

Introduction to Graphics - Lecture 7: Hidden Line Removal Page: 1

Lecture 7: Hidden Line Removal
This lecture concerns the removal of hidden lines from wire frame models seen in perspective projection.
We will assume that the data describing the scene is organised in such a way that the topological
information can be obtained. In other words, we set up a list of the 'faces' or 'facets' of the objects in the
scene. Each 'face' record is comprised of a list of 'lines', and each line record is an index to a pair of points.
The topological information can be stored either by means of pointer structures or in arrays. Algorithms of
this kind are appropriate for line drawings (e.g. for architectural visualisation) or for engineering
drawings where the hidden lines may be shown as feint or dotted lines. They are generally faster
than the painter's algorithm and z buffer algorithm introduced below.

Hidden Parts
 In the previous lectures, we
have considered only wire frame
models, whereby a scene is depicted
by drawing only its edges. For
animations, the polygons represent
solid objects (like the wall of a
building), and each face is usually
opaque. This leads to the problem of
removing the hidden parts of a
polygon. The simplest, though not the
most efficient algorithm for doing this
is to draw the polygons in the order of
their distance from the viewer. As each
polygon is filled with a colour, the
parts of those already drawn are
occluded by the new polygon. In order to do this, it is necessary to transform all the vertices of the
scene to the viewing coordinate system, in which the viewpoint is the origin and the view direction
is the positive z axis. Then, the order of the polygons is sorted according to the smallest z
coordinate of the vertices. This simple algorithm will fail on certain cases of overlapping (shown
in Diagram 6.4). It will be very inefficient in cases where there are many polygons in a scene that
extends far into the distance.
 A better method is the Z buffer, which is commonly available in hardware. At each pixel a
record is kept of the z distance of the polygon that is currently shown. Each distance is initialised
to a high value before starting. When a new polygon is being drawn, a check is made at each pixel
to see whether it nearer than the polygon currently shown, and the pixel is only set if it is. If the
polygons are sorted into order, and drawn starting with the nearest to the viewpoint, then drawing
can stop as soon as all the pixels have been set. Alternatively, the Z buffer can be used without
sorting. Providing that all the polygons are processed, the drawing can be done in any order.

Single Convex Objects
For a single convex object it is easy to verify that if any point on a face is obscured, the whole face
cannot be seen. Thus we need simply test each face for visibility and if the test is successful, then
draw all the lines of that face. The simplest test is to make use of the half space property of planes,
namely that for a plane with equation f(x,y,z)=0, all points on one side of the plane will have
positive f(xi,yi,zi) and all points on the other side of the plane will have negative f(xj,yj,zj).
Suppose we know an internal point of the convex object, [xi,yi,zi]. If that point is on the same side
of the plane of the face as the viewpoint, then the face must be obscured. This gives us a simple
pseudocode algorithm:
 <* find an internal point by averaging the vertices *>
 for <*each face of the object *>

Diagram 7.1: Failing case for the painter's algorithm

Introduction to Graphics - Lecture 7: Hidden Line Removal Page: 2

 <* find the plane equation ax + by + cz + d = 0 i.e. f(x,y,z)=0 *>
 <* for the viewpoint find sign(f(0,0,0)) which is the sign of d *>
 <* for a point inside the object find sign(f(xi,yi,zi))*>
 if sign(f(0,0,0)) not equal to sign(f(xi,yi,zi))
 then <*draw all the edges of the face *>
 end if
 end for;
Note that:
(i) An internal point may be found by taking the average of all the vertices of a convex object. It
would increase efficiency to compute and store it with the other points in the data structure. It can
be transformed in the same way as the vertices when changing the viewpoint.
(ii) The plane equation parameters a,b,c,d can be found from three vertices of a face V1,V2,V3.
Two vectors on the plane are p1 = V1-V2 and p2 = V1 - V3. The vector product gives the normal
to the plane n = p1xp2 = [a,b,c]. Having thus found a b and c we re-arrange the equation into the
form d = -ax - by - cz, and by substituting any one vertex into the equation we can calculate d.

Multiple convex objects and/or concave objects.
With concave objects we must compare every line making up the scene with every object face, and
determine what part of the line (if any)
is obscured by the face. A
complication comes from the fact that
the visible parts of a line will not
necessarily be continuous. Thus, the
line being tested will need to be
represented by a list of line segments.
For simplicity we will assume that all
the faces are convex polygons, giving
the possibilities shown in Diagram 7.2.
We will consider later how to extend
the algorithm to avoid this restriction.

for <*each line of the scene*>
 <*set up a list of line segments (this initial list will have just one item on it) *>
 for <*each face of each object*>
 for <*each line segment on the list*>
 <* compute all intersection points between the line segment and the face's edges *>
 if <* no intersections *>
 then if <*both points inside the polygon *>
 then if <* the face obscures the line segment *>
 then <* delete the line segment from the list *>
 end if
 end if
 end if
 if <*one intersection*>
 then <* find which part of the line is inside the polygon *>
 if <*the face obscures the contained part of the line*>
 then <* replace the line segment being tested with the visible part *>
 end if
 end if
 if <*two intersections*>
 then if <* the face obscures the inner part of the line (between the intersections)*>

Diagram 7.2:
Intersections between lines and faces

Case 1: No intersections
(two possibilities)

Case 2: One intersection

Case 3: Two Intersections

Introduction to Graphics - Lecture 7: Hidden Line Removal Page: 3

 then <* replace the line segment being tested with the outer two segments *>
 end if
 end if
 end for
 end for
 <* draw all line segments that remain on the list (if any) *>
end for

Notes:
(i) This algorithm is partly computed in object space (3D), and partly in image space (2D). For
efficiency, it is possible to precompute the projection of each point of the scene and store it in the
data structure along with the 3D data.
(ii) To compute the intersections between the polygon edges and the line segment being tested we
equate the two equations:
 line segment: p = µ p2 + (1-µ) p1
 face edge: p = ν p4 + (1-ν) p3
 at intersection: µ p2 + (1-µ) p1 = ν p4 + (1-ν) p3
when separated into the x and y components we have two equations to solve for µ and ν. It will be
necessary to test for the case of the two lines being parallel before solving for the intersection.
Having solved for µ and ν it is necessary to check that the intersection is on the line segment and
on the edge, that is that µ and ν are in the range [0..1]. Care is also needed in the case where a line
intersects at a vertex, i.e. when ν=0 or when ν=1. There is a remote possibility that the intersection
is counted twice, and the condition for an intersection should therefore be written 0<ν<=1.
(iii) When testing whether a polygon obscures a part of a line it is necessary to use the three
dimensional data. We need to find a three dimensional point on the line segment being tested.
Unfortunately a general point on a line in 3D space (pi+µ(pj-pi)) does not project to the point
(pi'+µ(pj'-pi')) in two dimensions. So the only way we can be sure we are looking at the right part
of the line in 3D is to invert the perspective projection. Suppose that the mid-point of the line
segment that we are testing in 2 dimensions is m. This is the projected point in 2D, and it will have
a coordinate in the form (x,y,f) where f is the focal length of the perspective projection. In three
dimensional space the points pi and pj are the end points of the corresponding line (i.e. the 3D
vertices of the object). Then, the corresponding point to m in 3D is given by the intersection of the
two lines:
 object edge: p = µ p2 + (1-µ) p1
 projector: p = ν m
 at intersection:µ p2 + (1-µ) p1 = ν m
which we can solve for µ, ν and hence p as above. Note that this time there is a valid intersection if
0<µ<1 and ν>0, and there should always be a valid intersection.
Having solved for p, we now determine whether the viewpoint and point p are on the same side of
the plane of the face using the same method that was applied for single convex objects (above). If
they are on different sides, the face obscures the line segment.

