
1

IG’06 Lecture 5 Page 1/39

S urgical
R obotics &
I maging

Introduction to Graphics

 Lecture 5:

 Review & Introduction to OpenGL

IG’06 Lecture 5 Page 2/39

S urgical
R obotics &
I maging

Lecture Overview

Review:
Projections

Transformations

Introduction to OpenGL

Software Tools:
JPot – OpenGL Tutorial

JOGL – Java bindings for OpenGL

IG’06 Lecture 5 Page 3/39

S urgical
R obotics &
I maging

Projections
n-dimensional vector space → m-dimensional vector space
(m < n)

3D → 2D: select projection surface
define projectors
pass projectors through each vertex
display intersections with projection surface

Parallel projections - parallel projectors
defined by direction of projectors

Perspective projections – projectors pass through one single point
defined by centre of projection

IG’06 Lecture 5 Page 4/39

S urgical
R obotics &
I maging

Perspective Projection
Px = µp Vx and Py = µp Vy

µp = f/Vz - Foreshortening factor
• The further an object is (large Vz), the smaller µp and the smaller the

object will appear
• Orientation of original image preserved if centre of projection behind f

• Lines that are parallel in 3D are NOT necessarily parallel in the
2D projection

• Images of parallel lines which are parallel to projection surface
WILL remain parallel

• Others will meet at vanishing points (perspective projection of a
point at infinity)

2

IG’06 Lecture 5 Page 5/39

S urgical
R obotics &
I maging

VP3

VP1

VP2

IG’06 Lecture 5 Page 6/39

S urgical
R obotics &
I maging

Transformations
 An operation that changes one configuration into another.

 A geometric transformation maps positions that define the object
to other positions.

 Linear transformation means the transformation is defined by a
linear function... which is what matrices are good for

IG’06 Lecture 5 Page 7/39

S urgical
R obotics &
I maging

Transformation Composition
 Complex transformations can be created by composing

individual transformations together

 Matrix multiplication is non-commutative ⇒ order is vital!

 AA*BB ≠ BB*AA

 Some special cases work, but they are EXCEPTIONS

 Matrices are associative

 (AA*BB)*C C == AA*(BB*CC)

IG’06 Lecture 5 Page 8/39

S urgical
R obotics &
I maging

What commutes?
 Two translations commute TT11*TT22 = TT22*TT11

 Two scales commute SS11*SS22 = SS22*SS11

 Two rotations sometimes commute. In 2D rotations do
commute, while in 3D most pairs of rotations do not commute.

 Rotations and translations do not commute RR* TT ≠ TT * RR

 Translations and scales do not commute SS*TT ≠ TT*SS

 Scales and rotations commute only in the special case when
scaling by the same amount in all directions.

 In general the two operations do not commute.

3

IG’06 Lecture 5 Page 9/39

S urgical
R obotics &
I maging

Applications

 Transformations are used for a variety of purposes, e.g:

 Changing viewpoint / Change of axes
 Special effects
 Image Registration
 Dealing with hierarchical structures

IG’06 Lecture 5 Page 10/39

S urgical
R obotics &
I maging

 Application Examples

IG’06 Lecture 5 Page 11/39

S urgical
R obotics &
I maging

Change of Axes

Given [u,v,w] and C, find the transformation matrix that moves the
scene to that coordinate system.

Why? What for?

Y

X

Z

v
u

w

Coordinate System for definition Coordinate System for viewing

Viewpoint

C

d

IG’06 Lecture 5 Page 12/39

S urgical
R obotics &
I maging

Changing Viewpoint

4

IG’06 Lecture 5 Page 13/39

S urgical
R obotics &
I maging IG’06 Lecture 5 Page 14/39

S urgical
R obotics &
I maging

Hierarchical Transformations

 For geometries with an implicit
hierarchy we wish to associate
local frames with sub-objects in
the assembly.

 Parent-child frames are related
via a transformation.

 Transformation linkage is
described by a tree:

 Each node has its own local co-
ordinate system.

IG’06 Lecture 5 Page 15/39

S urgical
R obotics &
I maging

Hierarchical Transformations

Hierarchical transformation allow independent control over sub-parts of an assembly

R

R

RT

IG’06 Lecture 5 Page 16/39

S urgical
R obotics &
I maging

translate base rotate joint1

rotate joint2 Complex hierarchical transformation

5

IG’06 Lecture 5 Page 17/39

S urgical
R obotics &
I maging

Hierarchical Transformations

 The previous example had simple one-to-one
parent-child linkages.

 In general there may be many child frames derived
from a single parent frame.

IG’06 Lecture 5 Page 18/39

S urgical
R obotics &
I maging

Hierarchical Transformations

Each finger is a child of the parent (wrist)
⇒ independent control over the orientation of the fingers relative to the wrist

IG’06 Lecture 5 Page 19/39

S urgical
R obotics &
I maging

Hierarchical Transformations

IG’06 Lecture 5 Page 20/39

S urgical
R obotics &
I maging

Introduction to OpenGL

What is OpenGL?

Graphics rendering API

high-quality color images composed of geometric and
image primitives
window system independent
operating system independent

6

IG’06 Lecture 5 Page 21/39

S urgical
R obotics &
I maging

OpenGL Architecture

IG’06 Lecture 5 Page 22/39

S urgical
R obotics &
I maging

OpenGL and Related APIs

IG’06 Lecture 5 Page 23/39

S urgical
R obotics &
I maging

OpenGL® Geometry Pipeline

MODELVIEW
matrix

PROJECTION
matrix

perspective
division

viewport
transformation

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

w
z
y
x

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

eye

eye

eye

eye

w
z
y
x

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1
dev

dev

y
x

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

proj

proj

proj

w
y
x

⎥
⎦

⎤
⎢
⎣

⎡

win

win

y
x

original
vertex

vertex in the
eye coordinate

space

2d projection
of vertex onto
viewing plane

normalised device
coordinates

(foreshortened)

final window
coordinates

IG’06 Lecture 5 Page 24/39

S urgical
R obotics &
I maging

The Camera System
 To create a view of a scene we need:

 a description of the scene geometry
 a camera or view definition

 Default OpenGL camera is located at the origin looking
down the -z axis.

 The camera definition allows projection of the 3D scene
geometry onto a 2D surface for display.

 This projection can take a number of forms:
 orthographic (parallel lines preserved)
 perspective (foreshortening): 1-point, 2-point or 3-point
 skewed orthographic

7

IG’06 Lecture 5 Page 25/39

S urgical
R obotics &
I maging

Camera Types

 Before generating an image we must choose our viewer:

 The pinhole camera model is most widely used:
 infinite depth of field (everything is in focus)

 Advanced rendering systems model the camera
 double gauss lens as used in many professional cameras
 model depth of field and non-linear optics (including lens flare)

 Photorealistic rendering systems often employ a physical
model of the eye for rendering images

 model the eyes response to varying brightness and colour levels
 model the internal optics of the eye itself (diffraction by lens fibres etc.)

IG’06 Lecture 5 Page 26/39

S urgical
R obotics &
I maging

Pinhole Camera Model

IG’06 Lecture 5 Page 27/39

S urgical
R obotics &
I maging

Viewing System

 We are only concerned with
the geometry of viewing at this
stage.

 The camera’s position and
orientation define a view-
volume or view-frustrum.

 objects completely or partially
within this volume are potentially
visible on the viewport.

 objects fully outside this volume
cannot be seen ⇒ clipped

clipped

view frustrum

clipping planes

IG’06 Lecture 5 Page 28/39

S urgical
R obotics &
I maging

Camera Models

 Each vertex in our model must be projected onto the 2D
camera viewport plane in order to be display on the screen.

 The CTM is employed to determine the location of each vertex
in the camera coordinate system:

 We then employ a projection matrix defined by GL_PROJECTION
to map this to a 2D viewport coordinate.

 Finally, this 2D coordinate is mapped to device coordinates
using the viewport definition (given by glViewport()).

xx CTM
rr M=′

8

IG’06 Lecture 5 Page 29/39

S urgical
R obotics &
I maging

Camera Modeling in OpenGL ®

glMatrixMode(GL_MODELVIEW)
...

glMatrixMode(GL_PROJECTION)
...

glViewport(0,0,xres,yres)

camera coordinate
system

viewport coordinate
system

device/screen
coordinate system

IG’06 Lecture 5 Page 30/39

S urgical
R obotics &
I maging

3-point

3D 2D Projection

 Type of projection depends on a number of factors:
 location and orientation of the viewing plane (viewport)
 direction of projection (described by a vector)
 projection type:

Projection

Perspective Parallel

2-point

Oblique

Axonometric

Orthographic1-point

IG’06 Lecture 5 Page 31/39

S urgical
R obotics &
I maging

Multiple Projections
 It is often useful to have multiple projections available at

any given time
 usually: plan (top) view, front & left or right elevation (side) view

Perspective

Front Right

Top

IG’06 Lecture 5 Page 32/39

S urgical
R obotics &
I maging

OpenGL Geometric Primitives

 All geometric primitives are specified by vertices

9

IG’06 Lecture 5 Page 33/39

S urgical
R obotics &
I maging

Specifying Geometric Primitives

 Primitives are specified using
glBegin(primType);
glEnd();

 primType determines how vertices are combined
GLfloat red, greed, blue;
Glfloat coords[3];
glBegin(primType);

for (i =0;i <nVerts; ++i) {
glColor3f(red, green, blue);
glVertex3fv(coords);

}
glEnd();

IG’06 Lecture 5 Page 34/39

S urgical
R obotics &
I maging

Simple Example

void drawRhombus(GLfloat color[])
{

glBegin(GL_QUADS);
glColor3fv(color);
glVertex2f(0.0, 0.0);
glVertex2f(1.0, 0.0);
glVertex2f(1.5, 1.118);
glVertex2f(0.5, 1.118);

glEnd();
}

IG’06 Lecture 5 Page 35/39

S urgical
R obotics &
I maging

OpenGL Command Formats

IG’06 Lecture 5 Page 36/39

S urgical
R obotics &
I maging

OpenGL Color Model

 Both RGBA (true color) and Color Index

10

IG’06 Lecture 5 Page 37/39

S urgical
R obotics &
I maging

Controlling Rendering
 Appearance
 From Wireframe to Texture mapped

 OpenGL State:
 rendering styles
 shading
 lighting
 texture mapping

–glColor*() / glIndex*()
–glNormal*()
–glTexCoord*()

IG’06 Lecture 5 Page 38/39

S urgical
R obotics &
I maging

Software Tools - JPot
Java-based interactive OpenGL tutor

http://www.cs.uwm.edu/~grafix2/

DoC Linux workstations:
Run "jpot-install" before using jpot for the first time
Run JPot as usual:

java –cp <JPot directory> JPot

For Windows: Download and follow ALL instructions
CAREFULLY
(Requires JRE; glut32.dll and trigger.exe in C:\Windows\system32)

IG’06 Lecture 5 Page 39/39

S urgical
R obotics &
I maging

Software Tools – JOGL

The JOGL project hosts the development version of the Java
Bindings for OpenGL.

Designed to provide hardware-supported 3D graphics to
applications written in Java.

JOGL provides full access to the APIs in the OpenGL 2.0
specification as well as nearly all vendor extensions.

Already installed in DoC Linux Workstations.

Download from https://jogl.dev.java.net/

