

Calculating an Orthographic Projection	
Projector Equation for each point P in 3D object	:
$\mathbf{P} = \mathbf{V} + \mu \mathbf{d}$	
Substitute direction of projection $\mathbf{d} = [0,0,-1]$	
Yields cartesian form	
$Px = Vx + 0$ $Py = Vy + 0$ $Pz = Vz - \mu$	
The projection plane is z=0 so the projected coordinate is	
[Vx,Vy,0] or $V2D = [Vx,Vy]$	
i.e. take the 3D x and y components of the vertex	
urgical Deputing é Raging IG'06 Lecture 2 Page 24/35	Imperial College London

