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ABSTRACT
Whole-brain structural connectivity matrices extracted from
Diffusion Weighted Images (DWI) provide a systematic way
of representing anatomical brain networks. They are equiva-
lent to weighted graphs that encode both the topology of the
network as well as the strength of connection between each
pair of region of interest (ROIs). Here, we exploit their hi-
erarchical organization to infer probability of connection be-
tween pairs of ROIs. Firstly, we extract hierarchical graphs
that best fit the data and we sample across them with a Markov
Chain Monte Carlo (MCMC) algorithm to produce a consen-
sus probability map of whether or not there is a connection.
We apply our technique in a gender classification paradigm
and we explore its effectiveness under different parcellation
scenarios. Our results demonstrate that the proposed method-
ology improves classification when connectivity matrices are
based on parcellations that do not confound their hierarchical
structure.

Index Terms— DWI, hierarchical graphs, MCMC, anatom-
ical connectivity, classification

1. INTRODUCTION

There are several indications that a major factor influencing
the brains computational power and stability is its connec-
tional complexity [1, 2]. As a result there is a shift of focus
from identifying localised brain abnormalities to identifying
dysfunction in network organization and, thus, the investiga-
tion of structural brain connectivity has become even more
critical.

Anatomical brain connectivity refers to the existence of
axonal connections between two brain areas. With the advent
of Diffusion Weighted Imaging (DWI) neuronal connections
can be extracted in vivo and characterized non-invasively.
Within tissue with an oriented structure, such as white matter,
the diffusion of water is hindered in the direction perpendic-
ular to the fiber tracts. There is an inherent complexity in
exploiting this directional information of each voxel and re-
producing the neuronal pathways. These limitations originate

from the fact that DWI is a macroscopic technique utilised to
infer microscopic tissue properties. Currently, there are sev-
eral techniques to reconstruct fiber tracts [3, 4]. Among the
most successful is probabilistic tractography, which utilises a
probabilistic framework to propagate local probability density
functions on parameters in the diffusion model [5, 3]. How-
ever, in probabilistic tractography a number of connections
emerge that may or may not represent real fibers.

Here, we exploit the hierarchical organization of brain
networks to redefine whole-brain connectivity matrices. We
propose inferring hierarchical structures from the observed
anatomical connectivity with a technique that has been de-
veloped recently and has been tested in both biological and
social networks [6]. This technique uses statistical inference
combined with a MCMC sampling algorithm to derive hierar-
chical models, also called dendrograms, with probability pro-
portional to the likelihood that they generate the observed net-
work. Based on this approach a consensus dendrogram can be
build that contains only the dendrograms features that appear
in the majority of the sampled models. This model allows
the assignment of a probability for each connection that re-
flects the confidence in its existence based on the whole-brain
network topology and the assumption that it is hierarchically
organized.

We use this methodology to analyze whole-brain con-
nectivity matrices derived from a number of different sub-
parcellations (scales). These sub-parcellations have been
defined based on a strategy that it subdivides each atlas-based
ROI in sub-regions surrounded by a relatively equal portion
of white matter voxels and an indicative number of voxels
per area. We applied our approach in the paradigm of gender
classification. Leave-one-out cross-validation is used to com-
pare the performance of classification with and without the
application of the hierarchical algorithm.

2. METHODS

In this section, we provide an overview of how we extract
whole-brain connectivity matrices from DWI and construct



hierarchical trees and probability maps.

2.1. Pre-processing and Extraction of Brain Networks

FSL was the main tool for pre-processing of DWI [7]. This
involved eddy current correction and brain extraction. Bias
correction was applied to T1 and B0 images to improve the
robustness of the non-rigid registration tools. In order to ex-
tract anatomical brain networks from DWI, ROIs are defined
based on the fusion of 83-ROIs atlas based segmentation and
soft-tissue segmentation. This facilitated the extraction of
ROIs that are anatomically sensible and they are located in
gray-matter. Segmentations were transformed to diffusion
space with non-rigid registration. This procedure has been
described in details in previous work [8].

Subsequently, connections between regions are identi-
fied using a standard probabilistic algorithm available as
part of FSL [9, 7]. However, we estimate the local diffu-
sion anisotropy by determining the diffusive transfer between
voxels using the orientation distribution function (ODF) [8].

Fig. 1: Axial, sagittal and coronal views of the original 83-
ROIs parcellation as well as the four sub-parcellations based
on an indicative/approximate number of 500, 400, 300 and
200 voxels per region, respectively.

2.2. Sub-Parcellation of ROIs

To sub-parcellate the 83 segmented ROIs we transformed
the segmentations from diffusion space into standard (MNI)
space using affine registration. We counted the voxels within
each region and across subjects and we predefined the num-
ber of sub-areas based on an indicative (approximate) number
of voxels per area. Each area was sub-divided into a num-
ber of regions, according to the average number of voxels
across subjects divided by the indicative size and rounded to
the closest integer. Subsequently, we extracted the boundary
voxels of each ROI with white matter and we applied eigen-
decomposition to the covariance matrix to define the best fit
plane for the boundary voxels. The coordinates of each voxel
in the ROI was projected on the first eigen-vector so that
we could sub-divide them based on their projected position.

Finally, they were subdivided into the predefined number
of sub-regions so that each sub-region has equal number of
voxels (±1). This way guarantees that all sub-regions within
the original ROI are surrounded with relatively equal number
of white matter voxels. Therefore, tracts between each sub-
region and the rest ROIs can be identified. An example of the
subparcellation for a subject is shown in Fig. 1.

2.3. From Brain Graphs to Hierarchical Random Graphs

In networks with hierarchical organization, nodes are subdi-
vided into groups that are further subdivided into more groups
and so forth over multiple scales. In brain networks, this im-
plies that connections are dense within groups of areas and
sparse between them. Clauset et al. showed that this property
alone is able to explain both qualitatively and quantitatively a
number of topological and statistical properties of the original
graph, such as their degree distribution, clustering coefficient
and so on [6]. Their approach offers two major strengths:
Firstly, it can capture both clusters of nodes, ’assortative’, and
disassociated nodes, ’disassortative’ structures, as well as ar-
bitrary mixtures of the two. Secondly, it does not depend on
one hierarchical model but it generates a series of hierarchi-
cal models, dendrograms, and samples along them to create a
consensus dendrogram that expresses the networks topology.

Let us represent a structural brain network as a graph G
with n nodes. The observed network data can be fitted to a
random binary dendrogram based on a Monte Carlo sampling
algorithm over a maximum-likelihood approach. A binary
dendrogram has n leaves corresponding to the n nodes of the
graph G, and each of the n − 1 internal nodes have exactly
two descendants. Each internal node r is associated with a
probability pr. Under a maximum-likelihood approach the
probability pr is estimated as the fraction of edges between
the two sub-trees:

p̄r =
Er

LrRr
(1)

where Er are the edges between left and right sub-trees and
Lr and Rr are the number of nodes in left and right sub-tree,
respectively. The likelihood of the dendrogram at this maxi-
mum is given below:

L(D) =
∏
r∈D

[
p̄r

p̄r (1 − p̄r)1−p̄r

]LrRr

. (2)

The overall likelihood of the dendrogram reflects how well
the dendrogram fits the graph data under the assumption that
the original graph has hierarchical organization. Here we used
the logarithm of the likelihood to avoid numerical instabilities
due to very small numbers:

logL(D) = −
∑
r∈D

LrRrh(p̄r) (3)

where h is the Gibbs-Shannon entropy function: h(p) =
−p log p − (1 − p) log (1 − p). Note that dendrograms



(a) 83 ROIs (b) 243 ROIs (500 voxels) (c) 295 ROIs (400 voxels) (d) 381 ROIs (300 voxels) (e) 564 ROIs (200 voxels)

Fig. 2: Structural connectivity matrices of the same subject that corresponds to the parcellations displayed in Figure 1.

with high probability are those that partition the vertices
into groups that are either very well interconnected or dis-
connected. Subsequently, the MCMC method is used to
sample dendrograms and accepts them according to the
Metropolis-Hasting rules [6]. The Markov chain consists
of re-arrangements of subtrees of the dendrogram by choos-
ing a random node and exchanging any of its children with its
parent’s child.

Once MCMC reaches equilibrium, dendrograms can be
sampled at regular interval from the Markov chain. For each
sampled dendrogram a probability connectivity matrix can be
created with values that reflect the probability of each pair of
nodes/areas to be connected. The probability between each
pair of nodes i and j is equal to the probability pr of the
lowest common ancestor of the nodes i and j in the sampled
dendrogram. A consensus probability matrix is estimated by
averaging these matrices across dendrogram samples.

3. RESULTS

We used diffusion weighted images (DWI) that have been ac-
quired from 20 normal volunteers (10 males, 10 females) with
the following imaging parameters: 64 non-collinear direc-
tions, in 72 slices, slice thickness 2mm, FOV 224mm, matrix
128x128, voxel size 1.75x1.75x2mm3, b value 1000 s/mm2

(Philips 3Tesla). Based on the original 83-ROIs segmenta-
tion, we created four sub-parcellations with an indicative size
of region of 500, 400, 300 and 200 voxels per area. This
resulted in four segmentations with 243, 295, 381 and 564 re-
gions, respectively, Fig. 1. We run the adapted probabilistic
tractography [8], which estimated the connectional strength
between each pair of regions and provided with the corre-
sponding connectivity matrices for each sub-parcellation, Fig.
2. For each subject and each parcellation, we run the MCMC
method until the algorithm reached equilibrium. Once the
MCMC has reach equilibrium, the probability that there is
a connection between each pair of nodes is estimated and it is
averaged across a predefined number of dendrograms (5000).
These new connectivity matrices define the probability that
two nodes are connected. We performed gender classifica-
tion by separating subjects into two groups according to their
gender and averaging the mean-subject probability connectiv-

ity matrices. We used leave-one-out cross validation to clas-
sify the subjects based on the normalised Euclidean distance
between the average probability maps of each group and the
leave-one-out subject. If the subjects distance from the male
group is higher than its distance from the female group, we
classify the subject as female and vice-versa. To demonstrate
the efficiency of our methodology we also performed classi-
fication with the original connectivity matrices and the same
classifier. In Fig. 3, the Receiver Operating Characteristic
(ROC) curve is shown for each of the sub-parcellations with
and without MCMC. The Area Under the Curve (AUC) is a
measure of the optimum performance of the classifier. Our
results suggest that age classification is not successful based
on the original parcellation alone neither with the application
of the MCMC algorithm or without, Fig. 3 . However, when
we analyzed the sub-parcelated connectivity matrices with the
MCMC approach, we could classify the subjects with up to
82% classification rate. Gender classification based on the
original connectivity matrices was unsuccessful for all the dif-
ferent sub-parcellation scenarios. Since MCMC has as input
binary matrices (one when a connection exist, zero for the ab-
sence of connection), we also classified the binarised version
of the original connectivity matrices. There was no signifi-
cant difference in performance between the original weighted
graphs and the binarised versions, Fig. 3.

4. DISCUSSION AND CONCLUSIONS

Here we use a hierarchical algorithm (MCMC) [6] to infer
probability of connection between each pair of brain region
based on the assumption that brain networks exhibit hierarchi-
cal organization. This approach has been shown to be pow-
erful to detect missing links and false positives based only on
the topology of the network. We used a novel approach to
sub-parcellate each from the original 83-ROIs in sub-regions
that are surrounded with relatively equal number of white
matter voxels. This sub-parcellation aimed to split gray mat-
ter in ROIs that have relatively equal number of voxels and
also respect the boundaries between the original 83-ROIs at-
las. In this way, we could investigate how hierarchy is ex-
pressed in different scales.

We applied our approach successfully in a gender clas-



(a) MCMC (b) Original Matrices (c) Binarised Matrices

Fig. 3: ROC curves for gender classification.

sification paradigm of 20 subjects with diffusion data in 64
directions, Fig. 3. Our results showed that although classifi-
cation performance did not improve in the case of the origi-
nal 83-ROIs parcellation, it was significantly enhanced in all
other sub-parcellations. This suggests that hierarchical orga-
nization of anatomical networks derived from DWI can be
confounded by the uneven sub-parcellation in 83-ROIs with
size that varies from 20 to over 8000 voxels per region. On
the other hand, MCMC applied on connectivity matrices de-
rived from the sub-parcellation has a significant improvement
in classification over the original connectivity matrices, Fig.
3.

These results demonstrate the potential of the MCMC to
identify missing links and false connections in whole-brain
structural connectivity data. However, the MCMC method-
ology only provides with a probability of whether there is or
not a connection. It does not give any information about the
actual pathway and its connectional strength. An interesting
methodological direction for future research is to incorporate
such an approach in a global probabilistic tractography frame-
work [10]. Global probabilistic tractography can recover the
most likely pathway between two regions based on the prior
that these regions are connected [10].
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