
1

IG’06 Lecture 1 Page 1/40

S urgical
R obotics &
I maging

Introduction to Graphics

Spring 2006
Fernando Bello – F.Bello@ic.ac.uk

2

IG’06 Lecture 1 Page 2/40

S urgical
R obotics &
I maging

Course Aim
Give a practical introduction to various mathematical methods
employed in Interactive Computer Graphics.

Use of vectors (and matrices!)
Dot product
Cross product
Unit vectors
…

(Refer to Mathematical Methods vectors & matrices notes:
http://www.doc.ic.ac.uk/~jb/teaching/mathematical-methods/)

3

IG’06 Lecture 1 Page 3/40

S urgical
R obotics &
I maging

Course Structure

• 8 Lectures (Mon/Tue wks 5-8)
• 4 Tutorials (Tue after lecture)
• In-course assessment (Issued Wk 8 / hand-in 7 Mar)

4

IG’06 Lecture 1 Page 4/40

S urgical
R obotics &
I maging

Course Overview

1. Graphics Input and Output
2. Worlds in 2D and 3D
3. Transformations of 3D Worlds
4. Introduction to OpenGL
5. More Transforms and Homogeneous Coordinates
6. Manipulation of 3D Objects
7. Polygon Rendering
8. Hidden Line Removal

5

IG’06 Lecture 1 Page 5/40

S urgical
R obotics &
I maging

References
Interactive Computer Graphics
Peter Burger / Duncan Gillies

Introduction to Computer Graphics
J D Foley, A van Dam, S K Feiner, J F Hughes and R L Philips

Computer Graphics, Principles and Practice
J D Foley, A van Dam, S K Feiner, J F Hughes and R L Philips

http://www.opengl.org/documentation/

http://www.opengl.org/resources/

Slide presentations, Notes, Tutorials, etc: ~fernando/MMG/

6

IG’06 Lecture 1 Page 6/40

S urgical
R obotics &
I maging

Mathematical Methods in Computer Graphics

 Lecture 1:

 Graphical Input and Output

7

IG’06 Lecture 1 Page 7/40

S urgical
R obotics &
I maging

Lecture Overview
Why Computer Graphics?
Input Devices
Graphics Output Devices
Raster Graphics
Device Dependent / Independent Graphics
World Coordinate System
Attributes
Normalisation
Viewports

8

IG’06 Lecture 1 Page 8/40

S urgical
R obotics &
I maging

What is computer graphics?
• Creation, Storage and Manipulation of models / images
→ using computers to generate and display images.

• Form, Appearance, Behaviour.
• Issues that arise:

o Modelling (form)
o Rendering (appearance)
o Animation (behaviour)
o …

9

IG’06 Lecture 1 Page 9/40

S urgical
R obotics &
I maging

Applications
• Movies
• Games
• Simulation
• Analysis / Visualisation
• Design
• Etc

10

IG’06 Lecture 1 Page 10/40

S urgical
R obotics &
I maging

Number of frames in the movie 119,592
Number of times the movie was rendered during production 15 (approx.)
Number of feet of approved animation produced in a week 107 ft.
Total number of hours of rendering per week 275,000 hrs.
Average size of the frame rendered 6 MB
Total number of Silicon Graphics servers used for rendering 270
Number of desktop systems used in production 166
Total Number of processors used for rendering 700
Average amount of memory per processor 256 MB
Time it would have taken to render this movie on 1 processor 54 yrs., 222 days, 15 mins., 36 secs.
Amount of storage required for the movie 3.2 TB
Amount of frames kept online at any given time 75000 frames
Time to re-film out final cut beginning to end 41.5 days (997 hrs.)

11

IG’06 Lecture 1 Page 11/40

S urgical
R obotics &
I maging

Medical Example

12

IG’06 Lecture 1 Page 12/40

S urgical
R obotics &
I maging

Input Devices

There are many input devices for computer graphics:

 Mouse
 Joystick
 Button Box
 Digitising Tablet
 Light Pen
 Haptic / Tactile Devices
 etc…

13

IG’06 Lecture 1 Page 13/40

S urgical
R obotics &
I maging

Mouse Position and Visible Markers

The mouse is a device which supplies the computer with
three bytes of information (minimum) at a time:

 Distance Moved in X direction (ticks)
 Distance Moved in Y direction (ticks)
 Button Status

The provision of a visible marker on the screen is done
by software.

14

IG’06 Lecture 1 Page 14/40

S urgical
R obotics &
I maging

Graphics Output Devices
• Graphics output devices are many and diverse.
• Fortunately we don’t need to worry too much about

them
⇒ the OS takes care of many of the details

• It provides us with an Application Programmer’s
Interface (API).

• An API is a set procedures for handling menus
windows and, of course, graphics.

15

IG’06 Lecture 1 Page 15/40

S urgical
R obotics &
I maging

Graphics
Driver

1

Application Programmer's Interface (API)

Graphics
Driver

2

Graphics
Driver

n

Graphics Program

Uniform Graphics Commands

Hardware
Specific
Commands

Operating
System

16

IG’06 Lecture 1 Page 16/40

S urgical
R obotics &
I maging

Device Drivers and The API

• Each graphics adapter has a software driver which is
loaded into the OS.

• The OS provides a set of graphics primitives (API) that
are uniform across all cards

• Unfortunately the API is not standard across systems
(but there are emerging standards e.g. OpenGL)

17

IG’06 Lecture 1 Page 17/40

S urgical
R obotics &
I maging

Raster Graphics

 The most common graphics device is the raster terminal
where the programmer plots points or pixels.

 A typical (API) command might be:

SetPixel(x,y,colour) OpenGL - glColor3f(red,green,blue)

 Where x and y are pixel coordinates.

18

IG’06 Lecture 1 Page 18/40

S urgical
R obotics &
I maging

y

x

Display Device Window for Graphics

Normal meaning for SetPixel(x,y,green)

19

IG’06 Lecture 1 Page 19/40

S urgical
R obotics &
I maging

Storing Images
 Raster Images

 2D Array of memory
 Pixels store different things:

• Intensity (scalar value – float, int)
• RGB Colour (vector value)
• Depth
• Others…

 Have discrete pixel locations and discrete pixel values:

20

IG’06 Lecture 1 Page 20/40

S urgical
R obotics &
I maging

Bits per pixel

• In some cases only one bit is used to represent each
pixel allowing it to be on or off.

• Old systems had only 8 bits per pixel allowing 256
different shades to be represented.

• Today, pixels have 24 or 32 bits allowing representation
of millions of colours.

21

IG’06 Lecture 1 Page 21/40

S urgical
R obotics &
I maging

Pixel Addressing

• Unfortunately not all systems adopt the same pixel
addressing conventions.

• Some have the origin at the top left corner, some
have it at the bottom right hand corner…

22

IG’06 Lecture 1 Page 22/40

S urgical
R obotics &
I maging

y

y
x

x

Diagram 1.2
Pixel addressing conventions vary from system to system

100

50

50

100

23

IG’06 Lecture 1 Page 23/40

S urgical
R obotics &
I maging

Device Independent Graphics

• As a general principle of programming it is best to
minimize dependence on hardware.

• However, graphics programmers frequently use
device features to accelerate their computations.

• Thus there is a conflict of interest between
performance and good programming practice!

24

IG’06 Lecture 1 Page 24/40

S urgical
R obotics &
I maging

Device Dependent Drawing Primitives

 Each OS (API) provides us with the possibility of
drawing graphics at the pixel level.

 In Windows we have:
MoveToEx(hdc xpix, ypix);
LineTo(hdc, xpix, ypix);
TextOut(hdc, xpix, ypix, message, length);

 Hdc: an identifier for the window
 Xpix, ypix: pixel coordinates

25

IG’06 Lecture 1 Page 25/40

S urgical
R obotics &
I maging

Why aim for better device independence?

1. In normal applications we want our pictures to
adjust their size if the window is changed.

2. In graphics-only applications we want our pictures to
be independent of resolution

3. Be able to move graphics applications between
different systems (PC [Win/Linux], MAC, SUN etc.)

26

IG’06 Lecture 1 Page 26/40

S urgical
R obotics &
I maging

World Coordinate System

 To achieve device independence we need to define
a world coordinate system.

 This will define our drawing area in units that are
suited to the application:

 meters
 light years
 microns
 etc

27

IG’06 Lecture 1 Page 27/40

S urgical
R obotics &
I maging

Worlds and Windows

 It is common, but not universal to define the world
coordinates with the command:

 SetWindow(left,bottom,right,top)

 glutInitWindowPosition(x,y)
 glutWindowSize(width,size)
 glutCreateWindow(win)

 Think of this as a window onto the world matching a
window on the screen

OpenGL

28

IG’06 Lecture 1 Page 28/40

S urgical
R obotics &
I maging

SetWindow(Left,Bottom,Right,Top)

left right

bottom

top

World Coordinates

Drawing Area

29

IG’06 Lecture 1 Page 29/40

S urgical
R obotics &
I maging

World Coordinates - Meters Screen Space - Pixels

Note possible distortion issues…

30

IG’06 Lecture 1 Page 30/40

S urgical
R obotics &
I maging

Device independent Graphics Primitives
 Once our world coordinate system is defined, we can

implement drawing primitives to use with it:

 DrawLine(x1,y1,x2,y2);
 DrawCircle(x1,y1,r);
 DrawPolygon(PointArray);
 DrawText(x1,y1,"A Message");

 Normally any part of a graphics object outside the
window is clipped.

31

IG’06 Lecture 1 Page 31/40

S urgical
R obotics &
I maging

SetWindow(30,10,70,50)
DrawLine (50,30,80,50)

30 70

10

50

World Coordinates

Visible part of line

Clipped part of line
Drawing Area

32

IG’06 Lecture 1 Page 32/40

S urgical
R obotics &
I maging

Normalisation
• Need to connect device independent graphics

primitives to device dependent drawing commands.

• This is done by the process of normalisation.

• Translate world coordinates into a set of coordinates
that will be suitable for the OS API.

• This is done by a simple linear transformation.

33

IG’06 Lecture 1 Page 33/40

S urgical
R obotics &
I maging

Diagram 1.3
Normalisation

[Xd,Yd]

[Xw,Yw]

Wxmin Wxmax

Dxmin Dxmax

Window, World
Coordinates

Screen

Viewport

Pixel Coords

34

IG’06 Lecture 1 Page 34/40

S urgical
R obotics &
I maging

Enquiry Functions
• The user may re-size a window independently of our

program.

• Need to enquire the pixel size of our window before we
can normalise the coordinates.

Thus we need a command such as:
 GetWindowPixelCoords(DXmin,DYmin,DXmax,DYmax)

 (GetClientRect in Windows)

35

IG’06 Lecture 1 Page 35/40

S urgical
R obotics &
I maging

Normalisation

 Relate world coordinates and device coordinates by
simple ratios:

(Xw-WXmin) (Xd - DXMin)
(WXMax-WXMin)

=
(DXMax-DXMin)

rearranging gives us

Xd = (Xw-WXmin) *(DXMax-DXMin) + DXmin
(WXMax-WXMin)

36

IG’06 Lecture 1 Page 36/40

S urgical
R obotics &
I maging

Normalisation

• A similar equation allows us to calculate the the Y pixel
coordinate.

• The two can be combined into one matrix equation for
simplicity:

 Xd := Xw * A + B;
 Yd := Yw * C + D;

37

IG’06 Lecture 1 Page 37/40

S urgical
R obotics &
I maging

Mapping the World Coordinates to the API

 We can now implement in pseudo-code our device
independent drawing primitives.

 Here is an outline of an implementation in C:

 void DrawLine(float xs, float ys, float xf, float yf)
 { /* Clip any part of the line outside the window */
 /* Normalise: Calculate the pixel coordinates */
 /* Draw the line using the API */
 }

38

IG’06 Lecture 1 Page 38/40

S urgical
R obotics &
I maging

Viewports
• A Viewport is the rectangle on the raster graphics

screen (or interface window for “window” displays)
defining where the image will appear.

• If we select a viewport, the normal convention is that
all world coordinates are mapped to the viewport
rather than the whole drawing area.

39

IG’06 Lecture 1 Page 39/40

S urgical
R obotics &
I maging

(0.0,0.0)

1.0

1.0

Normalised Device Coordinates

SetViewport(0.5,0.5,0.85,0.9)

All device independent drawing
commands refer to this area

• Viewports are defined in Normalised Device Coordinates
where the whole drawing window has corners [0.0,0.0]
and [1.0,1.0]

40

IG’06 Lecture 1 Page 40/40

S urgical
R obotics &
I maging

Normalisation with Viewports

• Using viewports simply changes our normalisation
procedure.

• We now need to do the following:

1. Call the operating system API to find out the pixel
addresses of the corners of the window.

2. Use the viewport setting to calculate the pixel addresses of
the area where the drawing is to appear.

3. Compute the normalisation parameters A, B, C, D.

