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Lecture 7: Hidden Line Removal 
This lecture concerns the removal of hidden lines from wire frame models seen in perspective projection. 
We will assume that the data describing the scene is organised in such a way that the topological 
information can be obtained. In other words, we set up a list of the 'faces' or 'facets' of the objects in the 
scene. Each 'face' record is comprised of a list of 'lines', and each line record is an index to a pair of points. 
The topological information can be stored either by means of pointer structures or in arrays. Algorithms of 
this kind are appropriate for line drawings (e.g. for architectural visualisation) or for engineering 
drawings where the hidden lines may be shown as feint or dotted lines. They are generally faster 
than the painter's algorithm and z buffer algorithm introduced below. 
 
Hidden Parts 
 In the previous lectures, we 
have considered only wire frame 
models, whereby a scene is depicted 
by drawing only its edges. For 
animations, the polygons represent 
solid objects (like the wall of a 
building), and each face is usually 
opaque. This leads to the problem of 
removing the hidden parts of a 
polygon. The simplest, though not the 
most efficient algorithm for doing this 
is to draw the polygons in the order of 
their distance from the viewer. As each 
polygon is filled with a colour, the 
parts of those already drawn are 
occluded by the new polygon.  In order to do this, it is necessary to transform all the vertices of the 
scene to the viewing coordinate system, in which the viewpoint is the origin and the view direction 
is the positive z axis. Then, the order of the polygons is sorted according to the smallest z 
coordinate of the vertices. This simple algorithm will fail on certain cases of overlapping (shown 
in Diagram 6.4). It will be very inefficient in cases where there are many polygons in a scene that 
extends far into the distance.  
 A better method is the Z buffer, which is commonly available in hardware. At each pixel a 
record is kept of the z distance of the polygon that is currently shown. Each distance is initialised 
to a high value before starting. When a new polygon is being drawn, a check is made at each pixel 
to see whether it nearer than the polygon currently shown, and the pixel is only set if it is. If the 
polygons are sorted into order, and drawn starting with the nearest to the viewpoint, then drawing 
can stop as soon as all the pixels have been set. Alternatively, the Z buffer can be used without 
sorting. Providing that all the polygons are processed, the drawing can be done in any order. 
 
Single Convex Objects 
For a single convex object it is easy to verify that if any point on a face is obscured, the whole face 
cannot be seen. Thus we need simply test each face for visibility and if the test is successful, then 
draw all the lines of that face. The simplest test is to make use of the half space property of planes, 
namely that for a plane with equation f(x,y,z)=0, all points on one side of the plane will have 
positive f(xi,yi,zi) and all points on the other side of the plane will have negative f(xj,yj,zj). 
Suppose we know an internal point of the convex object, [xi,yi,zi]. If that point is on the same side 
of the plane of the face as the viewpoint, then the face must be obscured.  This gives us a simple 
pseudocode algorithm: 
      <* find an internal point by averaging the vertices *> 
 for <*each face of the object *> 

 

Diagram 7.1: Failing case for the painter's algorithm
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  <* find the plane equation ax + by + cz + d = 0  i.e. f(x,y,z)=0 *> 
  <* for the viewpoint find sign(f(0,0,0)) which is the sign of d *> 
  <* for a point inside the object find sign(f(xi,yi,zi) )*> 
  if sign(f(0,0,0)) not equal to  sign(f(xi,yi,zi)) 
  then  <*draw all the edges of the face *> 
   end if 
 end for; 
Note that: 
(i) An internal point may be found by taking the average of all the vertices of a convex object. It 
would increase efficiency to compute and store it with the other points in the data structure. It can 
be transformed in the same way as the vertices when changing the viewpoint. 
(ii) The plane equation parameters a,b,c,d can be found from three vertices of a face V1,V2,V3. 
Two vectors on the plane are p1 = V1-V2 and p2 = V1 - V3. The vector product gives the normal 
to the plane n = p1xp2 = [a,b,c]. Having thus found a b and c we re-arrange the equation into the 
form d = -ax - by - cz, and by substituting any one vertex into the equation we can calculate d. 
 
Multiple convex objects and/or concave objects. 
With concave objects we must compare every line making up the scene with every object face, and 
determine what part of the line (if any) 
is obscured by the face. A 
complication comes from the fact that 
the visible parts of a line will not 
necessarily be continuous. Thus, the 
line being tested will need to be 
represented by a list of line segments. 
For simplicity we will assume that all 
the faces are convex polygons, giving 
the possibilities shown in Diagram 7.2. 
We will consider later how to extend 
the algorithm to avoid this restriction. 

 
for <*each line of the scene*> 
 <*set up a list of line segments (this initial list will have just one item on it) *> 
 for <*each face of each object*> 
 for <*each line segment on the list*> 
  <* compute all intersection points between the line segment and the face's edges *> 
  if <* no intersections *> 
  then if <*both points inside the polygon *> 
    then  if  <* the face obscures the line segment *> 
     then <* delete the line segment from the list *> 
     end if 
    end if 
  end if 
  if <*one intersection*> 
  then <* find which part of the line is inside the polygon *> 
    if <*the face obscures the contained part of the line*> 
    then <* replace the line segment being tested with the visible part *> 
    end if 
  end if 
  if <*two intersections*> 
  then if <* the face obscures the inner part of the line (between the intersections)*> 

 

Diagram 7.2: 
Intersections between lines and faces

Case 1: No intersections  
(two possibilities) 

Case 2: One intersection   

Case 3: Two Intersections 
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    then <* replace the line segment being tested with the outer two segments *> 
    end if 
  end if 
 end for 
 end for 
 <* draw all line segments that remain on the list (if any) *> 
end for 

Notes: 
(i) This algorithm is partly computed in object space (3D), and partly in image space (2D).  For 
efficiency, it is possible to precompute the projection of each point of the scene and store it in the 
data structure along with the 3D data. 
(ii) To compute the intersections between the polygon edges and the line segment being tested we 
equate the two equations: 
 line segment: p = µ p2 + (1-µ) p1 
 face edge: p = ν p4 + (1-ν) p3 
 at intersection: µ p2 + (1-µ) p1 =  ν p4 + (1-ν) p3 
when separated into the x and y components we have two equations to solve for µ and ν. It will be 
necessary to test for the case of the two lines being parallel before solving for the intersection. 
Having solved for µ and ν it is necessary to check that the intersection is on the line segment and 
on the edge, that is that µ and ν are in the range [0..1]. Care is also needed in the case where a line 
intersects at a vertex, i.e. when ν=0 or when ν=1. There is a remote possibility that the intersection 
is counted twice, and the condition for an intersection should therefore be written 0<ν<=1. 
(iii) When testing whether a polygon obscures a part of a line it is necessary to use the three 
dimensional data. We need to find a three dimensional point on the line segment being tested. 
Unfortunately a general point on a line in 3D space (pi+µ(pj-pi)) does not project to the point  
(pi'+µ(pj'-pi')) in two dimensions. So the only way we can be sure we are looking at the right part 
of the line in 3D is to invert the perspective projection. Suppose that the mid-point of the line 
segment that we are testing in 2 dimensions is m. This is the projected point in 2D, and it will have 
a coordinate in the form (x,y,f) where f is the focal length of the perspective projection. In three 
dimensional space the points pi and pj are the end points of the corresponding line (i.e. the 3D 
vertices of the object). Then, the corresponding point to m in 3D is given by the intersection of the 
two lines: 
 object edge: p = µ p2 + (1-µ) p1 
 projector: p = ν m 
 at intersection:µ p2 + (1-µ) p1 = ν m 
which we can solve for µ, ν and hence p as above. Note that this time there is a valid intersection if 
0<µ<1 and ν>0, and there should always be a valid intersection. 
Having solved for p, we now determine whether the viewpoint and point p are on the same side of 
the plane of the face using the same method that was applied for single convex objects (above). If 
they are on different sides, the face obscures the line segment. 
 


