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Lecture 3: Transformations of 3D Worlds 
 
In the last lecture we defined objects by specifying the coordinates of their vertices in some 
Cartesian space. We also introduced a canonical form for perspective projection, namely that we 
view the scene from the origin looking along the z axis. However, we need to be able to view our 
graphical objects from any arbitrary position that we choose. This means that we would like to 
change the coordinates of every point in the scene, such that some chosen viewpoint C = 
[Cx,Cy,Cz] is the origin and some view direction d = [dx,dy,dz] is the Z axis. Frequently, we may 
want to transform the points of a graphical scene for other purposes such as generation of special 
effects in pictures, like rotating objects. Transformations of this kind are achieved by multiplying 
every point of the scene by a transformation matrix. Unfortunately however, we cannot do all we 
need to do using normal Cartesian coordinates, and for that reason we now introduce a system 
called homogeneous coordinates.  Three dimensional points expressed in homogeneous form have 
a fourth ordinate: 
 P = [px, py, pz,s] 
The fourth ordinate is a scale factor, and conversion to Cartesian form is achieved by dividing it 
into the other ordinates, so  

[px, py, pz,s]     has Cartesian coordinate equivalent    [px/s, py/s, pz/s].  
In most cases, s will be 1. The point of introducing homogenous coordinates is to allow us to 
translate the points of a scene by using matrix multiplication. This is achieved as follows: 

The matrix for scaling a graphical scene is also easily expressed in homogenous form: 

 
Notice that these two transformations are not commutative, and it is essential that they are carried 
out in the correct order. Diagram 3.1 illustrates the problem for a simple picture.  

[x, y, z, 1] sx 0 0 0   = [sx*x, sy*y, sz*z, 1]
0 sy 0 0
0 0 sz 0
0 0 0 1
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Diagram 3.1: The order in which
transforamtions are applied is significant

[ x, y, z, 1] 1 0 0 0 = [x+tx, y+ty, z+tz, 1 ]
0 1 0 0
0 0 1 0
tx ty tz 1
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Rotation however has to be treated differently since we need to specify an axis. The matrices for 
rotation about the three Cartesian axes are: 
 

 
Some care is required with the signs. The above formulation obeys the conventions of a left hand 
axis system. That is, if the positive y-axis is taken as vertical, and the positive x-axis horizontal to 
the right, the positive z-axis is into the page. In these cases, rotation is in a clockwise direction 

when viewed from the positive side of the axis, or vice versa, anti-clockwise when viewed from 
the negative side of the axis. The derivation of the RRzz matrix is shown in Diagram 3.2 the others 
may be proved similarly.  
 
Inversions of these matrices can be computed easily, without recourse to Gaussian elimination, by 
considering the meaning of each transformation. For scaling, we substitute 1/sx for sx, 1/ sy for sy 
and 1/ sz for sz to invert the scaling. For translation we substitute -tx for tx, - ty for ty and - tz for tz. 
For the rotation matrices we note that: 
 Cos(-θ) = Cos(θ) and Sin(-θ) = -Sin(θ) 
Hence to invert the matrix we simply change the sign of the Sin terms. 
 
Flying Sequences 
We will now consider the most important application of scene transformation. In any viewer 
centered application, such as a flight simulator or a computer game, we need to view the scene 
from a moving position. As the viewpoint changes we transform all the coordinates of the scene 
such that the viewpoint is the origin and the view direction is the z axis, before drawing the scene. 
Let us suppose that, in the coordinate system in which the scene is defined we wish to view it from 

RRxx = 1 0 0 0 RRyy = Cos(θ) 0 -Sin(θ) 0
0 Cos(θ) Sin(θ) 0 0 1 0 0
0 -Sin(θ) Cos(θ) 0 Sin(θ) 0 Cos(θ) 0
0 0 0 1 0 0 0 1

RRz = Cos(θ) Sin(θ) 0 0
-Sin(θ) Cos(θ) 0 0

0 0 1 0
0 0 0 1

Diagram 3.2: Derivation of the Rotation Matrix
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the point L = [Lx,Ly,Lz], looking along the direction d = [dx,dy,dz]. The first step is to move the 
origin to L for which we use the transformation matrix AA. Following this, we wish to rotate about 
the y-axis so that d lies in the plane x=0. Using the fact that d is defined by the co-ordinates [dx dy 
dz] and using the notation v2 = dx

2 + dz
2  this is done by matrix BB: 

 

Notice that we have avoided computing the Cos and Sin functions for this rotation by use of the 
direction cosine. To get the direction vector lying along the z axis a further rotation is needed. This 
time it is about the x axis using matrix CC. The different steps of the process are illustrated by 

Diagram 3.3 
 
 
Finally the transformation matrices are combined into one, and each point of the scene is 
transformed. 
 
TT = AA  *  BB  *  CC        
and so for all the points      
P = P * TT 
 

TT = AA  *    BB  *CC 
 

AA = 1 0 0 0 BB = dz/v 0 dx/v 0
0 1 0 0 0 1 0 0
0 0 1 0 - dx/v 0 dz/v 0

-Lx - Ly - Lz 1 0 0 0 1
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Cos ψ = √(dx*dx+dz*dz)/|d|
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CC = 1 0 0 0
0 v dy 0
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Projection by Matrix Multiplication 
If we use homogeneous co-ordinates then it is also possible to express  projection by the 
multiplication of a projection matrix. Placing the centre of projection at the origin and using z=f as 
the projection plane gives us matrix MMp for perspective projection. Matrix MMo is for orthographic 
projection: 
 

It is not immediately obvious that matrix MMp produces the correct perspective projection. Let us 
transform an arbitrary point V with homogeneous co-ordinates [x, y, z, 1] by using matrix 
multiplication. For the projected point P we get 
 P = V * MMp= [x, y, z, z/f] 
This point may be all right in four dimensions but it is not in a correct form for a 3D point. 
Homogeneous co-ordinates are defined as the perspective projection in 4D space to the h=1 sphere 
where h is the fourth co-ordinate (P = [x, y, z, h]). We use the same projection rules for h we used 
for z in 3D, i.e., we divide all three co-ordinates by the value of the h co-ordinate and we get: 
 PH = [x*f/z, y*f/z, f, 1] 
which is the correct answer. It is interesting to note that the projection matrix is obviously a 
singular matrix (it has a row of zeros) and, therefore, it has no inverse. This must be so because it 
is impossible to reconstruct a 3D object from its 2D projection without other information. 
Projections can of course be combined with the other matrices. Indeed the popularity of the 
orthographic projection is that it simplifies the amount of calculations since the z row and column 
fall to zero. Although a simplification applies when the perspective projection is used, there is also 
the need to normalise the resulting homogenous coordinates, and this adds to the computation 
time. 

MMp= 1 0 0 0 MMo= 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 1/f 0 0 0 0
0 0 0 0 0 0 0 1


