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ABSTRACT 

 

Studies that examine the relationship of functional and structural 

connectivity are tremendously important in interpreting 

neurophysiological data. Although, the relationship between 

functional and structural connectivity has been explored with a 

number of statistical tools [1, 2], there is no explicit attempt to 

quantitatively measure how well functional data can be predicted 

from structural data. Here, we predict functional connectivity from 

structural connectivity, explicitly, by utilizing a predictive model 

based on PCA and CCA. The combination of these techniques 

allowed the reduction of dimensionality and modeling of inter-

correlations, successfully. We provide both qualitative and 

quantitative results based on a leave-one-out validation.   

 

Index Terms— Brain connectivity, fMRI, tractography, 

functional connectivity, structural connectivity 

 

1. INTRODUCTION 

 

Functional specialization/segregation and functional integration/ 

connectivity are major factors influencing the brain’s 

computational power and stability. Functional specialization 

investigates how different brain areas are consistently engaged in 

some aspects of cognitive or motor processing. However, it has 

become evident that it is not meaningful to investigate functional 

specialization without considering how different brain areas 

interact. In practice, different types of functional imaging data, 

such as PET, fMRI and EEG, which exhibit varying spatiotemporal 

properties and represent various neural activities, are used to 

characterise brain connectivity. In the absence of precise 

information about the anatomical relationship between a neuronal 

pair whose functional interactivity is being accessed, the research 

community has started to converge on Friston’s definition of 

functional connectivity [3]. According to it, functional connectivity 

is defined as the temporal correlation between spatially remote 

neurophysiological events.  

However, the relationship between functional connectivity 

and its underlying neural substrate is obscure [4]. Advances in 

diffusion weighted MR imaging allow the inference of microscopic 

tissue properties, such as water diffusion, in vivo. Water diffusion, 

also called diffusion anisotropy, is higher in the direction of the 

fiber tract within an oriented tissue. Various tractography 

techniques have been developed to exploit this voxel-based 

measure and extract neuronal tracts [5, 6]. This allowed the 

modeling of dense networks of macroscopic fiber bundles within 

the brain.    

As a consequence, significant research effort has been 

directed recently towards the understanding of brain connectivity 

with both functional and structural data [1, 2]. A linear relationship 

between structural and functional data has been demonstrated in [1, 

2]. However, strong functional connectivity was also observed in 

areas without direct structural links and inter-regional distance 

accounted for only some of the variance in functional connectivity.   

In this work, we are interested in inferring functional from 

structural connectivity. Prediction is a popular tool in statistics. 

Here, the ultimate goal is not the prediction itself but investigating 

the relationship among the variables, which will assist in gaining a 

deeper understanding of the underlying mechanisms. We estimate 

functional and structural networks based on regions of interest 

(ROI) derived from a combined atlas-tissue segmentation 

approach. Weights of structural connections are calculated with a 

newly developed technique that uses a probabilistic framework to 

detect tracts but the connection weights are a measure of mean 

anisotropy [7]. Principal component analysis (PCA) and Canonical 

correlation analysis (CCA) are combined to deal with the vast 

dimensionality of connections and infer functional connectivity 

from structural connectivity. A leave-one-out approach is used to 

validate our model.        

 

2. MATERIALS 

 

2.1. Data acquisition  

 

Brain connectivity analysis was performed in eight adult 

volunteers (average age: 30.8; range: 20-52). Scanning was 

performed on a Philips 3T Achieva scanner (Philips Medical 

Systems, Netherlands). The scanner uses Nova Dual gradients, a 

phased array head coil, and sensitivity encoding (SENSE) with an 

undersampling factor of two.  

Functional MRI images were obtained using a T2*-weighted 

gradient-echo echoplanar imaging (EPI) sequence with whole-

brain coverage (TR/TE 2000/30, 31 ascending slices with thickness 

3.25 mm, gap 0.75 mm, voxel size 2.5×2.5×4 mm, flip angle 90°, 



field of view 280×220×123 mm, matrix 112×87). Quadratic shim 

gradients were used to correct for magnetic field inhomogeneities 

within the brain.  

Diffusion weighted images were acquired in 16 non-collinear 

directions in each of the four imaging runs, resulting in a total of 

64 directions. The following parameters were used: 72 slices, slice 

thickness 2 mm, field of view (FOV) 224 mm, matrix 128 x 128 

(voxel size 1.75 x 1.75 x 2 mm3), b value 1000 s/mm2 (one image 

with non weighted diffusion), and total acquisition time 20 

minutes.  

High resolution T1-weighted whole-brain structural images 

were also obtained in all subjects. 

 

2.2. Preprocessing  

 

FSL was the main tool for image pre-processing of both diffusion 

weighted (DWI) and fMRI images [8]. This involved eddy current 

correction of DWI and motion correction as well as spatial 

smoothing of fMRI images. Brain extraction was performed 

originally with FSL and it was manually refined later. Bias 

correction was applied to T1 and B0 images to improve the 

robustness of the non-rigid registration tools.   

 

3. METHODS 

 

Brain network construction was carried out only for connections 

between cortical regions. A cortical parcelation was obtained by a 

multi-atlas segmentation technique. Firstly, label propagation 

based on multiple atlases was used to segment each T1 image into 

83 cortical and subcortical regions [9]. This is a highly accurate, 

automated approach that uses anatomical correspondence to 

propagate segmentation from manually segmented images to new 

individuals. The robustness of the segmentation was further 

enhanced by incorporating decision fusion to select the manual 

segmented images with the highest similarity to the new subject 

[10]. 

BOLD fluctuations are profound in gray matter, while DTI is more 

reliable in delineating white matter fibers [11]. Hence, probabilistic 

tissue segmentation was performed with SPM to classify gray 

matter, white matter and cerebrospinal fluid (CSF) [12]. 

Subsequently, atlas-based and tissue-based segmentation was fused 

to provide the final ROI. Segmentations were transformed to both 

the diffusion and fMRI space by using non-rigid registration [13], 

Fig.1. 

 

3.1. Extraction of Structural and Functional Networks  

 

Tracts between regions are identified using a standard probabilistic 

algorithm available as part of FSL [5, 8]. However, measurements 

of connection probability are difficult to interpret as the probability 

measure reflects uncertainty in the data rather than likelihood of 

connection [7, 14]. Instead, we estimate the local diffusion 

anisotropy by determining the diffusive transfer between voxels 

using the orientation distribution function (ODF) [7, 15]. Note that 

the local diffusion anisotropy reflects changes in myelination, fiber 

density and packing [16]. Therefore, connectional strength can be 

compared across subjects and it is inherently related to functional 

connectivity.  

To construct corresponding functional networks the fMRI 

signal was averaged across voxels within each area. Partial 

correlation was used to compute functional connectivity 

accounting for the whole brain mean signal.  

 
Fig 1. Segmentation of the non-weighted diffusion image via 

multi-atlas segmentation of the corresponding T1 image. 

 

This strategy has applied in a number of previous works [1, 2]. The 

fisher’s transform was used to obtain the corresponding z-scores. 

This produces normal random variables with variance one and 

allow inter-subjects comparisons. 

 

3.2. Reduction of Dimensionality with PCA  

 

The aim of the predictive model is to use structural connectivity 

across subjects to predict functional connectivity and vice-versa. 

Each brain’s connection is treated as a variable, which results in a 

total of 𝑁 𝑁 − 1 /2 variables, where 𝑁 is the number of ROI. 

Therefore, structural and functional connectivity are denoted as 

two groups of variables: 𝑆𝑛×𝑝  and 𝐹𝑛×𝑝 , respectively, where 𝑛 is 

the number of connections and 𝑝 are the observations/ subjects.  

To reduce dimensionality principal component analysis 

(PCA) is applied to each group of variables. PCA can be thought as 

an intuitive way to represent our data in a new coordinate system, 

which itself models the direction of maximum variance in the data. 

PCA is calculated by firstly estimating the covariance matrix 𝐶 and 

subsequently finding its eigenvectors 𝑃𝑛×𝑛  and eigenvalues. For 

example, the covariance matrix of structural connections is 

calculated as: 

 

𝐶𝑆 =
1

𝑝−1
∙ 𝑑𝑆𝑛×𝑝 ∙ 𝑑𝑆𝑛×𝑝

𝑇 , where 𝑑𝑆𝑛×𝑝 = 𝑆𝑛×𝑝 − 𝑆𝑛          [1] 

 

Structural connectivity can be written in the new base system as a 

linear combination of the data projected on 𝑚 principal axes, 

which corresponds to the 𝑚 most significant eigenvectors of the 

covariance matrix. 

 

𝑆𝑛×𝑝 = 𝑆𝑛   +𝒳, where 𝒳 = 𝑃𝑛×𝑚
𝑇 ∙ 𝑆𝑛×𝑝                [2] 

 

Hence, 𝒳 is a reduced data vector, also called latent variable that 

aims to explain most of the variance in the data. Similarly, for 

functional connectivity we denote as 𝒴 the corresponding latent 

variable.  

 

3.3. Predictive Model based on CCA  

 

Canonical correlation analysis (CCA) is generally applied when 

one set of independent/predictor variables 𝒳 is to be related to 

another set of dependent/predicted variables 𝒴 and observations 

are available for both groups. Note that CCA is designed to deal 

with situations where the underlying variables are not statistically 

independent and, hence, they are inherently inter-correlated. The 

ultimate goal of CCA is to find two basis vectors, one for each 

variable, so that the projections of these variables onto the basis 

vectors are maximally linearly correlated. In this way, hidden 

correlations between multidimensional variables can be obtained.  



The covariance matrix 𝒞 of  𝒳 and 𝒴 is defined as: 

 

𝒞 =  
𝒞𝑥𝑥 𝒞𝑥𝑦

𝒞𝑦𝑥 𝒞𝑦𝑦
                                       [3] 

 

The canonical correlation between 𝒳 and 𝒴 is calculated by 

solving the eigenvalue equations: 

 

 
𝒞𝑥𝑥
−1 ∙ 𝒞𝑥𝑦 ∙ 𝒞𝑦𝑦

−1 ∙ 𝒞𝑦𝑥 ∙ 𝒘𝒙 = 𝜌2 ∙ 𝒘𝒙

𝒞𝑦𝑦
−1 ∙ 𝒞𝑦𝑥 ∙ 𝒞𝑥𝑥

−1 ∙ 𝒞𝑥𝑦 ∙ 𝒘𝒚 = 𝜌2 ∙ 𝒘𝒚

                    [4] 

 

Where 𝜌 are the canonical correlations and 𝒘𝒙, 𝒘𝒚 are the 

normalized canonical correlation basis vectors.  

Prediction of a new variable 𝒴′  based on a predictor variable 𝒳 ′  

can be derived as:  

 

𝒴′ = 𝜌 ∙  𝒳 ′ ∙ 𝒘𝒙 ∙ 𝑖𝑛𝑣 𝒘𝒚                         [5] 

 

Note that the predictive variable needs to be projected back to 

Cartesian coordinate system from the PCA-derived coordinate 

system. 

 

4. RESULTS AND DISCUSSION 

 

A leave-one-out approach was adapted to test the robustness of the 

suggested methodology. Therefore, prediction was performed eight 

times, each with seven subjects in the training set and one used for 

prediction. Fig.2 demonstrates a qualitative view of the results for 

one of the subjects. ROIs are plotted by cerebral hemispheres, with 

right-hemispheric ROIs in the lower left quadrant, left-hemispheric 

ROIs in the top right quadrant, and inter-hemispheric connections 

in the upper left and lower right quadrants. Fig.2a is the true 

functional connectivity as it has been extracted from fMRI data. 

Fig.2b is the structural connectivity, which is used as an input to 

the predictive model. Fig.2c shows the prediction derived from the 

combined PCA and CCA methodology. On the other hand, Fig.1d 

shows the estimated prediction when each of the connections 

treated as an independent variable. In this case, CCA was applied 

for each connection separately. It is apparent that correlations 

among the variables play an important role in the robustness of the 

predictive model. The results indicate that the suggested model is 

capable in capturing the relative pattern of the brain networks. It is 

particularly successful in distinguishing connections between left 

and right hemisphere, even when inter-hemispheric connections 

are underestimated with tractography techniques. This is because 

the model utilizes information across variables and subjects. 

Underestimation of inter-hemispheric connections is a common 

problem with current tractography techniques [1, 2].  

Quantitative assessment was performed by estimating the 

coefficient of determination 𝑅2, as the squared correlation 

coefficient, for each subject in a leave-one-out fashion (mean: 

42.43%, std: 5.12%). This gives the proportion of functional 

connectivity’s variance explained by structural connectivity for 

each subject. The results demonstrate that the combination of PCA 

and CCA is a promising approach in capturing intrinsic 

characteristics of both functional and structural brain connectivity.  

 

Table 1. Coefficient of determination, 𝑅2 

Sub1 Sub2 Sub3 Sub4 Sub5 Sub6 Sub7 Sub8 

0.51 0.36 0.37 0.39 0.44 0.45 0.46 0.40 

5. DISCUSSION AND CONCLUSIONS  
 

This paper exploits a multivariate statistical technique to predict 

functional connectivity from structural connectivity. PCA is 

employed for dimensionality reduction and CCA for modeling 

hidden linear correlations. The results demonstrate that the 

suggested methodology is capable of capturing subtle details of 

brain network characteristics. Hence, there are two main outcomes 

of our research: (a) We have added further evidence that resting-

state functional networks are of neuronal origin and (b) we have 

showed that statistical prediction is a potentially powerful tool in 

investigating the interactions between anatomical and functional 

connectivity. There are, indeed, factors that are not accounted in 

the current model and they may influence functional connectivity. 

The current scientific view is that indirect connections may explain 

why functional connectivity can be strong between areas that a 

direct anatomical link has not been detected [1, 2, 17]. It is yet to 

be determined whether such a model would be able to significantly 

improve the performance of statistical inference of functional data 

from structural data. 

The investigation of this hypothesis with existing 

statistical techniques is extremely challenging because of the high-

dimensional space of predictors and the limited availability of 

datasets. Here, we applied PCA in order to produce a low-

dimensional embedding of brain connectivity data that best 

describes their variance. There are, other dimensionality reduction 

approaches capable of detecting non-linearities [18]. These 

techniques, though, would require an even larger number of 

samples in order to accurately model non-linear effects. Future 

work should aim to use a larger sample of data to improve the 

performance of the prediction and investigate the influence of 

indirect connections and distance between ROIs. 

 Finally, it has been also argued that the relationship 

between resting-state fMRI and DTI data may be far more 

complex. For example, the influence of sub-cortical structures via 

both driving and modulating inputs may play an important role in 

describing functional from structural connectivity [17, 19]. 

Perhaps, investigating these relationships would also require 

examining causal relationships and determining the directionality 

of information flow from one area to another. The suggested 

framework is based on correlations and hence relationship between 

two areas does not necessarily imply causality. Other approaches 

such as Granger causality could be employed towards this end 

[20].          
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