

Introduction to Graphics – Lecture 3: Transformations of 3D Worlds Page: 1

Lecture 3: Transformations of 3D Worlds

In the last lecture we defined objects by specifying the coordinates of their vertices in some
Cartesian space. We also introduced a canonical form for perspective projection, namely that we
view the scene from the origin looking along the z axis. However, we need to be able to view our
graphical objects from any arbitrary position that we choose. This means that we would like to
change the coordinates of every point in the scene, such that some chosen viewpoint C =
[Cx,Cy,Cz] is the origin and some view direction d = [dx,dy,dz] is the Z axis. Frequently, we may
want to transform the points of a graphical scene for other purposes such as generation of special
effects in pictures, like rotating objects. Transformations of this kind are achieved by multiplying
every point of the scene by a transformation matrix. Unfortunately however, we cannot do all we
need to do using normal Cartesian coordinates, and for that reason we now introduce a system
called homogeneous coordinates. Three dimensional points expressed in homogeneous form have
a fourth ordinate:
 P = [px, py, pz,s]
The fourth ordinate is a scale factor, and conversion to Cartesian form is achieved by dividing it
into the other ordinates, so

[px, py, pz,s] has Cartesian coordinate equivalent [px/s, py/s, pz/s].
In most cases, s will be 1. The point of introducing homogenous coordinates is to allow us to
translate the points of a scene by using matrix multiplication. This is achieved as follows:

The matrix for scaling a graphical scene is also easily expressed in homogenous form:

Notice that these two transformations are not commutative, and it is essential that they are carried
out in the correct order. Diagram 3.1 illustrates the problem for a simple picture.

[x, y, z, 1] sx 0 0 0 = [sx*x, sy*y, sz*z, 1]
0 sy 0 0
0 0 sz 0
0 0 0 1

Y

X

Y

X

Y

X

Graphics Scene
(Square at origin)

Translate
x:=x+1

Scale
x:=x*2

Scale
x:=x*2

Translate
x:=x+1

Y

X

Y

X

Diagram 3.1: The order in which
transforamtions are applied is significant

[x, y, z, 1] 1 0 0 0 = [x+tx, y+ty, z+tz, 1]
0 1 0 0
0 0 1 0
tx ty tz 1

Introduction to Graphics – Lecture 3: Transformations of 3D Worlds Page: 2

Rotation however has to be treated differently since we need to specify an axis. The matrices for
rotation about the three Cartesian axes are:

Some care is required with the signs. The above formulation obeys the conventions of a left hand
axis system. That is, if the positive y-axis is taken as vertical, and the positive x-axis horizontal to
the right, the positive z-axis is into the page. In these cases, rotation is in a clockwise direction

when viewed from the positive side of the axis, or vice versa, anti-clockwise when viewed from
the negative side of the axis. The derivation of the RRzz matrix is shown in Diagram 3.2 the others
may be proved similarly.

Inversions of these matrices can be computed easily, without recourse to Gaussian elimination, by
considering the meaning of each transformation. For scaling, we substitute 1/sx for sx, 1/ sy for sy
and 1/ sz for sz to invert the scaling. For translation we substitute -tx for tx, - ty for ty and - tz for tz.
For the rotation matrices we note that:
 Cos(-θ) = Cos(θ) and Sin(-θ) = -Sin(θ)
Hence to invert the matrix we simply change the sign of the Sin terms.

Flying Sequences
We will now consider the most important application of scene transformation. In any viewer
centered application, such as a flight simulator or a computer game, we need to view the scene
from a moving position. As the viewpoint changes we transform all the coordinates of the scene
such that the viewpoint is the origin and the view direction is the z axis, before drawing the scene.
Let us suppose that, in the coordinate system in which the scene is defined we wish to view it from

RRxx = 1 0 0 0 RRyy = Cos(θ) 0 -Sin(θ) 0
0 Cos(θ) Sin(θ) 0 0 1 0 0
0 -Sin(θ) Cos(θ) 0 Sin(θ) 0 Cos(θ) 0
0 0 0 1 0 0 0 1

RRz = Cos(θ) Sin(θ) 0 0
-Sin(θ) Cos(θ) 0 0

0 0 1 0
0 0 0 1

Diagram 3.2: Derivation of the Rotation Matrix

Rotate by θ
r

r
θ

φ

[X,Y]

[X', Y']Y

X

[X,Y] = [r Cosφ, r Sinφ]
[X',Y'] = [r Cos(θ+φ) , r Sin(θ+φ)]

= [r Cosφ Cosθ - rSinφ Sinθ, rSinφCosθ + rCosφSinθ]
= [X Cosθ -Y Sinθ, YCosθ + XSinθ]
= [X Y] Cosθ Sinθ

-Sinθ Cosθ

Introduction to Graphics – Lecture 3: Transformations of 3D Worlds Page: 3

the point L = [Lx,Ly,Lz], looking along the direction d = [dx,dy,dz]. The first step is to move the
origin to L for which we use the transformation matrix AA. Following this, we wish to rotate about
the y-axis so that d lies in the plane x=0. Using the fact that d is defined by the co-ordinates [dx dy
dz] and using the notation v2 = dx

2 + dz
2 this is done by matrix BB:

Notice that we have avoided computing the Cos and Sin functions for this rotation by use of the
direction cosine. To get the direction vector lying along the z axis a further rotation is needed. This
time it is about the x axis using matrix CC. The different steps of the process are illustrated by

Diagram 3.3

Finally the transformation matrices are combined into one, and each point of the scene is
transformed.

TT = AA * BB * CC
and so for all the points
P = P * TT

TT = AA * BB *CC

AA = 1 0 0 0 BB = dz/v 0 dx/v 0
0 1 0 0 0 1 0 0
0 0 1 0 - dx/v 0 dz/v 0

-Lx - Ly - Lz 1 0 0 0 1

ψ

dy

Z

Y

|d|=1

Diagram 3.3
Transformation of the

viewpoint

y
z

x

d

L y
z

x

d

Viewing direction

Step 1: Move origin to the required viewpoint Step 3: Rotate about X

Cos ψ = √(dx*dx+dz*dz)/|d|
Sin ψ = dy/|d| = dy

Step 2: Rotate about Y

θ

dz

dx
X

Z

Cos θ= dz/√(dx*dx + dz*dz)
Sin θ = dx/√(dx*dx + dz*dz)

CC = 1 0 0 0
0 v dy 0
0 -dy v 0
0 0 0 1

Introduction to Graphics – Lecture 3: Transformations of 3D Worlds Page: 4

Projection by Matrix Multiplication
If we use homogeneous co-ordinates then it is also possible to express projection by the
multiplication of a projection matrix. Placing the centre of projection at the origin and using z=f as
the projection plane gives us matrix MMp for perspective projection. Matrix MMo is for orthographic
projection:

It is not immediately obvious that matrix MMp produces the correct perspective projection. Let us
transform an arbitrary point V with homogeneous co-ordinates [x, y, z, 1] by using matrix
multiplication. For the projected point P we get
 P = V * MMp= [x, y, z, z/f]
This point may be all right in four dimensions but it is not in a correct form for a 3D point.
Homogeneous co-ordinates are defined as the perspective projection in 4D space to the h=1 sphere
where h is the fourth co-ordinate (P = [x, y, z, h]). We use the same projection rules for h we used
for z in 3D, i.e., we divide all three co-ordinates by the value of the h co-ordinate and we get:
 PH = [x*f/z, y*f/z, f, 1]
which is the correct answer. It is interesting to note that the projection matrix is obviously a
singular matrix (it has a row of zeros) and, therefore, it has no inverse. This must be so because it
is impossible to reconstruct a 3D object from its 2D projection without other information.
Projections can of course be combined with the other matrices. Indeed the popularity of the
orthographic projection is that it simplifies the amount of calculations since the z row and column
fall to zero. Although a simplification applies when the perspective projection is used, there is also
the need to normalise the resulting homogenous coordinates, and this adds to the computation
time.

MMp= 1 0 0 0 MMo= 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 1/f 0 0 0 0
0 0 0 0 0 0 0 1

