

Introduction to Graphics – Lecture 8: Polygon Rendering Page: 1

Lecture 8: Polygon Rendering

We have now covered most of
the basic tools required to put
together a simple graphics
application, and so we will
consider the example of a
video game based on polygon
rendering. The basic outline is
expressed by the data flow
diagram shown in diagram 8.1.
To create the impression of a
smooth movement it is
necessary to generate at least
ten frames each second, and
even this rate is inadequate for
fast moving objects. Television
produces 25 frames per second.
Polygon maps
 For most applications a graphics model of some sorts can be constructed out of a set of
polygons, and this is the normal practice in computer animation. It is easy to see that simple rectangles

are all that is required to build a crude
representation of, for example, a race
track, since the tarmac, hard shoulders,
fences and grass verges are all flat and
regular. Buildings tend to be rectanguloid
structures, and complex details, are
usually not shown. Usually, the
surrounding terrain is viewed from a
distance. Flat areas can be represented by
rectangles coloured green for grass or
brown for ploughed fields. For rougher
terrain, triangulation is an appropriate
modelling method. A set of grid points is
selected, for example a regular array in x

and z with variable height y, and joined to form triangles as illustrated by Diagram 8.2.
Fractal Landscapes
 Specification of a landscape is a time consuming problem. However, since much of the detail
need not be exact, it is possible
to start with an approximate
triangulated surface, based on a
coarse grid of points, outlining
the main peaks and valleys of
the scene, and refine it
automatically. This refinement
can be done by a number of
processes, of which a typical one
is shown in Diagram 8.3. For
line joining two points in the
original triangulation the mid
point is displaced in a random direction by a random amount. The new mid points are joined up as

Compute
Position &
Direction

Transform
& Project

Model

Draw
Model

Viewpoint,
View Direction

2D Primitives

Pixels

3D Primitives

Diagram 8.1:
Data flow in a Game

Operator
Controls

Computer
Scene
Model

Video
Frame

y
z

x

Diagram 8.2:
Triangulated Landscape

Displace each triangle mid-point Join up to form four new triangles

Diagram 8.3: Creating a fractal landscape

Introduction to Graphics – Lecture 8: Polygon Rendering Page: 2

shown to form four new triangles. These triangles are then processed similarly until the required level
of detail is achieved. This is one example of a fractal, resulting from a chaotic function. These are
iterative functions which neither converge or diverge.

Texture
 One simple and
highly effective way of
increasing the realism of any
polygon based scene is to
use a texture when filling in
the polygons. Texturing is
essentially a mapping
between the texture space,
and the polygon. In the
simplest case, we are
mapping one rectangular
space into another as shown
in Diagram 8.4. In general
however, we need to map
the texture on a general quadrilateral, and this is
done by bi-linear interpolation.

Gouraud Shading
 Another way of achieving improved
realism in animation systems is to use shading
instead of (or sometimes as well as) texture.
This means that the pixel intensities change
across the polygon, though their colour remains
constant. The most common technique is called
Gouraud shading. We will not go into great
depth as to how it works, but in essence it uses
linear interpolation of shade values set at the
vertices of a polygon. Consider the triangle
shown in Diagram 8.5. The desired intensities
(I1, I2, I3) at the three vertices can be set by the
game designer, or calculated using the known
position of the light sources and physical laws,
in particular Lambert's cosine law. Any edge
pixel can be calculated by linear interpolation,

as shown for pixel Ie. Once the intensities at
each edge pixel have been found, the centre
pixels intensities can be found by processing a
series of scan lines as shown in stage 2 of
diagram 8.5.
Computation pipeline
 Animations must produce a succession
of images that change sufficiently fast to give
apparent smooth motion. As we noted above,
the minimum requirement is about 10-15
frames per second. During the frame time it is
necessary to read all the controls, compute

Texture Definition Space
β

α 2α

1.5β

Texture applied to a polygon

Diagam 8.4 Texture Mapping

Diagram 8.5 Gouraud Shading (Image space)

I1

I2

I3

Ie = (d1I3 + d2I1)/(d1+d2)
d1

d2 Stage 1:
Calculating the edge pixels

Ic = (d1If + d2Is)/(d1+d2)

Stage 2:
Calculating the centre pixels

Is If Scan Line d1 d2

I1

I2

I3

Transform

Sort

Clip

Project and Normalise

Render, (texture)

Diagram 8.6: The Graphics Pipeline

Introduction to Graphics – Lecture 8: Polygon Rendering Page: 3

where the viewpoint has moved to, and its new direction, transform the polygons, clip them to the
viewing volume, project them and render them with the appropriate texture. This has traditionally been
achieved with pipeline processing as is shown in principal in diagram 8.6.
 Limitations of Polygon Systems
 There are many limitations of polygon systems, particularly in relation to natural scenes.
Because they have linear boundaries, they cannot represent smooth curves very easily. The eye is very
sensitive to straight line approximations to curves, and to achieve realism on smooth contours, many
polygons are needed. Frequently natural objects cannot be easily decomposed into polygons (or
patches). Consider for example a tree. For simulators which can be used for low flying (eg helicopters)
it is not possible to represent trees with textures, since it is necessary to fly past them. Generally
speaking, the realism in these cases is poor. Amorphous objects, such as fog, clouds, smoke and fire
cause problems. Often flames and smoke can be included by using a series of polygons to overlay the
scene, rather like running a short video in front of the scene. In many cases special purpose tricks are
needed for these effects.

