Tutorial 3: Solutions

Q1. Let $P = (1,2,3)$ and use	$\mathbf{Px'} = (\mathbf{P} - \mathbf{C}).\boldsymbol{u} = \mathbf{P}.\boldsymbol{u} - \mathbf{C}.\boldsymbol{u}$
	$\mathbf{P}\mathbf{y}' = (\mathbf{P} - \mathbf{C}).\mathbf{v} = \mathbf{P}.\mathbf{v} - \mathbf{C}.\mathbf{v}$
	$\mathbf{Pz'} = (\mathbf{P} - \mathbf{C}).\mathbf{w} = \mathbf{P}.\mathbf{w} - \mathbf{C}.\mathbf{w}$
then:	Px' = (1-C)ux + (2-C)uy + (3-C)uz $Py' = (1-C)vx + (2-C)vy + (3-C)vz$ $Pz' = (1-C)wx + (2-C)wy + (3-C)wv$

Q2a.

Use the cross product to get $u = v \ge w$.

(Note that, for our normal axis system it is $v \ge w$ and not $w \ge v$. Get this wrong and you swap left and right!)

The cross product is evaluated by the determinant method

i	j	k
0	1	0
0.6	0	-0.8

u = [-0.8, 0, -0.6]

Q2b. The translation parts of the matrix are:

-C.u = 11 -C.v = -5 -C.w = -2

And the whole transformation matrix is:

-0.8	0	0.6	0
0	1	0	0
-0.6	0	-0.8	0
11	-5	-2	1

Q2c.

The projection matrix is:

1	0	0	0
0	1	0	0
0	0	1	0.5
0	0	0	0

To get the overall transformation we just multiply the matrices together to get:

-0.8	0	0.6	0.3
0	1	0	0
-0.6	0	-0.8	-0.4
11	-5	-2	-1

Q2d.

Multiplying homogenous coordinate [10,1,0,1] by the matrix we get [3,-4,4,2] and normalising this to Cartesian form we get [1.5,-2,2,1]. Thus the two dimensional coordinate is [1.5,-2].

Q3. Let C = [10,15,5]. We then obtain unit vectors u, v, w collinear to the given directions by diving each component by the magnitude of the corresponding vector.:

$$\boldsymbol{w} = \left(-\frac{6}{10}, 0, \frac{8}{10}\right) = \left(-\frac{3}{5}, 0, \frac{4}{5}\right)$$
$$\boldsymbol{u} = \left(\frac{p_x}{|\boldsymbol{u}|}, 0, \frac{p_z}{|\boldsymbol{u}|}\right)$$
$$\boldsymbol{v} = \left(\frac{q_x}{|\boldsymbol{v}|}, \frac{1}{|\boldsymbol{v}|}, \frac{q_z}{|\boldsymbol{v}|}\right)$$

Substituting the above values into the general transformation matrix we obtain:

$$\begin{bmatrix} p_x/|u| & q_x/|v| & -3/5 & 0 \\ 0 & 1/|v| & 0 & 0 \end{bmatrix}$$

$$\left[-10*p_{x}/|\mathbf{u}|-5*p_{z}/|\mathbf{u}|-10*q_{x}/|\mathbf{v}|-15/|\mathbf{v}|-5*q_{z}/|\mathbf{v}|-2 \quad 1\right]$$