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Lecture 2: Worlds in 2D and 3D 
 
3-Dimensional Objects Bounded by Planar Surfaces (Facets) 
A planar facet is defined by an ordered set of 3D vertices, lying on one plane, which form a closed 
polygon, (straight lines are drawn from each vertex to the following one with the last vertex 
connected to the first). The data describing a facet are of two types. First, there is the numerical data 

which is a list of 3D points, (3*N 
numbers for N points), and 
secondly, there is the topological 
data which describes which points 
are connected to form edges of the 
facet.  For the cube shown in 
Diagram 2.1 we need 24 real 
numbers for the numerical data, 24 
integers to store the line topology, 
and 24 integers to store the face 
topology.  We will also need to 

maintain the number of lines and faces in the figure, and the number of edges per face. All this could 
be done using static structures (arrays), alternatively, if we start with abstract data types that express 
the structure of three dimensional objects, we may define the following data types (Diagram 2.2): 
 

ordinate=x,y,z; 
Point = array[ordinate] of real; 
Edge = record 
  start, finish: Point; 
 end ; 
Edgelist = record 
  thisedge: Edge ;                   
  nextedge: ^Edgelist;                 
 end ;                            
Facetlist = record 
  thisfacet: ^Edgelist; 
  nextfacet:^Facetlist; 
 end ; 
Object=^Facetlist; 
 

It should be noted that redundancy exists in this case, since edges which belong to two facets are 
duplicated, and vertices which belong to three edges appear three times. However, when a large 
number of objects are processed, redundancy of data may help the speed. Later on in this lecture we 
will see other examples where this is true. 
 
Projections of Wire-Frame 
Models 
Since our display device is only 
2D, we have to define a 
transformation from the 3D space 
to the 2D surface of the display 
device. This transformation is 
called a projection. In general, 
projections transform an n-
dimensional vector space into an 
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Diagram 2.1: Representing 3D objects
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m-dimensional vector space where m<n.  
Projection of a 3D object onto a 2D surface is done by selecting first the projection surface and then 
defining projectors or lines which are passed through each vertex of the object. The arrangement is 
shown in Diagram 2.3. The projected vertices are placed where the projectors intersect the projection 
surface. The most common (and simplest) projections used for viewing 3D scenes use planes for the 
projection surface and straight lines for projectors. These are called planar geometric projections.  
 
Depending on how the projected 2D lines are computed they may become curved. For example, if we 
compute the image of a straight line focussed by a lens. However, all the projections that we will 
consider in detail will produce straight lines or points for straight edges in 3D. The simplest form of 
viewing such an object is by drawing all its projected edges. This is called a wire-frame 
representation, since the object could be modelled in three dimensions using wires for the edges of 
the object. Note that for such viewing the topological information for the facets is not required. 
 
There are two classes of the most common planar geometric projections. Parallel projections use 
parallel projectors, perspective projections use projectors which pass through one single point. 
Parallel projectors are defined by the direction of projectors, while perspective projectors are defined 
by the centre of projection. In order to minimise our confusion in dealing with a general projection 
problem, we can visualise the plane of projection more easily by making it always parallel to the z=0 
plane, (the plane which contains the x and y axis). This does not limit the generality of our discussion 
because if the projection plane of the actual scene is not parallel to the z=0 plane then we can use 
rotation transformations in 3D and make the projection plane parallel to the z=0 plane. A simple 
translation in the z direction now can place either the projection plane or the centre of projection at 
the origin.  We shall restrict the viewed objects to be in the positive half space, therefore the 
projectors starting at the vertices will always run in the negative z direction. 
 
Parallel Projections 
If the direction of projectors is given by vector d=[dx, dy, dz], then a projector that passes through the 
vertex V=[Vx, Vy, Vz] may be expressed by the parametric line equation: 
 P  =  V  + µd 
The simplest case is when the 
projectors are perpendicular to 
the projection plane, (called 
orthographic  projection). In 
this case the projectors are in 
the direction of the z axis and: 
 d = [0,0,-1]  
and so Px = Vx  
and Py = Vy 
which means that the x and y 
co-ordinates of the projected vertex is equal to the x and y co-ordinates of the vertex itself and no 
calculations are necessary. A cube drawn in orthographic projection is shown in Diagram 2.4.  
 
If the projectors are not perpendicular to the projection plane then the projection is called oblique.  
and the projected vertex intersects the z=0 plane where the z component of the P vector is equal to 
zero, therefore: 
 Pz = 0 = Vz + µ dz 

so µ = - Vz/ dz 
and we can use this value of µ to compute: 
 Px = Vx + µ dx  =  Vx - dxVz/ dz 

Diagram 2.4
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and Py = Vy + µ dy  =   Vy - dyVz/ dz 
 
These projections are similar to the orthographic projection with one or other of the dimensions 
scaled. They are not often used in practice. 
 
Perspective Projections 
In perspective projection, all the rays pass through one point in space, the centre of projection, which 
we will designate with the capital letter C, as shown in Diagram 2.5. If the centre of projection is 
behind the plane of projection then the 
orientation of the produced image is the 
same as the image. To calculate perspective 
projections it easier to place the centre of 
projection at the origin, in which case the 
projection plane is placed at a constant z 
value, z=f. The projection of a 3D point onto 
the z=f plane is calculated as follows. If the 
centre of projection is at the origin, and we 
are projecting the point V then the projector 
has equation:   
 P = µV 
Since the projection plane has equation z=f, 
it follows that:    
 f = µ Vz 
If we write µp = f/ Vz for the intersection 
point on the plane of projection then: 
thus  
 Px = µp Vx = f* Vx/ Vz  
and Py = µp Vy = f* Vy / Vz 

 
The perspective projection may also be 
calculated without recourse to vector 
methods. Diagram 2.6 shows a picture of 
the plane through the y-z axis looking at a 
particular projector. 
 
by similar triangles we see that: 
 Py/f = Vy/Vz 
Thus Py = f  Vy/Vz 
  
By considering a plane through the x axis and the projector we can similarly obtain the result 
 Py = f  Vy/Vz 
 

The factor µp is called the 
foreshortening factor, because the 
further an object is, the larger Vz and 
the smaller is its image. The 
perspective projection of a cube is 
shown in Diagram 2.7.  
 
One of the interesting properties of 
perspective projection is that lines that 
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are parallel in three dimensional space are not necessarily parallel in the 2D projection. In some cases 
they will meet in the image at points called vanishing points. Architects who use free hand and not a 
computer to draw perspective images use the vanishing point technique. This technique uses the fact 
that projected images of parallel lines which are not parallel to the projection surface all pass through 
one image point, and images of parallel lines which are parallel to the projection surface remain 
parallel. A vanishing point may be interpreted as the perspective projection of a point at infinity 
(since this is the point where the mathematicians tell us that parallel lines meet).  We can calculate the 
image vanishing point I=[Ix, Iy] by the equation of lines which are all parallel to a 3D direction 
vector, d=[ dx, dy, dz].  Assuming an arbitrary point V0, the vector equation of these parallel lines is: 
 
 L  = V0  +  µd 
 
Since the point L=[Lx, Ly, Lz] is on one 
of these lines and the x and y co-
ordinates of the same point projected 
onto the z=0 plane are:  
 Px =f* Lx / Lz  
  Py=f* Ly/ Lz,  
substituting we get: 
 Px  =  f(V0x + µ dx)/(V0z + µ dz) 
 Py =  f(V0y + µ dy)/( V0z + µ dz) 
We may find the point at infinity by 
letting µ approach infinity in which 
case V0x, V0y and V0z disappear from 
the equations and we get: 
 µ --> infinity  
 Px = Ix =  f(dx / dz)   
and Py = Iy =  f(dy / dz) 
 
Since the parameters V0x, V0y and V0z select between different 3D lines, the above equations indicate 
that all these parallel lines pass through one point in the 2D space with vanishing point [Ix,Iy] which 
is a function only of the 3D direction of the lines.  The equations also show that lines which are 
parallel to the projection plane are projected as parallel lines in which case their vanishing point is at 
infinity. All these calculations assumed that the centre of projection is located at the origin and the 
projection plane is at z=f.  The vanishing point technique is illustrated in Diagram 2.8. 
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