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Abstract. Distributed data usage control enables data owners to constrain how
their data is used by remote entities. However, many data usage policies refer to
events happening within several distributed systems, e.g. “at each point in time
at most two clerks might have a local copy of this contract”, or “a contract must
be approved by at least two clerks before it is sent to the customer”. While such
policies can intuitively be enforced using a centralized infrastructure, major draw-
backs are that such solutions constitute a single point of failure and that they are
expected to cause heavy communication and performance overhead. Hence, we
present the first fully decentralized infrastructure for the preventive enforcement
of data usage policies. We provide a thorough evaluation of our infrastructure and
show in which scenarios it is superior to a centralized approach.

1 Introduction

Due to the ever increasing value of data, the continuous protection of sensitive data
throughout its entire lifetime has drawn much attention in recent years. Corresponding
solutions are applicable in many contexts: businesses, military and governments aim at
protecting their internal procedures, research reports, financial reports, and the like; in-
dividuals want to constrain businesses from using or releasing their private data, e.g. for
advertisement or market research; copyright owners want their licenses to be respected.

Usage control [1, 2] tackles such challenges by proposing different models and en-
forcement infrastructures [3–6]. Generally, policies describe how data may or may not
be used once initial access has been granted. Additionally, policies might specify obli-
gations that must be fulfilled before, upon, or after usage. Corresponding solutions [7–
10] inject reference monitors, or Policy Enforcement Points (PEP), into different layers
of the computing system. These PEPs intercept events within the system and enforce the
Policy Decision Point’s (PDP) decision such as allowing, modifying, inhibiting or de-
laying the event. By tracking data flows, such as when copying files or loading content
from a database into a process, aforementioned solutions allow to enforce data usage
policies on all representations of some data rather than on particular files or database
entries. Hence, data usage policies are enforced independently of the data’s concrete
representations at runtime. Enforcement may be preventive or detective [1, 6], meaning
that policy violations never occur, or that they can be detected in hindsight, respectively.

This work tackles the problem of enforcing data usage policies on data that has been
disseminated to remote systems. In this respect, solutions that track data flows across
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systems and attach the corresponding policies have been proposed [11, 12]. Further,
these solutions enable the enforcement of policies that can be independently evaluated
on every single system, such as “do not open this document with editor X”, or “do not
print this document after 5pm”. However, the preventive enforcement of more sophis-
ticated global policies pertaining to events and/or the states of multiple systems, such
as “not more than five instances of this software might be executed simultaneously”,
or “all copies of this document must be deleted upon the owner’s demand”, still poses
challenges [6, 13, 14]. We are not aware of solutions that achieve preventive policy
enforcement (i) without the need for any central components, (ii) on all copies and
derivations of the original data, and (iii) which are deployable on commodity networks.

While Digital Rights Management solutions handle such challenges by deploying
central license servers [15], such a solution comes with the drawbacks of being a single
point of failure, privacy concerns, and the necessity that the central component must be
always reachable by all PEPs. Moreover, a centralized solution is expected to impose
significant performance and communication overhead [13, 16]. The main reason is that
the PEP is stateless. Hence, whenever a potentially relevant system event is observed
by the PEP, it is unknown whether it is of actual importance for evaluation by the PDP.
Consequently, all observed events would need to be signaled to the central PDP. While
recent works addressed this problem by decentralizing some aspects of policy evalua-
tion, data flow tracking, and/or information retrieval [6, 8, 17, 18], some of them do not
allow for preventive policy enforcement [6, 18], while others effectively make use of
central components [8, 17], or do not integrate data flow tracking [8, 17, 18].

Problem. We tackle the problem of enforcing global data usage control policies if (i)
the data to be protected resides, (ii) the data usage events occur, and (iii) the data flow
events occur within and across multiple distributed systems. While a solution could
naively be implemented in a centralized fashion, such a solution imposes drawbacks
such as being a single point of failure. Intuitively, a centralized solution is also expected
to impose significant performance and network communication overhead [13, 16].

Solution. We design and implement a fully decentralized enforcement infrastructure
with the goal to minimize aforementioned drawbacks and overheads. This infrastructure
deploys one PDP at each site which takes all decisions pertaining to all local PEPs.
Global policies are enforced by synchronizing the PDPs using a distributed database.
We optimize the information being exchanged according to theoretical results [13].

Contribution. To the best of our knowledge, our contributions are:

1. The first fully decentralized architecture and implementation for the preventive en-
forcement of global data usage control policies (§3).

2. A thorough evaluation of the proposed and implemented architecture, showing in
which scenarios its adoption is beneficial (§4).

Further, we provide the source code of our implementation as open source1.

Attacker Model and Assumptions. Our infrastructure prevents users from using data
in a way that does not comply with the corresponding policy—be the attempt intentional

1 https://github.com/fkelbert/uc/ and https://github.com/fkelbert/uc4linux/.
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Fig. 1: Sequence of events in the running example.

or unintentional. Foremost, we consider users without administrative privileges. Such
a scenario is pervasive in business environments, where employees are given ready-to-
use computing systems. To defend against stronger attackers, the trust anchor must be
embedded at a lower layer, e.g. by using TPMs or SmartCards. Since our infrastructure
runs as a process within the operating system, we assume both to be free of vulnerabil-
ities. Otherwise, an attacker might be able to gain administrative privileges and switch
off our infrastructure and/or tamper with it. Moreover, we assume state-of-the-art access
control mechanisms to be in place.

Running Example. We illustrate our work along a running example, in which an insur-
ance company provides potential customers the ability to request contract offers via a
web interface. After internal processing of the request, the customer retrieves a contract
offer via email, which may be accepted or declined via a web link. The entire scenario,
including the insurance provider’s internal data processing, is depicted in Fig. 1.

First, the customer fills a web form on the insurance provider’s website. By submit-
ting the form (1), a new ContractRequest (CR) object is created (2) and the web server
sends the CR to a set of clerks via the mail server (3,4). One of the clerks will then
review the attached CR (5) and start an analysis job on the internal data analysis server
(6), thereby creating a new AnalysisResult (AR) object (7). Once the analysis is per-
formed, the clerk retrieves the AR (8) and performs a manual review on her workstation
(9). The clerk then creates a Contract (C) object using a collaborative word processor
(10,11). Once created, C might be retrieved (12), reviewed (13) and revised (14) by
several clerks. After C has been approved by a predefined number of clerks (15), one of
the clerks retrieves its final version (16) and sends it to the customer via the mail server
(17,18). Once the customer receives the offer, he might decline (19a) or accept (19b)
the Contract. Alternatively, he might delete his initial ContractRequest altogether (19c).
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Besides the application-specific events mentioned above, we also consider events
originating at the operating system layer, i.e. system calls [10]. Using such an approach,
we are able to detect data flows that happen outside the application context or that have
not been anticipated within the application context, e.g. if a clerk creates a copy of a
Contract using a file manager or a shared file system.

Clearly, the customer’s data flows through many different systems in many different
formats. Further, the AnalysisResult and the Contract are data items that have been
derived from the original ContractRequest and must as such be treated as containing
the customer’s personal data. All of these data items are stored and processed by many
different systems and users, all of which must enforce data usage policies such as:

Policy 1: ‘Exactly one contract offer must be sent to the customer not later than 30
days after a request has been received.’

Policy 2: ‘If the customer declines an offer, all derived data items must not be used
anymore.’

Policy 3: ‘Each contract must be reviewed and approved by at least two clerks.’
Policy 4: ‘At no point in time might two clerks have a copy of the same analysis result.’

Note, that all of those policies are global policies, meaning that they refer to data and
events that are distributed across several systems.

2 Background

2.1 Existing Data Usage Control Infrastructures

Data usage control infrastructures have been built for various system layers and scenar-
ios [4, 6–10, 12], and policy enforcement is usually performed using a PEP, a PDP, and
a Policy Information Point (PIP). Once the PEP observes an attempt of using an object,
this attempt is signaled to the PDP which is configured with the policies to be enforced.
Depending on these policies, its internal state, and additional information from the PIP,
the PDP decides whether to allow, inhibit, modify, or delay the usage attempt. The PEP
is then in charge of enforcing the decision. The information provided by the PIP differs
slightly in different models and includes subject and object attributes, environmental in-
formation, and details about which data takes which representations within the system,
i.e. the system’s data flow state.

The set of events intercepted by the PEP is categorized into two, possibly overlap-
ping, subsets: data usage events and data flow events. Informally, data usage events are
events whose occurrence is obliged or constrained by data usage policies. As such, all
data usage events must be signaled to the PDP. Data flow events, in contrast, must be
signaled to the PIP. According to an event’s predefined semantics and its actual param-
eters, the PIP will update its data flow state. For example, if a ContractRequest data
item is known to be stored as a database entry, then all result sets of database queries
selecting this entry will also be associated with the same ContractRequest data item,
and hence with the same data usage policies.

Using such a combination of policy enforcement and data flow tracking technology,
data usage control infrastructures allow to not only protect one single data representa-
tion, such as a file or database entry, but rather all representations of the same data.
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To differentiate between detective and preventive enforcement, the distinction be-
tween desired events and actual events is needed. Desired events are intercepted by
PEPs before their execution and they may be inhibited or modified in correspondence
with the PDP’s decision. Actual events are intercepted by the PEP after their execu-
tion. They can not be inhibited or modified, but only be compensated for. Thus, de-
sired events must be intercepted and evaluated for preventive enforcement, while actual
events must be monitored because they cause state changes within the PDP and PIP.

2.2 Data Usage Control Policies: Syntax, Semantics, Evaluation

Building upon previous works [5, 7, 13, 19], we assume policies to be specified as
Event-Condition-Action (ECA) rules: once a triggering Event is observed and if the
execution of this event would make the Condition true, then additional Actions might
be performed. Notably, the triggering event might also be an artificial event, e.g. to
indicate that a certain amount of time has passed. We will use the terms ‘policy’ and
‘ECA rule’ interchangeably. ECA conditions (Φ) are specified in terms of past linear
temporal logics and their syntax is specified as:

Ψ = true | false | E
Σ = isNotIn(D,P(C)) | isCombined(D,D,P(C)) | isMaxIn(D,N,P(C))
Φ = (Φ) | Ψ | Σ | not(Φ) | Φ and Φ | Φ or Φ | Φ since Φ | Φ before N | repmin(N,N,E)

While the formal semantics of Φ are detailed in [13], we recap the intuitive seman-
tics: E denotes the set of all data usage events (cf. §2.1);D denotes the set of data items
to be protected; C denotes the set of all possible representations, or containers, for data,
such as files and database entries.Ψ refers to boolean constants (true, false) and data us-
age events E. Σ refers to so-called state-based operators, allowing to express constraints
over the system’s data flow state as computed and maintained by the PIP: isNotIn(d,C)
is true iff data d is not in any of the containers C; isCombined(d1, d2,C) is true iff there
is at least one container in C that contains both data d1 and d2; isMaxIn(d,m,C) is true
iff data d is contained in at most m containers in C. For Φ, the semantics of not, and
and or are intuitive; α since β is true iff β was true some time earlier and α was true ever
since, or if α was always true; α before j is true iff α was true exactly j timesteps ago;
repmin( j,m, e) is true iff event e happened at least m times in the last j timesteps. Fur-
ther, we define repmax( j,m, e) ≡ not(repmin( j,m+1, e)) and always(α) ≡ α since false.

Fixing one data item d, Table 1 shows the example policies from §1 as ECA rules.
Rule 1a expresses that the CEO must be notified via mail if no contract offer has been
sent to the customer 30 days after a corresponding request. Note that this rule does have
a wildcard trigger event, implying that the rule is evaluated upon every event. Further,
this rule is detective only: satisfaction of the condition results in a compensating action;
actual violation of the policy is not prevented. Rule 1b expresses that a contract offer
must not be sent if there was no corresponding contract request, or if a contract offer
was already sent. Rule 2 expresses that any attempt to use data item d is inhibited if the
corresponding contract offer was declined in the past. Note, that we have used event use
to refer to a set of events. This set might include events such as AnalysisServer.start,
Docs.create and Mail.sendContract. Rule 3 expresses that sending of a contract is in-
hibited if this contract was not reviewed or approved by at least two clerks in the last 30



6 Florian Kelbert and Alexander Pretschner

Policy 1 Event: <any>

(a) Condition: (Web.reqOffer(d) before 30) and repmax(30, 0,Mail.sendContract(d))
Action: Mail.notifyCEO(d)
Event: Mail.sendContract(d)

(b) Condition: repmax(30, 0,Web.reqOffer(d)) or repmin(30, 1,Mail.sendContract(d))
Action: inhibit

Policy 2 Event: use(d)
Condition: not(always(not(Web.decline(d))))

Action: inhibit
Policy 3 Event: Mail.sendContract(d)

Condition: repmax(30, 1,Workstation.review(d)) or repmax(30, 1,Docs.approve(d))
Action: inhibit

Policy 4 Event: <any>(d)
Condition: not(isMaxIn(d, 1,CWorkstation))

Action: inhibit

Table 1: Example policies as ECA rules.

days. Rule 4 expresses that any event must be inhibited if its execution would lead to a
state in which data d is in more than one of the clerk’s workstations.

Policy Evaluation. A policy is evaluated whenever a trigger event occurs or if a pre-
defined amount of time has passed. The amount of time is configurable per policy and
the interval between two subsequent time-based policy evaluations is called a timestep.
The introduction of timesteps is necessary for practical reasons: If an ECA condition
such as ϕ = (Web.reqOffer(d) before 30[days]) is to be evaluated, then it is unlikely
that event Web.reqOffer(d) has happened exactly 30 days (i.e. 2592000 seconds) ago.
What is more likely and practical, however, is that Web.reqOffer(d) has happened ‘ap-
proximately’ 30 days ago, e.g. 30days ± 12hours. Similarly, consider the conjunction
and disjunction of operators, and and or. While it is unlikely that two events happen
at exactly the same point in time, what is more likely and practical is that two events
happen within a specified time interval, i.e. within the same timestep.

For policy evaluation purposes, we consider conditions ϕ ∈ Φ as expression trees.
Leaves represent the constants true and false, events E, and state-based operators Σ;
internal nodes are operators such as before, since, and, etc. Fig. 2 depicts ECA rule
1a as expression tree. Leaves are stateful by storing whether the represented operand
has become true or false, depending on the actual operand, during the current timestep.
Whenever a PEP signals an event to the PDP, it is evaluated against all of ϕ’s leaves,
potentially changing their states. E.g., if a leaf represents the event Mail.sendContract,
then this leaf’s state changes to true once the PEP signals event Mail.sendContract. If a
leaf corresponds to a state-based operator Σ, then its state is examined with the help of
the PIP under consideration of the signaled event’s data flow semantics. In a nutshell,
the expression trees’ leaves track which events have happened and which state-based
operators have changed their state during the ongoing timestep.
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Fig. 2: Expression tree of
ECA rule 1a.

Only if the event signaled by the PEP matches the
ECA rule’s trigger event, then the entire condition ϕ
is evaluated, denoted eval(ϕ). For this, the expression
tree’s internal nodes recursively query their child nodes
for their current state. Subsequently, the internal nodes
are evaluated using this information. Internal nodes also
maintain a state, capturing historical values of child
nodes. E.g. if ϕ = (Web.reqOffer(d) before 30[days]),
then before will keep a history of occurrences of
Web.reqOffer(d) for 30 days.

If eval(ϕ) = true, then the ECA’s actions will be
triggered. Notably, evaluation of a condition ϕ ∈ Φ at
the end of a timestep is different in that the leaves’ evaluation results correspond to the
truth values that have been ‘accumulated’ during the elapsed timestep: an event’s truth
value is true iff the event happened at least once during the elapsed timestep, while a
state-based operator’s truth value is true iff the operator was true at least once during the
elapsed timestep. Note that cardinality operators such as repmin count all occurrences
of an event during a timestep. Once eval(ϕ) has been computed, the leaves’ truth values
are reset for the next timestep.

2.3 Distributed Policy Decisions

As motivated in §2.1, all data usage events and data flow events must be signaled to
the PDP and PIP for decision making and data flow tracking purposes. Moreover, both
the PDP and the PIP maintain an internal state necessary to perform those tasks. As
discussed in [13], this leads to new challenges if the data to be protected, as well as the
data usage and data flow events are distributed. One naive solution to enforce global
policies is to deploy one central PDP/PIP. However, such an approach is expected to be
poorly performing in terms of runtime and communication overhead [13, 16].

The remaining challenge is to build an enforcement infrastructure that enforces
global policies without the need for central components [14]. As such, it has been pro-
posed to deploy PDPs and PIPs locally and consequently to keep all communication
between PEP and PDP/PIP local [13]. However, consistent enforcement of global poli-
cies across all PDPs then necessitates their coordination. While naively each PDP/PIP
could notify all internal state changes to all other PDPs/PIPs, we optimize our imple-
mentation according to formal results presented in [13]. In a nutshell, the paper analyzes
for which policies and event traces coordination between PDPs may or may not be omit-
ted. E.g., if ϕ = e1 or e2 with e1, e2 ∈ E, then if e1 happens within system A while e2
happens within system B, then two decentrally deployed PDPs on systems A and B can
both locally conclude evalA(ϕ) = evalB(ϕ) = true without contacting the other PDP.

3 Architecture and Implementation

Our implementation deploys a PDP and a PIP at each site, such as a single system, or
an organizational unit, cf. Fig. 3. Those components are responsible for local data flow
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Fig. 3: High-level architecture view.

tracking and policy evaluation (§2.1–§2.2), as well as cross-system data flow track-
ing and policy shipment [12]. For deciding global policies, the PDPs coordinate their
decisions using a distributed database (§3.2), leveraging previous results on how to ef-
ficiently enforce global data usage policies in distributed systems [13].

3.1 Distributed Policy Evaluation

Once a policy has been deployed at multiple PDPs, their decisions are expected to be
consistent at all times. To explain how we achieve such consistency, we take the view
of the PDP within system A, PDPA, enforcing policy p1 with trigger event ep1 ∈ E,
condition ϕp1 ∈ Φ, and action ap1 . As described in §2.2, any event signaled to PDPA
potentially changes the state of leaves within ϕp1 . Since such state changes are of im-
portance for other PDPs enforcing p1, PDPA publishes any such state changes via the
distributed database. We assume this database to be always available and strongly con-
sistent; §3.4 explains how this is achieved in practice.

As described in §2.2, ϕp1 must be evaluated whenever a timestep has passed or
whenever a signaled event matches p1’s trigger event ep1 . In any of those cases, PDPA
first evaluates ϕp1 locally. If this local evaluation yields eval(ϕp1 ) = true, no further
coordination with other PDPs is necessary: action ap1 will be executed. However, if
eval(ϕp1 ) = false, then it might still be the case that ϕp1 is true globally, evalg(ϕp1 ) =

true, i.e. when considering other PDPs’ state changes. Hence, ϕp1 is re-evaluated: For
each leaf of ϕp1 whose local state was false, a lookup within the distributed database is
performed. If the lookup yields true, implying that the operator was satisfied at some
other PDP, the parent nodes are recursively re-evaluated up to the root node.2 For ex-
ample, consider condition ϕp1 = ev1 and isCombined(d1, d2,C), where at system A ev1
is happening, while system B combines data items d1 and d2. Locally, both PDPA and
PDPB evaluate ϕp1 to false, evalA(ϕp1 ) = evalB(ϕp1 ) = false. Subsequently, PDPA looks
up isCombined(d1, d2,C) in the distributed database, while PDPB looks up whether ev1
happened. Hence, distributed evaluation of ϕp1 results in evalgA(ϕp1 ) = evalgB(ϕp1 ) = true.

It is important to note that time-based policy evaluations must consistently happen at
the same time across all PDPs. Otherwise, the PDPs might come to different conclusions
when evaluating the same policy. Consider once again ϕp1 , a point in time t, a timestep

2 In fact, for operators isNotIn and isMaxIn a lookup is performed if their local evaluation result
is true rather than false. This reflects that local satisfaction of those operators never implies
their global satisfaction, while their local violation always implies their global violation [13].
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interval of 10 minutes, and the fact that PDPA evaluates at times t, t + 10, t + 20, . . .,
while PDPB evaluates at times t + 5, t + 15, . . .. Further, assume ev1 happens at time
t + 2, while isCombined(d1, d2,C) is only true at time t + 7. Then, PDPA’s evaluation at
time t +10 yields true, while PDPB’s evaluation yields false at times t +5 and t +15. For
this reason, our decentral PDPs always evaluate at the same time. While we are aware
that such synchronization is subject to scheduling and clock synchronization issues, our
experiments (cf. §4) did not reveal evaluation inconsistencies.

3.2 Using Cassandra as a Distributed Database

As indicated in Fig. 3, our infrastructure is built on top of Cassandra—a distributed
database originally developed at Facebook [20] and now maintained by The Apache
Foundation [21]. Cassandra’s purpose is to provide a “highly available service with no
single point of failure” being run “on top of [. . . ] hundreds of nodes” [20]. As such,
Cassandra has been designed to achieve high scalability, availability, and performance.

Data replication. In Cassandra, the entire set of nodes forming the distributed database
is called a cluster. The cluster’s data is organized via keyspaces, and each table is asso-
ciated with exactly one keyspace. Keyspaces take a central role, since each keyspace’s
replication strategy defines among which nodes of the cluster its associated tables are
replicated. Hence, data with the same replication requirements should be organized
within the same keyspace. In our context, each PDP might need to enforce several poli-
cies at the same time and for each the set of remote PDPs with which coordination is
required might differ. Hence, we represent each policy by exactly one keyspace. Con-
sider policy p1 constraining the usage of data d1 which has representations in systems
A and B. Then, in our implementation there exists keyspace kp1 with replication strat-
egy krep

p1 = {A, B}. Thus, if PDPA shares a state change of ϕp1 within keyspace kp1 , this
information is replicated to exactly those PDPs for which it is of interest, i.e. PDPB.

Data Consistency. With the CAP theorem [22] stating that consistency, availability, and
partition-tolerance can not all be achieved at the same time, many eventually consistent
databases have emerged. In this respect, Cassandra is flexible by allowing to trade con-
sistency with performance. For the time being, we assume strong data consistency; §3.4
shows how this is efficiently achieved in practice. In case strong consistency is not suf-
ficient, Cassandra provides linearizable consistency (compare-and-set transactions) on
the basis of the Paxos consensus protocol [23].

As described in §4, our architecture can be flexibly deployed: While in Fig. 3 PDP, PIP,
and Cassandra are local to the PEPs, it is possible to deploy those components remotely,
allowing to set up a centralized infrastructure. We also assume all Cassandra nodes to
know at least one seed node that is already part of the cluster; this is discussed in §3.5.

3.3 Bootstrapping and Cross-System Data Flows

Consider a set of PDPs/PIPs with their corresponding Cassandra nodes and assume
that no data usage policy has yet been deployed. Then, at some point in time the first
policy p1 is deployed at PDPA. While deploying, one or more containers are marked to
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contain data d1 whose usage is constrained by p1. This initial classification is performed
by PIPA. Since p1 and d1 are only known to PDPA, PDPA can independently take all
decisions about p1 as described in §2.2.

Now, consider that system A shares data d1 with system B, e.g. via network transfer.
From then on, also system B might influence the evaluation of p1. Our implementation
reflects this first cross-system data transfer of d1 by creating keyspace kp1 with krep

p1 =

{A, B}. Consequently, all data written to kp1 is immediately replicated to nodes A and B.
As Cassandra’s database triggers are experimental, actual data flow tracking and policy
transfer to system B is performed via remote procedure calls using Apache Thrift [24].

Now, system B might further share data d1 with system C. Since keyspace kp1 exists
already, our implementation adapts the existing keyspace to incorporate node C, krep

p1 ←

krep
p1 ∪ {C} = {A, B,C}. Notably, the keyspace’s adaption is immediately perceived by

node A, such that from now on all data written to kp1 will be replicated to nodes A, B and
C. In order to prevent conflicts and lost updates, this adaption of a keyspace’s replication
strategy must be atomic; we implemented corresponding locking mechanisms on top
of the keyspace being updated. For atomic acquiring of the lock, we use Cassandra’s
lightweight transactions, which provide linearizable consistency.

3.4 Cassandra Consistency

In Cassandra, each single read and write operation can be configured with a consistency
level (CL), which defines how many nodes of the corresponding keyspace must ac-
knowledge the operation. Among others, Cassandra provides the self-explanatory con-
sistency levels One, Two, Three and All. While using CL=All guarantees strong data
consistency, as assumed in this paper up to now, it comes at the cost of performance
and the requirement that all of the keyspace’s nodes must be always online and reach-
able by all other nodes. By providing consistency level Quorum, Cassandra allows to
achieve strong consistency without such drawbacks: If CL=Quorum, then operations
must be acknowledged by at least half of the nodes. Consequently, strong consistency
can be achieved by using CL=Quorum for all reads and writes. Note that strong consis-
tency can also be achieved by using CL=All for all writes and CL=One for all reads.

Whenever a consistency level different from One is used, reads and writes to a
keyspace might fail. If CL=All, then it is sufficient that only one of the keyspace’s
nodes is not available in order to make queries to the keyspace fail. Since failing of a
node or some network link is not unlikely in practice, a consistency level of All can be
considered impractical. If CL=Quorum, read and write operations might fail if half of
the nodes of a keyspace are not available. While such situations are not impossible, e.g.
if network partitions occur, they are much more unlikely in practice. Considering the
Cassandra cluster from the point of view of a single node, any query to a keyspace with
CL,One fails in case the considered node is offline. While configurable, by default our
implementation uses CL=Quorum for all reads and writes.

Our implementation tackles the aforementioned problems by two means: First, it
is configurable how often and in which intervals failed queries are retried. Second, if
queries still fail after the predefined amount of tries, the PDP takes a fallback decision.
Clearly, such a fallback decision depends on the policy being enforced, the scenario,
and the attacker model. Hence, our policies can be configured accordingly.
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3.5 Connecting Cassandra Nodes

When starting up, new Cassandra nodes need some way to discover the cluster they
ought to participate in. Cassandra achieves this by defining a fixed set of seed nodes,
through which new nodes can learn about the cluster. Since our original goal was to de-
velop a fully decentral infrastructure, we provide solutions to the problem of integrating
new nodes into an existing cluster without any well-known seed nodes. Unfortunately,
Cassandra does not provide an API to explicitly command a running Cassandra node to
further explore the cluster via some specific node. Having in mind that such a function-
ality would simplify the following solutions, we provide the following workarounds.

Recap the scenario described in §3.3, in which the very first policy p1, protecting
data d1, is deployed at PDPA, while PDPB is not yet enforcing any policies. At some
point in time, d1, and subsequently policy p1, is transferred to system B. In §3.3 we
assumed system B’s Cassandra node to participate in the cluster. Our solution is to
not start the Cassandra node together with the PDP/PIP, but only once the first global
policy ought to be enforced: Once PDPB receives policy p1 via remote procedure call
from PDPA, this call includes the address of system A’s Cassandra node. Knowing this
address, system B will start its Cassandra node, using the given address as a seed node.

Now, consider an extended scenario in which systems PDPA and PDPB enforce pol-
icy p1, while PDPC enforces policy p2 which protects data d2. Since the sets of systems
enforcing p1 and p2 are disjoint, the overall cluster can be considered to be partitioned,
while the single partitions are not aware of any other partitions. Once d1 is transferred
to system C, these two partitions must be merged. Since an explicit ‘explore’-command
as described above is missing, we solve this problem as follows: Once d1 is transferred,
we start a temporary Cassandra node which uses both A’s Cassandra node as well as
C’s Cassandra node as seed nodes. Exploring the cluster through this temporary node,
the previously autonomous parts of the cluster will get to know about each other. Once
this has happened, the temporary node can be taken down again.

4 Evaluation

Since our goal was to improve over the communication and performance overhead
imposed by a centralized approach, we conducted case studies to understand which
approach causes which overheads in which situations. After detailing our experiment
setup, we elaborate on the results obtained by enforcing ECA rules 1a, 1b and 2.

System Setup. Our virtual environment was based on VMware ESXi 5.1.0 with a host
capacity of a 8x2.6GHz CPU and 128GB RAM. All machines, s0..s7, were configured
with a 4x2.6GHz CPU. Further, s0 was configured with 16GB RAM, s1..s7 with 4GB
RAM each. All machines run Linux Mint 17.1 64 bit, kernel 3.13.0; Cassandra was
used in version 2.1.2; the infrastructure of PDP/PIP and its connection to Cassandra
was written in Java 8; PEP and PDP communicated via Thrift 0.9.2. For the central
system setup, s0 was hosting the central PDP/PIP instance, which was responsible for
policy evaluation and data flow tracking for several PEPs being run on systems s1..s7.
In this case, no Cassandra instance was run. For the decentral setup, systems s1..s7 all
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Fig. 4: Communication overhead when enforcing Policy 1a on three systems.

run exactly one instance of PEP, PDP, PIP, and Cassandra; s0 was not used. All cross-
system communication was encrypted using SSL; Cassandra used CL=Quorum.

Parameters. We identified and experimented with the following parameters: (i) the
policy being enforced, (ii) the total number of systems being usage controlled, (iii) the
number of systems actually enforcing the policy, (iv) the event frequency, (v) the per-
centage of events relevant for data flow tracking and/or policy evaluation. Although
those parameters impose a huge complexity on the performed experiments, we are con-
fident that our results provide a good understanding of their influence on any overheads.

Experiment Execution. For each measurement we fixed all of the above parameters
and randomly generated an event trace that matched the given (global) event frequency;
each event was randomly assigned to one of the participating usage controlled systems.
We then let the experiment run for 30 seconds, whereby the policy was evaluated upon
every trigger event as well as for a timestep interval of one second. After each run, we
reset the entire infrastructure. Note, that our PEPs intercepted the system events both
before and after their execution, resulting in a desired event and an actual event being
sent to the PDP. The data was gathered using tcpdump and standard datetime utilities.

We present the results that we obtained by enforcing ECA rules 1a, 1b and 2. For ECA
rules 1a and 1b we fixed the total number of systems being usage controlled to three,
and all of those systems where actually enforcing the policy. For ECA rule 2, a total
number of seven usage controlled systems were monitored and enforcing the policy.

Communication Overhead. Fig. 4 and Fig. 5 show the global communication over-
head when enforcing ECA rules 1a and 1b, respectively. We experimented with the
event frequency and the percentage of events relevant for data flow tracking and policy
evaluation. Trends are visualized using linear regression.



A Fully Decentralized Data Usage Control Enforcement Infrastructure 13

0

20k

40k

60k

80k

100k

120k

140k

160k

Bytes/sec

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 Events/sec

Distributed; 0% relevant events
Distributed; 10% relevant events
Distributed; 25% relevant events
Distributed; 50% relevant events
Distributed; 75% relevant events
Distributed; 100% relevant events
Centralized

4k
6k
8k

10k
12k
14k
16k
18k
20k

3 5 7 9 11 13 15 17 19 21

Fig. 5: Communication overhead when enforcing Policy 1b on three systems.

The results produced by the central system setup (Fig. 4 and Fig. 5, ) where
of little surprise: For each event being observed by a PEP, around 1070 Bytes were
exchanged between the PEP and the PDP. The percentage of relevant events did not have
any influence on the communication overhead. This is of no surprise when recapping
that the PEP is stateless and that every event must be signaled to the PDP.

Running our decentralized infrastructure, our first observation is that Cassandra
causes some base ‘noise’ of around 1050 Bytes/sec/node—independent of any oper-
ations being performed. This implies that the centralized approach will inexorably per-
form better in case of very low event frequencies as can be seen in Fig. 4 and Fig. 5.
However, depending on the event frequency as well as the percentage of relevant events,
our decentralized approach is capable of outperforming the centralized approach.

While in general event traces with a low percentage of relevant events perform par-
ticularly well (Fig. 4 and Fig. 5, (10% relevant events), (25%)), we also observe
some remarkable exceptions. First of all, aforementioned traces perform good for two
reasons: (i) policies can in many cases be conclusively evaluated locally, avoiding costly
lookups within the distributed database; (ii) a low percentage of relevant events implies
a small amount of state changes that must be notified to other PDPs and thus writ-
ten to the database. Secondly, traces with 0% of relevant events perform badly ( ),
since our infrastructure must perform database lookups for each event and timestep.
Thirdly, traces with a high percentage of relevant events also perform badly ( (75%),

(100%)). While in the latter case the PDPs can almost always decide locally, a high
amount of state changes must be notified to other PDPs. Thus, the lion’s share of the
communication overhead is due to state changes being written to the database.

As depicted in Fig. 4 and Fig. 5, ECA rule 1a can be evaluated more efficiently
than ECA rule 1b. The main reason is that evaluation of operator before in ECA rule
1a necessitates at most one database lookup per PDP per timestep, while in the worst
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Fig. 6: Communication overhead when enforcing Policy 1a on three systems.

case each repmin operator, which occurs twice in ECA rule 1b, necessitates one lookup
upon every event.

Fixing several event frequencies, Fig. 6 and Fig. 7 show how the percentage of rele-
vant events influences the total amount of Bytes being exchanged between all involved
systems. To compare those numbers, we normalize the measurements by dividing the
total amount of Bytes by the number of observed events. Again, for the centralized ap-
proach ( ) the communication overhead is constant (1070 Bytes per event) and the
percentage of relevant events does not influence the amount of Bytes being exchanged.

We observe that the decentralized approach performs best for high event frequencies
(Fig. 6 and Fig. 7, (67 Events/sec), (167 Events/sec)) and if the percentage of
relevant events is around 3% to 60%. Firstly, this is because higher event frequencies
exploit better Cassandra’s base noise, which keeps the database consistent. Secondly,
a low percentage of relevant events results in many situations in which the local PDPs
can decide conclusively, while a low amount of state changes must be signaled to other
PDPs. However, if the amount of relevant events is too low, then many lookups within
the database are required, while the presence of many relevant events results in many
writes to the database. Hence, the centralized approach outperforms the decentralized
approach if the percentage of relevant events is very low or very high (.2%, &85%;
concrete values depend on the policy and the event frequency, cf. Fig. 6 and Fig. 7).

Regarding the enforcement of ECA rule 2 within a total of seven usage controlled
systems, the most important difference to ECA rules 1a and 1b is the condition of ECA
rule 2. This condition is satisfied if event Web.decline(d) happened at least once in the
past. Once this event is observed for the first time and notified to all other PDPs, no fur-
ther coordination is ever needed. This is also reflected in our evaluation results. First of
all, we again observe a worst case scenario if no events relevant for policy evaluation are
happening (§A, Fig. 9, ). In this case each PDP must query the database upon each
evaluation in order to learn whether the event in question has happened at some remote
point. Since this event never happens, communication overhead is immense. However,
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Fig. 7: Communication overhead when enforcing Policy 1b on three systems.

once event Web.decline(d) has happened, then no further communication is required,
and we only observe Cassandra’s base noise (§A, Fig. 9, (10%), (25%),
(50%), (75%), (100%)). As for the other scenarios, the communication over-
head caused by the centralized infrastructure is linear in the number of events. Again,
§A, Fig. 10 shows that a very low percentage of relevant events (i.e. .2%) causes very
high communication overheads. However, different to the previous policies, §A, Fig. 10
reveals that for ECA rule 2 the communication overhead for higher percentages of rel-
evant events is constant; the decentralized approach outperforms the centralized ap-
proach if the global event frequency is higher than approximately 20 Events/sec.

In addition, we enforced ECA rule 1a within a total of seven usage controlled sys-
tems, only three of them being ‘aware’ of the protected data and thus enforcing the
policy. While the communication overhead in the centralized approach was the same
as in the scenarios described above, in the decentral approach it dropped to approxi-
mately 60% of the above values for ECA rule 1a: While in the central approach still
every event must be signaled to the central PDP, in our decentralized approach four out
of three PDPs are not aware of any copy of the protected data and thus they neither
enforce the policy nor participate in the corresponding Cassandra keyspace.

PDP evaluation times. Fig. 8 shows how many milliseconds it takes for an event to
be decided upon by the PDP for different event frequencies and percentages of relevant
events. For each event, this includes (i) the time to send the event from the PEP to the
PDP, (ii) the PDP’s evaluation process, and (iii) the time to send the decision to the PEP.

For the centralized infrastructure, we observe that the evaluation times increase as
the event frequency increases. Clearly, higher event frequencies push the central PDP
towards its limits, since more events must be processed by the single component. Also,
more events cause more load on the network an thus slightly higher network latency.
For the same reasons as discussed above, the percentage of relevant events is irrelevant.
Overall, the PEP usually gets responses from the PDP after 3 to 10ms.
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Fig. 8: PDP evaluation times when enforcing ECA rules 1a, 1b, and 2.

For the distributed infrastructure, we observed that the event frequency does not
influence the PDP’s evaluation times. However, we observe an anomaly when enforc-
ing traces with 0% relevant events. This is in correspondence with the communication
overhead and can be explained by the fact that in this case the PDPs can never conclu-
sively evaluate locally. Hence, for each event lookups within the database are required.
By using the Quorum consistency level, this results in remote requests to other nodes of
the cluster, decreasing performance of the evaluation process. In these cases, the PEP
may need to wait up to 16ms for the PDP’s response. In contrast, if an event trace con-
tains at least some relevant events, then the distributed decision process is capable of
outperforming the centralized approach by providing responses between 2 to 9ms.

Wrap-Up. Considering the bare numbers, we realize that a fully decentralized enforce-
ment infrastructure is not unconditionally superior to a centralized one. According to
our case studies, the adoption of a decentralized approach is particularly beneficial if (i)
event frequencies are high, (ii) the percentage of events relevant for policy evaluation
and/or data flow tracking is within a range of approximately 3% to 60%, and/or if (iii)
the policy being enforced allows for many locally conclusive evaluations.

Instead of blindly deploying either of those infrastructures, experiments as the ones
above should be performed, considering the concrete parameters, i.e. the policies, the
amount of systems, and the expected event traces, of a given application scenario. We
also envision that such experiments can be performed at runtime, and that the technol-
ogy in use (i.e. central or decentral) may be switched dynamically in correspondence
with those live observations. While Cassandra simplified the implementation of our in-
frastructure, it comes at the cost of performance and communication overhead. It stands
to reason that a tailored solution would improve upon those overheads.
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5 Related Work

Service Automata [17] address the problem of enforcing policies that cannot be de-
cided locally. For this, local “service automatons”, roughly equivalent to PEP, PDP and
PIP, monitor the execution of programs within a distributed system. If an automaton’s
knowledge is insufficient to take a policy decision, it delegates the decision to some
other automaton. For this, each security-relevant event is statically mapped to one sin-
gle responsible automaton; possibly conflicting events must be mapped to the same
automaton. In contrast, our approach does not rely on such a static mapping, but allows
each PDP to take the corresponding decisions. Further, Service Automata do not cater
to the fact that the data to be protected might be copied both within and across systems.

Lazouski et al. [8] provide a framework that enforces usage control policies if data
copies are distributed. Besides access and usage control rules, so-called PDP/PIP allo-
cation policies are embedded into the protected data, specifying which PDPs and PIPs
are involved in the decision process. Subject and object attributes required by the PDP
are stored at different PIP locations. Different to our approach, the proposed allocation
policies effectively introduce central components: for each protected data, the respon-
sible PDP is fixed. Also, each attribute is under the responsibility of one single PIP.
Failure of any of those components will break policy enforcement.

Bauer et al. [18] monitor LTL formulas in distributed systems using rewriting tech-
niques. Whenever a local monitor observes an event that influences policy evaluation,
the policy is rewritten according to predefined rules and then exchanged with the other
local monitors. Hence, the local monitors are capable of detecting violation or satisfac-
tion of the formula. The approach is different from ours in that it requires a synchronous
system bus. Further, our approach is more expressive by also considering state-based
usage control policies and by integrating data flow tracking.

Basin et al. [6, 25] are capable of detectively enforcing data usage policies in dis-
tributed systems. For this, log files are decentrally collected and a-posteriori (i.e. offline)
merged and evaluated against data usage policies. In contrast, our approach also allows
for the preventive enforcement of data usage policies.

6 Conclusions

We presented the first fully decentralized infrastructure for the preventive enforcement
of global data usage policies if the data to be protected, as well as the corresponding
data usage events, happen within multiple distributed systems.

We based the implementation of our infrastructure onto the distributed database
Cassandra. Local monitors, PEPs, observe data usage events within the distributed sys-
tem, and signal those events to local decision points, PDPs, which decide whether the
event complies with the data usage policies. Since remote PDPs might also observe
events that influence the local PDP’s decision, the PDPs exchange relevant informa-
tion via Cassandra. This way, we achieve consistent policy enforcement across multiple
PDPs without any central components. To minimize the amount of database queries, we
optimized our implementation using formal results from the literature.

We evaluated our infrastructure by comparing it with a centralized approach, in
which one single PDP is responsible for taking all policy decisions for all events being
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observed by all distributed PEPs. Our case studies revealed that the adoption of a de-
centralized infrastructure is particularly beneficial in case the frequency of the observed
system events is high and if approximately 3% to 60% of all events are of relevance
for policy evaluation and/or data flow tracking. In terms of PDP evaluation times, our
results revealed that the centralized and the decentralized approach perform similarly.
For our decentralized infrastructure, the PEP usually gets policy evaluation results from
the PDP within 2 to 9ms. While performing our experiments, we also realized that all
of the above evaluation results highly dependent on the policy being enforced. Notably,
there also exist policies (cf. ECA rule 2) for which the decentralized approach performs
tremendously better than the centralized one for most situations.

In any case, a decentralized infrastructure overcomes many problems omnipresent
in a centralized approach. By deploying all components locally and by replicating data
to different locations, there is no single point of failure and no need for a central com-
ponent to be always available for all clients.

In terms of future work, we plan to experiment with the different consistency levels
provided by Cassandra, which allow to trade consistency with performance. While we
will likely be able to improve performance and communication overhead, it would be
interesting to understand to which extent a non-strongly consistent database influences
the consistency of the distributed policy evaluations. Clearly, it would depend on the
considered scenario whether any such inconsistencies are acceptable. Depending on
those results, a further option is to abandon off-the-shelf databases and to implement
mechanisms specifically tailored to usage control requirements.
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Fig. 9: Communication overhead when enforcing Policy 2 on seven systems.
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