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Lecture 4: More Transforms and Homogenous Coordinates 
 In the previous lecture we discussed three transformations, translation, scaling and rotation, and 
noted that these are all affine, in other words they preserve parallelism and linearity. We also saw that 
orthographic projection and perspective projection could be defined in terms of matix transformations, and 
combined with the other transforms in a consistent system, though the projections were not invertable. 
Perspective projection is clearly not affine since it does not preserve parallelism. We will add to our list of 
transformations two further ones which are not so common, but could be used for special effects.  
 The first is reflection, which in its simplest form could be considered equivalent to a negative 
scaling. We can define three matrices for the reflections in the planes x=0,y=0 and z=0 respectively. These 
are trivially: 

 And we can derive a matrix for reflection in a general plane n•p = k using the same method that we 
used for rotation about an arbitrary line, and for the flying sequences. In other words, we do a translation of 
the points such that the plane of reflection goes through the origin, and then two rotations so that the normal 
vector is lined up with one of the coordinate axes. The reflection is then done with one of the above 
matrices and the inverse transformations applied to return the objects to the correct place in the 3D space. It 
will be seen that reflection is affine. 
 The second transformation is shear. Shears are most easily understood if applied as a deformation 
to one axis at a time. For example, we can apply shear to x only using the matrix: 
 
 

This will have the effect of distorting a 
cube as shown in Diagram 4.1. Any 
points on the x axis remain unchanged, 
and if b=0, the base of the cube, sitting 
on the x-z plane, remains unchanged while the top face is translated in the x direction by a distance a*y. In 
this simple case the transformation is affine. Similarly, if a=0 we shear the cube in the z direction, and the 
transformation is still affine, however, if both a and b are non-zero, then we get a more complex distortion 
in which the parallel lines are destroyed. The effect of shear is dependent on the distance from the origin. 
Homogenous coordinates 
 We now take a second look at homogeneous coordinates, and their relation to vectors. In the 
previous lecture we described the fourth ordinate as a scale factor, and ensured that, with the exception of 
the projection transformation, the last ordinate was always normalised to 1.  As an alternative, we can 
consider the fourth ordinate as indicating a type as follows. Informally we acknowledge that a normal 
Cartesian coordinate is a special form of vector, which we call a position vector, and usually denote using 
capital letters. Hence, we can say that a normalised homogenous coordinate is the same as a position vector.  
 By contrast, if we consider the case where the last ordinate is zero - [x,y,z,0] - we find that we 
cannot normalise this coordinate in the usual way because of the divide by zero, so clearly a homogenous 
coordinate of this form cannot be directly associated with a point in Cartesian space. However, it still 
contains information in the relative sizes of x y and z, and hence we can consider it to be a direction vector. 
Thus homogenous coordinates fall into two classes, those with the final ordinate non-zero, which can be 
normalised into position vectors, and those with zero in the final ordinate which are direction vectors, and 
which also have direction magnitude. 
 Consider now how vector addition works with these definitions. If we add two direction vectors, we 
add the ordinates as before and we obtain a direction vector. ie: 

-1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 -1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 -1 0
0 0 0 1 0 0 0 1 0 0 0 1

1 0 0 0
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0 0 0 1
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Diagram 4.1 The shear transformation
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[xi,yi,zi,0] + [xj,yj,zj,0] = [xi+xj, yi+yj, zi+zj,0] 
This is the normal vector addition rule which operates independently of Cartesian space. However, if we 
add a direction vector to a position vector we obtain a position vector or point: 
[Xi,Yi,Zi,1] + [xj,yj,zj,0] = [Xi+xj,Yi+yj,Zi+zj,1] 
This is a nice result, because it ties in with our definition of a straight line in cartesian space being defined 
by a one point and a direction as shown in Diagram 4.2. 

Now, consider a general affine transformation matrix. We ignore the possibility of doing 
perspective projection or shear, so that the last column will always be [0,0,0,1]T, and the matrix will be of 
the form shown in diagram 4.3, with the rows viewed as three direction vectors and a position vector. We 
ask what the individual rows mean, and to see this we consider the effect of the transformation  in simple 
cases. For example take the unit vectors along the Cartesian axes eg: 

In other words the direction vector of the top row represents the direction in which the x axis points after 
transformation, and similarly we find that j= [0,1,0,0] will be transformed to direction [rx,ry,rz,0] and k = 
[0,0,1,0] will be transformed to [sx,sy,sz,0]. Similarly, we can see the effect of the bottom row by 
considering the transformation of the origin which has homogeneous coordinate [0,0,0,1]. This will be 
transformed to [Tx,Ty,Tz,1].  Notice also that the zero in the last ordinate ensures that direction vectors will 
not be affected by the translation, whereas all position vectors will be moved by the same factor. Notice 
also that if we do not shear the object the three vectors q r and s will remain orthogonal so that q•r = r•s = 
q•s = 0.  
 Unfortunately however, this analysis does not help us to determine the transformation matrix. In 
general it would be more natural to assume that we know the vectors u,v, and w which we would like to 
transform into the Cartesian axes i,j,k. This is the case when for example we are transforming a scene 
before viewing it in the normal position for computing a projection, that is with the viewpoint at the origin 
and the viewing direction along the z axis. In this case we need to use the notion of the dot product as a 
projection onto a line. This is most readily seen in two dimensions as indicated in Diagram 4.4.  By 
dropping perpendiculars from the point P to the line defined by vector u and vector v we see that the 
distances from the origin are respectively P•u and P•v. Now, suppose that we wish to rotate the scene so 
that the new x and y axes were the u and v vectors, then the x ordinate would be defined by P•u and the y 
by P•v. 

Diagram 4.2 Adding a direction
vector to a position vector
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Diagram 4.3 The composition of an
affine transformation matrix

qx qy qz 0
rx ry rz 0
sx sy sz 0
Tx Ty Tz 1

[1,0,0,0] qx qy qz 0 =     [qx, qy, qz, 0]
rx ry rz 0
sx sy sz 0
Tx Ty Tz 1
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The generalisation of the result is shown in Diagram 4.5 where the transformation of P into the {u,v,w} axis 
system, translated by vector C, is given by: 
 P'x = (P-C)•u 
 P'y = (P-C)•v 
 P'z = (P-C)•w 
Expressing this as a transformation matrix we get: 
 

 
You could verify this by checking that the transformation we developed for a flying system does indeed 
have the direction vector [dx,dy,dz] as its third column. 
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Diagram 4.4
The dot product as a projection
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Diagram 4.5
Change of axes using the dot product

ux vx wx 0
uy vy wy 0
uz vz wz 0

-C•u -C•v -C•w 1


