linear 
fashion. Since each of these dynamic systems may have a different mean value, the 
use of pre-estimated mean value of the system can result in a prediction strongly 
biased. In this study, X  is estimated on-line as part of the state vector.  

2.4   Validation 

In order to assess the accuracy of the proposed algorithm, an airway phantom made of 
silicone rubber and painted with acrylics was constructed. The phantom has a cross 
sectional diameter of 12cm at the opening and narrows down to 5cm at the far end. 
The inside face was created such to give the surface a specular finish that looks 
similar to the surface of the lumen. A real-time, six degrees-of-freedom Electro-
Magnetic (EM) motion tracker (FASTRAK, Polhemus) was used to validate the 3D 
camera position and orientation, as illustrated in Fig. 2(c). The EM-tracker has an 
accuracy of 0.762mm RMS.  The tomographic model of the phantom was scanned 
with a Siemens Somaton Volume Zoom four-channel multi-detector CT scanner with 
a slice thickness of 3mm and in-plane resolution of 1mm. A CMOS camera and 
NTSC standard with frame rate of 30fps was used.  

For in vivo validation, bronchoscopy examination was performed in five patients 
according to a standard clinical protocol. During the bronchoscope procedure two 
similar type videoscopes (Olympus BF Type; with field of view 120°) were used. 
Video images from the bronchoscope examination were transferred to digital 
videotapes in PAL format at 25fps. Since the original endoscopic video frames 
contain both the endoscopic image and redundant black background, only the 
endoscopic view was digitized and cropped to images of 454×487 pixels. All images 
were converted to grayscale before the pq-space analysis. Similar to the phantom 
study, the CT images were acquired from the Siemens Somaton Volume Zoom four-
channel multi-detector CT scanner with a slice width of 3mm and collimation of 
1mm, and the acquisition volume covered from the aortic arch to the dome of hemi-
diaphragm. Pre-processing of the video images was necessary in order to alleviate the 
effects of interlacing, lens distortion and unnecessary texture information. To remove 
noise and image artifacts, anisotropic filtering was applied to each image.  

3   Results 

Figure 1 illustrates the effectiveness of the training process involved in this study. The 
ground truth data of the camera pose from four different patients have been used to 
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train the auto-regressive model. Subsequently, the performance of the trained model 
was evaluated on the fifth patient data. The Euclidean distance between the first and 
subsequent camera positions predicted from the condensation algorithm was used for 
error analysis. Similar analysis for the error in orientation was also performed. In 
Figure 1(a), the system mean has been predefined according to the training sequences, 
whereas for (b), it was included in the state vector of the predictive model such that it 
was updated in real-time. It is evident that without continuous updating of X , the 
derived tracking value is heavily biased.  

 (a) (b) 

Fig. 1. Assessment of the accuracy of the training model and the effect of excluding (a), and 
including (b), mean value estimation of X  as part of the state vector 

Table 1. Quantitative assessment of the pq-space based registration with and without the 
condensation algorithm (pq - CD), respectively 

Absolute Error 
Position (mm) Angle (rad) 

Pq CD Pq CD Case Frames

Mean ±Std Mean ±Std Mean ±Std Mean ±Std 

Phatom 300 36.5 22.7 5.89 5.5 0.14 0.1 0.12 0.07 
Pat1 100 7.0 2.0 3.3 2.2 0.8 0.2 0.03 0.02 
Pat2 120 13.3 5.8 2.6 1.7 0.35 0.14 0.11 0.06 
Pat3 243 26.98 13.0 1.9 1.52 1.02 0.6 0.11 0.06 
Pat4 144 5.87 5.5 3.15 2.1 0.06 0.1 0.05 0.04 
Pat5 100 14.4 10.12 2.26 1.65 0.7 0.4 0.19 0.15 

The detailed assessment results for the phantom and patient studies are summarized 
in Table 1. It is evident that in both cases the 2D/3D registration accuracy has been 
increased significantly by the use of the proposed predictive tracking algorithm. More 
notably, the method permits more stable tracking results in patients where image 
artifact (e.g. partial occlusion of the images due to mucosa or bleeding) and sudden 
airway deformation due to coughing can introduce large propagational errors to the 
original  pq-space  registration technique. In Figure 2, we demonstrate the extent of this  
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Fig. 2. The effect of airway deformation and partial occlusion of the image due to mucosa and 
blood on  the accuracy of the 2D/3D registration technique without (mid-column) and with 
(right-column) predictive camera tracking 

effect on the actual bronchoscope views. The left column shows the original frames 
from the bronchoscope video, whereas the middle and right columns are the virtual 
views of the 3D model by using pq-space registration without and with predictive 
camera pose tracking. It is worth noting that pre-processing, including radial distortion 
correction, de-interlacing and anisotropic filtering, has been applied to the real 
bronchoscope images before the registration step.  
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4   Discussion and Conclusions 

In this paper, we have described the use of predictive camera tracking for increasing the general 
accuracy and robustness of 2D/3D registration involved in virtual bronchoscope modeling. A 
stochastic filter is used to resolve the inherent global ambiguity in tracking by exploiting the 
temporal coherence of the camera tip. The use of the condensation algorithm permits the use of 
multi-modal probability distributions, and our results from both phantom and patient data 
demonstrate a significant improvement in tracking accuracy especially in cases where there is 
airway deformation and image artifacts. The method effectively avoids the registration 
algorithm being trapped in local minima. The use of auto-regressive model based on the 
principles of the maximum likelihood learning and extension to modular learning has facilitated 
the incorporation of multiple sequences from different patients. The proposed method can be 
further extended to multi-class motion description such that the dynamic behavior of camera 
navigation in different parts of the tracheo-bronchial tree can be incorporated.  
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