Tutorial 2: Solutions

Q1. First move the scene to the standard configuration, that is with the viewpoint at the origin. This translates all vertices by 2 units in the z direction. Thus the points are:

[10,0,12] [10,10,8] [0,-10,12]

And the plane of projection is z=4

Projecting the points gives:

[10*4/12,0]	[10*4/8,10*4/8]	[0,-10*4/12]
[3.33,0]	[5,5]	[0,-3.33]

The orthographic projections are simply [10,0] [10,10] and [0,-10]

Thus the final screen will show:

Q2. The order of the transformations is Scale Rotate Translate. This may be verified by multiplying out.

b) The rotation is from +ve y to +ve x, ie clockwise. This could be deduced from the derivation, or by learning the rule, or the matrices.

c) The inverse transformation is $T^{-1} R^{-1} S^{-1}$. The inverses of the individual components are

which yields inverse:

$$\begin{pmatrix} \cos(\theta)/S_{X} & \sin(\theta)/S_{y} & 0 \\ -\sin(\theta)/S_{X} & \cos(\theta)/S_{y} & 0 \\ -t_{X}\cos(\theta)/S_{X} + t_{y}\sin(\theta)/S_{X} & -t_{X}\sin(\theta)/S_{y} - t_{y}\cos(\theta)/S_{y} & 1 \end{pmatrix}$$

Q3. The easiest way is to multiply the two matrices out for the two possibilities.

$$\begin{pmatrix} Sx & 0 & 0\\ 0 & Sy & 0\\ 0 & 0 & 1 \end{pmatrix} * \begin{pmatrix} Cos(t) & -Sin(t) & 0\\ Sin(t) & Cos(t) & 0\\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} SxCos(t) & -SxSin(t) & 0\\ SySin(t) & SyCos(t) & 0\\ 0 & 0 & 1 \end{pmatrix}$$
$$\begin{pmatrix} Cos(t) & -Sin(t) & 0\\ SySin(t) & SyCos(t) & 0\\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} SxCos(t) & -SxSin(t) & 0\\ SySin(t) & SyCos(t) & 0\\ 0 & 0 & 1 \end{pmatrix}$$

It can then be seen clearly that the only case for which S*R=R*S is when Sx=Sy.

Q4a.

It is necessary to translate the object to the origin, scale it then translate it back. The combined matrix is:

_			~	<u>_</u>			~	~			~
(1	0	0	0)	0.9	0	0	0)	(1)	0	0	0)
0	1	0	0	0	0.9	0	0	0	1	0	0
0	0	1	0	0	0	0.9	0	0	0	1	0
0	-10	-10	1	0	0	0	1	0	10	10	1)
$\overline{\ }$				\sim)	$\overline{\ }$			

multiplying out we get

(0.9)	0	0	0)
0	0.9	0	0
0	0	0.9	0
0	1	1	1
$\overline{\ }$			ノ

Q4b.

The required rotation is about the z axis, but clockwise.

$\begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}$	0 1 0 -10	0 0 1 -10	$ \begin{pmatrix} 0\\ 0\\ 0\\ 1 \end{pmatrix} \left(\cdot\right) $	98 17 0 0	17 .98 0 0	0 0 1 0	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \left(\begin{array}{c} \end{array} \right)$	Sx 0 0 0	0 Sy 0 0	0 0 Sz 0	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \end{array} \left(\begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \end{array}\right) $	0 1 0 10	0 0 1 10	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$
multi	iplying	out w	e get											
.98 .17 0 -1.7	17 .98 0 -9.8	0 0 1 -10	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 1 \end{array}$	$ \left(\begin{array}{c} Sx \\ 0 \\ 0 \\ 0 \end{array}\right) $	0 Sy 0 10	0 0 Sz 10	0 0 0 1) =	(.98Sx .17Sx 0 -1.7Sx	<u>9</u>	17Sy .98Sy 0 9.8Sy+10) -10	0 0 Sz Sz+10	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$