
Decentralized Distributed Data Usage Control

Florian Kelbert and Alexander Pretschner

Technische Universität München, Germany
{kelbert,pretschn}@cs.tum.edu

Abstract. Data usage control provides mechanisms for data owners to
remain in control over how their data is used after it has been shared.
Many data usage policies can only be enforced on a global scale, as they
refer to data usage events happening within multiple distributed sys-
tems: ‘not more than three employees may ever read this document’, or
‘no copy of this document may be modified after it has been archived’.
While such global policies can be enforced by a centralized enforcement
infrastructure that observes all data usage events in all relevant systems,
such a strategy involves heavy communication. We show how the overall
coordination overhead can be reduced by deploying a decentralized en-
forcement infrastructure. Our contributions are: (i) a formal distributed
data usage control system model; (ii) formal methods for identifying all
systems relevant for evaluating a given policy; (iii) identification of sit-
uations in which no coordination between systems is necessary without
compromising policy enforcement; (iv) proofs of correctness of (ii, iii).

1 Introduction

Consider a company’s financial department in which the CFO and her employees
collaborate via email. Business reports, contracts, and transactional information
are exchanged via email and edited by multiple employees. Employees also use
email to collaborate on documents that are not considered sensitive. However,
due to the other documents’ sensitivity and their decentral sharing, the company
deploys usage control [1,2] technologies on the employees’ devices with the goal
to enforce policies such as ‘document D1 must not be edited’ (P1), or ‘there
may be at most one ongoing edit process for document D2 at each point in time
and no editing is allowed after the CFO archived the final version’ (P2). What
is usually meant by such policies is that not only one particular file pertaining to
a document (e.g. D1) must be protected, but all copies and derivations of it: If
the document is copied to another file, loaded into a Java application or sent via
the network, all of these representations of D1 (file, java object, network packet)
must be protected [3, 4]. We refer to policies P1 and P2 throughout this paper.

Once representations of documents D1 and D2 have been emailed to multiple
employees and exist in different systems, each of those systems is in charge of
enforcing the corresponding policies P1 and P2 [5]. Intuitively, policy P1 can be
enforced locally by denying all edit requests for each local copy of D1. Policy
P2, in contrast, refers to events happening within multiple systems and intro-
duces dependencies between them. Thus, enforcement of policy P2 necessitates

In: Proc. 13th International Conference on Cryptology and Network Security
(CANS), Springer LNCS 8813, pages 353-369, October 2014, Heraklion, Crete,
Greece. The final publication is available at
http://link.springer.com/chapter/10.1007/978-3-319-12280-9 23.

1

http://link.springer.com/chapter/10.1007/978-3-319-12280-9_23

2 Florian Kelbert and Alexander Pretschner

coordination between all systems potentially capable of editing and archiving
representations of document D2.

Within one single system, usage control enforcement infrastructures are com-
monly implemented in correspondence with the XACML standard architec-
ture [6]: System-layer specific policy enforcement points (PEPs, e.g. for MS
Windows [7], OpenBSD/Linux [4], Mozilla Thunderbird [5]) intercept data usage
events (e.g., save, edit, send, archive) and signal them to the local policy decision
point (PDP) [3, 8, 9]. The PDP evaluates each event against the deployed data
usage policies and signals its decision back to the corresponding PEP, which will
then enforce it. For taking this decision, the PDP might need additional infor-
mation about the system’s state, such as subject and object attributes, or the
data’s current representations—also called the data flow state. Such information
is collected by the policy information point (PIP), which is queried by the PDP.

As indicated earlier, policy P1 can be enforced locally: The system’s PEPs
signal all edit events to their local PDP, which in turn queries the local PIP to
learn whether a particular edit event takes place on a representation of document
D1. If so, the PDP’s decision is to disallow the event.

Policy P2, however, can not be enforced by local PDPs/PIPs only: Assume
three representations of document D2 on three different systems. Whenever an
employee requests to edit a representation of D2, this edit event must only be
allowed if no other employee is currently editing a representation of D2. Similarly,
after the event archive has been performed by the CFO on a representation of
D2, all future editing requests must be disallowed. Because the representations
of D2 are decentrally shared and because edit and archive events can happen on
any of those systems, purely local PDPs are generally unable to decide about this
policy. Additional information is needed, e.g. ‘how many employees are currently
editing D2?’, and ‘has D2 been archived in the past?’.

Intuitively, policy P2, or, more generally, any policy referring to distributed
data and data usage events, can be enforced by a centralized enforcement in-
frastructure, i.e. a single global PDP/PIP (Fig. 1). However, such a centralized
infrastructure imposes the problem of heavy communication overhead, as all
data usage events from all relevant systems must be signalled to the central
PDP/PIP. Such an approach is particularly inappropriate if employees also work
on unprotected documents. Moreover, if employees work while travelling, each
event must be sent to the central PDP/PIP via a mobile internet connection.
This is likely to make the work cumbersome due to large communication delays

System

PEP

PEP

PEP

PEP

PEP
PEP PEP

PDP
/PIP

Fig. 1: Naive centralized enforcement.

PEP PEP

Subsystem 2

PEP

PEP

PEP

PEP

PEP

Subsystem 1

Subsystem 3
System

Coordination
Mechanisms

PDP/PIP

PDP
/PIP

PDP
/PIP

Fig. 2: Decentralized variant (§3-4).

Decentralized Distributed Data Usage Control 3

Decentral coordination
or central PDP/PIP

PEP Alice PDP/PIP Alice

representations of D1: {F1}
representations of D2: {F2}

PDP/PIP CFO PEP CFO

edit(F1)?
deny

edit(F2)?

allow
edit(D2)?

representations of D1: {}
representations of D2: {F3}

D2 edit
count: 1

edit(F3)?

deny
edit(D2)?

Denied because
of ongoing editedit(F2)!

D2 edit
count: 0

archive(F3)?

allow

archive(D2)!archive(D2)!

From now on all editing of D2 must always be denied according to P2.
No more coordination via central PDP/PIP is needed upon edit requests.

edit(F2)?
deny

edit(F3)?
deny

D2 edit
count: 0

Time

1

2

3

4

5

Fig. 3: Enforcement of policies P1 and P2 given the event trace of Table 1.

and the fact that PEPs usually block system execution upon each intercepted
event until the PDP’s decision is available [7, 10,11].

Our goal is to improve on this situation by reducing the amount of commu-
nication needed whenever global policies of the kind of P2 ought to be enforced.

Time Alice CFO
1 edit(F1)
2 edit(F2)
3 edit(F3)
4 archive(F3)
5 edit(F2) edit(F3)

Table 1: Event trace.

Our solution is an enforcement infrastruc-
ture that is inherently distributed. It deploys a
local PDP/PIP on each site, e.g., a physical de-
vice or virtual machine (Fig. 2). PEPs signal
events to these local PDPs/PIPs using fast inter
process communication. While the local compo-
nents can independently (i.e. without coordina-
tion with other PDPs/PIPs) decide P1, some co-
ordination with other PDPs/PIPs is still needed
for the enforcement of P2. Fig. 3 depicts the ad-
vantages of our proposed solution when enforcing P1 and P2, given the trace
of events in Table 1; and assuming F1 to be a representation of document D1,
and F2 and F3 representations of document D2. Dash-dotted arrows () in-
dicate expensive cross-system communication that is needed in a centralized en-
forcement infrastructure but not in our approach. Dotted arrows () indicate
communication that is introduced by our solution. Question marks (?) indicate
decision requests from PEPs to PDPs if intended events are intercepted. Excla-
mation marks (!) indicate to a PDP that an event has actually happened.

This work aims at minimizing the communication overhead for such a decen-
tralized enforcement infrastructure by providing the following contributions:

1. We provide a formal distributed data usage control system model (§3).
2. We provide formal methods to identify all systems potentially relevant for

evaluating a given data usage policy at any point in time (§4.1).
3. We provide insights in which situations communication between PDPs and

PIPs can be omitted (§4.2) without compromising policy enforcement.
4. We show the correctness of 2. and 3. in Appendices A and B.

4 Florian Kelbert and Alexander Pretschner

2 A Formal Usage Control Model

We recap a formal model for specifying and enforcing usage control policies
[3,4,12], where policies define constraints over system states and traces of events.
Before defining the syntax and semantics of policies (§2.3), we describe its foun-
dations, i.e. system events (§2.1) and system states (§2.2).

2.1 System events and system runs

Events E are defined by a name (set EName) and a set of parameters, which
are, in turn, defined by a name (set PName) and a value (set PValue): E ⊆
EName × P(PName × PValue). For an event e ∈ E , let e.n denote the event’s
name and e.p the set of its parameters. Furthermore, let obj ∈ PName denote
an event’s primary object whose value can be accessed using notation e.obj .

Event refinement. When specifying policies, it is not useful to define all
possible event parameters. Instead, one would like to specify only relevant pa-
rameters, quantifying over all unmentioned ones. In our example, it is irrelevant
which particular user edits document D2, but not the fact that D2 is edited.
Hence, refines ⊆ E × E defines a refinement relation on events: event e1 refines
event e2 iff they have the same event name and the parameters of e1 are a super-
set of the parameters of e2: ∀e1, e2 ∈ E : e1 refines e2 ⇔ e1.n = e2.n∧e1.p ⊇ e2.p.

System events S, i.e. events intercepted by PEPs at runtime in a real
system, are always maximally refined, i.e. all parameters are determined. Hence,
S = E \ {e ∈ E | ∃e′ ∈ E : e′ 6= e ∧ e′ refines e}.

System runs are modeled as traces, mapping each abstract moment in time
to the set of system events happening at that time: Trace : N→ P(S).

2.2 System states

Since the data to be protected may exist in multiple representations (e.g., doc-
ument D1 might be represented as a file, a java object, or a network packet),
a system’s state is defined in terms of the distribution of data within that sys-
tem [3,4]. Hence, we also refer to it as the system’s data flow state. We call the
data’s representations containers and C the global set of containers. The global
set of data to be protected by usage control policies is denoted D, and C∩D = ∅.

As motivated earlier, data usage policies are specified in terms of data, imply-
ing that the imposed restrictions also apply to all copies and derivations. Thus,
only elements v ∈ D are possible values for an event’s obj parameter when spec-
ifying policies. In contrast, system events e ∈ S operate on containers, which is
why elements v ∈ C are the only possible values for a system event’s obj param-
eter. Taken together, elements v ∈ C ∪ D are possible values for an event’s obj
parameter, (C ∪ D) ⊆ PValue. For the remainder of this paper we constrain the
set of possible values for event parameter obj to C ∪ D ∪ {ε}, reflecting the fact
that an event operates on a container, a data, or neither of the two, respectively.

System states Σ = C → P(D) map containers to data potentially stored in
them. In our example, σ ∈ Σ records which files, emails, and editing processes are

Decentralized Distributed Data Usage Control 5

representations of documents D1 and D2. Transition relation R describes how
the execution of system events S changes the system’s state: R ⊆ Σ×P(S)→ Σ.

Given a system trace t ∈ Trace and a point in time i ∈ N, the system’s state
is computed as σit = R(σi−1t , t(i− 1)); σ0

t = ∅ represents the trace’s initial state.
Instantiations of this generic data flow model, in particular semantics of R,

have been described for various system layers such as MS Windows [7], Open-
BSD/Linux [4], X11 [13], Thunderbird [5], as well as distributed systems [10].

Event refinement in the presence of states. Extending the earlier event
refinement, refinesΣ ⊆ (S ×Σ)×E describes the refinement between two events
in the presence of a given system state. The reason is that policies (§2.3) are
specified in terms of data (∃e2 ∈ E , d ∈ D : e2.obj = d), while system events
operate on containers (∃e1 ∈ S, c ∈ C : e1.obj = c). Hence, we need to evaluate
the system’s current state σ ∈ Σ in order to decide whether an event refines
another. We say that (e1, σ) refines e2 iff d ∈ σ(c) and if the parameters of e1
are a superset of the parameters of e2 when ignoring the obj parameter:

∀e1 ∈ S, e2 ∈ E , σ ∈ Σ : (e1, σ) refinesΣ e2 ⇐⇒ ∃c ∈ C, d ∈ D : e1.n = e2.n
∧ e1.obj = c ∧ e2.obj = d ∧ d ∈ σ(c) ∧ e1.p\{(obj , c)} ⊇ e2.p\{(obj , d)}

For instance, consider a state σ ∈ Σ in which file F1 is a representation of
document D1. Then ((edit , {(obj ,F1), . . .}), σ) refinesΣ (edit , {(obj ,D1)}).

2.3 Data usage policies

Building upon previous work [3, 14–16], we assume technical policies to be ex-
pressed as event-condition-action (ECA) rules: whenever a triggering Event is
detected and if it makes the Condition true, then (additional) Actions might
be performed. Because the policies’ conditions are formulated in terms of past
temporal logics, this work focuses on the evaluation of such formulas. Based on
the above foundations and [3], the syntax of ECA Conditions (Φ) is defined as:

Ψ = false | E
ΦΣ = isNotIn(D,P(C)) | isCombined(D,D,P(C)) | isMaxIn(D,N,P(C))
Φ = (Φ) | Ψ | ΦΣ | Φ and Φ | not(Φ) | Φ since Φ | Φ before N | repmin(N,N, E)

Ψ is self-explanatory. ΦΣdefines state-based operators for constraints on the
system’s data flow state: isNotIn(d,C) is true iff data d is not in any of the
containers C; isCombined(d1, d2, C) is true iff there is at least one container
in C that contains both data d1 and d2; isMaxIn(d,m,C) is true iff data d is
contained in at most m containers in C. For Φ, the semantics of and and not
are intuitive; α since β is true iff β was true some time earlier and α was true
ever since, or if α was always true; α before j is true iff α was true exactly
j timesteps ago; repmin(j,m, e) is true iff event e happened at least m times
in the last j timesteps. Further shortcuts include those for true and or ; plus
repmax (j,m, e) ≡ not(repmin(j,m + 1, e)); replim(j,m, n, e) ≡ repmin(j,m, e)
and repmax (j, n, e). The formal semantics of policies Φ are:

6 Florian Kelbert and Alexander Pretschner

∀t ∈ Trace, i ∈ N, ϕ ∈ Φ • (t, i) |= ϕ ⇐⇒ (ϕ 6= false)∧
∃e ∈ E , e′ ∈ t(i) • (ϕ = e ∧ (e′, σit) refinesΣ e)
∨∃d ∈ D, C ⊆ C • (ϕ = isNotIn(d,C) ∧ ∀c ∈ C • d 6∈ σit(c))
∨∃d1, d2 ∈ D, C ⊆ C • (ϕ = isCombined(d1, d2, C) ∧ ∃c ∈ C • {d1, d2} ⊆ σit(c))
∨∃d ∈ D,m ∈ N, C ⊆ C • (ϕ = isMaxIn(d,m,C) ∧ |{c ∈ C|d ∈ σit(c)}| ≤ m)
∨∃α, β ∈ Φ • ((ϕ = not(α) ∧ ¬((t, i) |= α))
∨(ϕ = α and β ∧ (t, i) |= α ∧ (t, i) |= β)
∨(ϕ = α or β ∧ (t, i) |= α ∨ (t, i) |= β)
∨(ϕ = α since β ∧ ∃j ∈ [0, i] • ((t, j) |= β ∧ ∀k ∈ (j, i] • (t, k) |= α)
∨∀k ∈ [0, i] • (t, k) |= α))

∨∃α ∈ Φ, j ∈ N • (ϕ = α before j ∧ (t, i− j) |= α)
∨∃j,m ∈ N, e ∈ E • (ϕ = repmin(j,m, e)

∧m ≤
∑j−1
k=0 |{e′ ∈ t(i− k)|(e′, σi−kt) refinesΣ e}|)

Policy enforcement is usually performed as sketched in §1 [3, 8, 9, 11, 13, 17].
With CEditProc denoting the set of all processes with the capability to edit doc-
uments [4], one way of expressing our example policies as ECA rules is:

P1 Event: (edit , {(obj ,D1)})
Condition: ϕ = true

Action: inhibit

P2 Event: (edit , {(obj ,D2)})
Condition: ϕ = not(isMaxIn(D2 , 0, CEditProc) and

not((archive, {(obj ,D2), (user ,CFO)})) since false)

Action: inhibit

3 A Distributed System Model

The model in §2 suggests a monolithic view on policy enforcement: at runtime
there is one single global trace and system state at any point in time. Techni-
cally, one central PDP/PIP globally observes the entire system. As this is likely
impractical in real-world distributed scenarios, we propose an extended model
in which multiple PDPs and PIPs observe different parts of the global system.

3.1 Individual and Concurrently Executing Subsystems

Adapting to the terms used in §2, we refer to the distributed system as a whole as
the system, which is, in turn, composed of a set of subsystems. In our terminology,
each subsystem is a set of possibly distributed system layers whose PEPs share
one single PDP. More technically, a subsystem may be an operating system
instance, a physical or virtual machine, a set of applications, or a set of physical
or virtual machines. A subsystem thus contains exactly one PDP/PIP and at
least one PEP (Fig. 2). We assume each subsystem to be assigned a unique
identifier s ∈ N, which could map to a MAC address or UUID in practice.

Decentralized Distributed Data Usage Control 7

For each subsystem s ∈ N we define Cs ⊆ C as its unique set of containers,
Ss ⊆ S as its unique set of system events1, Σs : Cs → P(D) as its set of states,
and Traces : N→ P(Ss) as its set of all possible runs, Traces ⊆ Trace. Because
we will ‘overlay’ traces of different subsystems shortly, we require each system
event e ∈ Ss to carry parameter sub with value s:

∀s, s′ ∈ N, e ∈ Ss : (sub, s) ∈ e.p ∧ s 6= s′ =⇒ Ss ∩ Ss′ = ∅ ∧ Cs ∩ Cs′ = ∅.2

Containers and system events for a set of subsystems M ⊆ N are defined by
∀M ⊆ N : SM =

⋃
s∈M Ss ∧ CM =

⋃
s∈M Cs.

Concurrent system runs. In practice, subsystems run in parallel and pro-
duce independent system traces: Each subsystem’s PDP observes a trace of sys-
tem events, ts ∈ Traces. Assuming sufficiently synchronized system clocks [18],
it is the union of these local observations that one single global PDP would
observe. When reasoning about this global behavior, the behavior of individ-
ual subsystems or of sets of subsystems, we will use notations tτs and tτM , in
order to refer to the trace of a particular subsystem s ∈ N or set of subsys-
tems M ⊆ N given a tuple τ of concurrently executing traces. The intuition is
that tτM overlays the concurrently executing traces of all subsystems m ∈M by
unifying all events happening in all subsystems m ∈ M at each point in time
i ∈ N . Let

∏
denote the Cartesian product. Then τ ∈

∏
n∈N Tracen is a tuple

of traces of all subsystems, and the m-th element of τ , i.e. τ.m, is a trace of
subsystem m ∈ N. The overlay of a set of traces of subsystems M ⊆ N, tτM , is
∀τ ∈

∏
n∈N Tracen, i, s ∈ N,M ⊆ N : tτs = τ.s ∧ tτM (i) =

⋃
m∈M (τ.m)(i) .

In the following, we will mostly talk about sets of subsystems M ⊆ N. The
same considerations apply to the single subsystems s ∈ N by letting M = {s}.

3.2 Policy Projections

When considering a set of subsystems M ⊆ N, it is generally not possible to con-
clusively evaluate a given policy ϕ ∈ Φ, since evaluation of ϕ might depend on
information unavailable within M . In our example (Fig. 3, Table 1), Alice’s PDP
cannot decide about event edit(F2) at time 2, since another employee might al-
ready be editing D2. However, Alice’s PDP can evaluate a projection of formula ϕ
of policy P2 by hiding parts that refer to other subsystems: Letting CA denote all
containers within Alice’s subsystem, subformula isMaxIn(D2 , 0, CEditProc ∩CA)
can be evaluated by Alice’s PDP. We will make use of these policy projections
in §4.2 with the goal to omit unnecessary coordination between subsystems. In
general, the projection ϕM ∈ Φ of ϕ ∈ Φ for subsystems M is defined as:

1 Events belonging to multiple subsystems (such as transfer(data,from,to)) are at-
tributed to the initiating one.

2 Parameter sub makes us redefine relations refines and refinesΣ , as this parameter
must not influence event refinement: ∀e1, e2 ∈ E , s, s′ ∈ N : e1 refines e2 ⇔ e1.n =
e2.n∧e1.p\{(sub, s)} ⊇ e2.p\{(sub, s′)}. We refrain from formally redefining refinesΣ .

8 Florian Kelbert and Alexander Pretschner

∀ϕ ∈ Φ,M ⊆ N,∃ϕM ∈ Φ : (ϕ = false ∧ ϕM = false)
∨(∃ α, β ∈ Φ • (ϕ = α and β ∧ ϕM = αM and βM)
∨(ϕ = α or β ∧ ϕM = αM or βM)
∨(ϕ = α since β ∧ ϕM = αM since βM)
∨(ϕ = not(α) ∧ ϕM = not(αM))

∨(∃ e ∈ E • (ϕ = e ∧ ϕM = e))
∨(∃ d1, d2 ∈ D, C ⊆ C • ϕ = isCombined(d1, d2, C)
∧ϕM = isCombined(d1, d2, C ∩ CM))

∨(∃ d ∈ D, C ⊆ C • ϕ = isNotIn(d,C) ∧ ϕM = isNotIn(d,C ∩ CM))
∨(∃ d ∈ D,m ∈ N, C ⊆ C • ϕ = isMaxIn(d,m,C)
∧ ϕM = isMaxIn(d,m,C ∩ CM))
∨(∃ α ∈ Φ, j ∈ N • ϕ = α before j ∧ ϕM = αM before j)
∨(∃ j,m ∈ N, e ∈ E • ϕ = repmin(j,m, e) ∧ ϕM = repmin(j,m, e))

4 Coordinating Subsystems

Deploying one PDP/PIP per subsystem necessitates their coordination for the
enforcement of certain policies: a PDP’s decision might depend on past decisions
and observations of other PDPs and PIPs, because policies might refer to events
or system states of multiple subsystems. For enforcing policy P2, all subsystems
(1) capable of editing or archiving documents and (2) having a representation of
D2 stored locally must generally coordinate their decisions and data flow states if
a representation of D2 is about to be edited. While naively each PDP/PIP could
disclose all of its knowledge to all other PDPs/PIPs or to one central PDP/PIP,
we aim at minimizing this coordination overhead. For this, we approximate the
set of subsystems relevant for evaluating a formula ϕ ∈ Φ (§4.1), and analyze in
which cases coordination between PDPs/PIPs can safely be omitted (§4.2).

4.1 Identifying Subsystems Relevant for Evaluating Formulas

Our goal is to approximate the subsystems relevant for evaluating ϕ ∈ Φ at time
i ∈ N, given the tuple of concurrently executing traces τ ∈

∏
n∈N Tracen, by

function sys(ϕ, i, τ). In particular, if |sys(ϕ, i, τ)| ≤ 1, then no coordination is
needed for evaluation of ϕ. We start by defining three auxiliary functions:

(1) awareC : P(C) → P(N) returns for a given set of containers the set of
subsystems that are aware of at least one of the given containers:

∀C ⊆ C : awareC (C) = {s ∈ N | Cs ∩ C 6= ∅}

(2) awareD : P(D) × N ×
∏

Trace → P(N) returns for a given set of data
items, a point in time, and a tuple of executing traces the set of subsystems in
which there exists a container that contains at least one of those data items:

∀D ⊆ D, i ∈ N, τ ∈
∏
n∈N Tracen :

awareD(D, i, τ) = {s ∈ N | ∃c ∈ Cs : D ∩ σiτ.s(c) 6= ∅}

Decentralized Distributed Data Usage Control 9

(3) mayHappen : E × N ×
∏

Trace → P(N) returns for an event e ∈ E , a
point in time, and a tuple of executing traces the set of subsystems in which an
event refining e might happen. This set contains all subsystems that are able to
perform events with name e.n and that are ‘aware of’ the data addressed by e:

∀e ∈ E , i ∈ N, τ ∈
∏
n∈N Tracen : mayHappen(e, i, τ) =

{s ∈ N | ∃e′ ∈ Ss : e.n = e′.n ∧ ∃d ∈ D • e.obj = d ∧ s ∈ awareD({d}, i, τ)}

sys(ϕ, i, τ) then returns all subsystems potentially relevant for evaluating ϕ:

∀ϕ ∈ Φ ∪ ΦΣ ∪ Ψ, i ∈ N, τ ∈
∏
n∈N Tracen :

sys(ϕ, i, τ) = {s ∈ Y | (ϕ = false ∧ Y = {})
∨(∃ α, β ∈ Φ ∪ ΦΣ ∪ Ψ • ((ϕ = α and β ∨ ϕ = α or β)

∧Y = sys(α, i, τ) ∪ sys(β, i, τ))

∨(ϕ = α since β ∧ Y =
⋃i
j=0(sys(α, j, τ) ∪ sys(β, j, τ))))

∨(∃ α ∈ Φ ∪ ΦΣ ∪ Ψ • ϕ = not(α) ∧ Y = sys(α, i, τ))
∨(∃ e ∈ E • ϕ = e ∧ Y = mayHappen(e, i, τ))
∨(∃ d1, d2 ∈ D, C ⊆ C • ϕ = isCombined(d1, d2, C)
∧Y = awareD({d1}, i, τ) ∩ awareD({d2}, i, τ) ∩ awareC (C))

∨(∃ d ∈ D,m ∈ N, C ⊆ C • (ϕ = isNotIn(d,C) ∨ ϕ = isMaxIn(d,m,C))
∧Y = awareD({d}, i, τ) ∩ awareC (C))

∨(∃ j,m ∈ N, e ∈ E • ϕ = repmin(j,m, e) ∧ Y =
⋃j−1
k=0 mayHappen(e, i− k, τ))

∨(∃ α ∈ Φ ∪ ΦΣ ∪ Ψ, j ∈ N • ϕ = α before j ∧ Y = sys(α, i− j, τ))}

We claim that subsystems sys(ϕ, i, τ) are sufficient to evaluate ϕ at time i,
given executing traces τ . Subsystems N\sys(ϕ, i, τ) do not influence evaluation
of ϕ, and no coordination is needed if |sys(ϕ, i, τ)| ≤ 1. We provide proofs of
correctness in Appendix A. We will refer to tτsys(ϕ,i,τ) as tτN , indicating that the
investigated trace is equivalent to what a single global PDP would have observed.

Considering example policy P1 (ϕ = true), sys(ϕ, i, τ) returns the empty
set, matching the intuition that P1 can always be evaluated locally. Considering
policy P2, sys(ϕ, i, τ) returns both Alice’s and the CFO’s subsystem, since repre-
sentations of document D2 exist in both subsystems and both subsystems exhibit
editing capabilities. Hence, both subsystems might influence policy evaluation.

4.2 Omitting Unnecessary Coordination

While in general coordination between subsystems is needed if an ECA mecha-
nism’s triggering event is observed and |sys(ϕ, i, τ)| > 1, there are situations in
which no coordination is required. We have seen that sys(ϕ, i, τ) returns both
Alice’s and the CFO’s subsystems for policy P2. However, at timestep 5 no co-
ordination takes place (cf. Fig. 3). This is because the CFO archived a represen-
tation of D2, in which case all further edit requests must be denied. Once Alice’s
PDP learns that this archiving event has happened, all further editing request
can immediately be denied by Alice’s PDP without any further coordination.

Given τ ∈
∏
n∈N Tracen and a policy ϕ ∈ Φ, there are special situations in

which we can deduce a formula ϕ′ ∈ Φ such that (i) trace tτM satisfies ϕ′ at

10 Florian Kelbert and Alexander Pretschner

time i ∈ N , and (ii) this local satisfaction of ϕ′ implies global satisfaction of ϕ,
formally: (tτM , i) |= ϕ′ =⇒ (tτN , i) |= ϕ. For example, a part of the condition of
policy P2 is not(isMaxIn(D2 , 0, CEditProc)) when converting P2’s condition into
disjunctive normal form (DNF). If Alice is already editing a representation of
D2, any further concurrent edit requests can be denied without coordination.

We formalize this intuition by predicate S ⊆
∏

Tracen × P(N)× N× Φ that
holds true iff for the tuple of executing traces τ ∈

∏
n∈N Trace and a set of

subsystems M ⊆ N, trace tτM satisfies ϕM ∈ Φ at time i ∈ N ((tτM , i) |= ϕM)
and if this implies global satisfaction of formula ϕ ∈ Φ at the same point in time
((tτN , i) |= ϕ). Similarly, the same argument holds for the violation of formula ϕ,
which can intuitively be expressed by negating formula ϕ:

∀τ ∈
∏
n∈N Tracen,M ⊆ N, i ∈ N, ϕ ∈ Φ :

(tτM , i) |= ϕM ∧ S(τ,M, i, ϕ) =⇒ (tτN , i) |= ϕ
∧ (tτM , i) 6|= ϕM ∧ S(τ,M, i,¬ϕ) =⇒ (tτN , i) 6|= ϕ.

Demanding ϕ ∈ Φ to be given in DNF, we define S ⊆
∏

Trace × P(N)× N× Φ
as follows. Proofs of correctness are provided in Appendix B.

∀τ ∈
∏
n∈N Tracen,M ⊆ N, i ∈ N, ϕ ∈ Φ ∪ ΦΣ ∪ Ψ : S(τ,M, i, ϕ)

⇐⇒ ϕ = true ∨ sys(ϕ, i, τ) ⊆M
∨(∃ e ∈ E , j,m ∈ N • (ϕ = e ∨ ϕ = repmin(j,m, e)))
∨(∃ d1, d2 ∈ D, C ⊆ C • ϕ = isCombined(d1, d2, C))
∨(∃ d ∈ D,m ∈ N, C ⊆ C • (ϕ = ¬isNotIn(d,C) ∨ ϕ = ¬isMaxIn(d,m,C)))
∨(∃ α ∈ Φ ∪ ΦΣ ∪ Ψ, j ∈ N • (ϕ = α before j ∧ S(τ,M, i− j, α))
∨(ϕ = ¬(α before j) ∧ S(τ,M, i− j,¬α)))

∨(∃ α, β ∈ Φ ∪ ΦΣ ∪ Ψ • (ϕ = α since β
∧(∃j ∈ [0, i] : ((tτM , j) |= βM ∧ S(τ,M, j, β)
∧∀k ∈ (j, i] : (tτM , k) |= αM ∧ S(τ,M, k, α)))

∨(∀k ∈ [0, i] : (tτM , k) |= αM ∧ S(τ,M, k, α)))
∨(ϕ = ¬(α since β)

∧(∀j ∈ [0, i] : ((tτM , j) 6|= βM ∧ S(τ,M, j,¬β)
∨∃k ∈ (j, i] : (tτM , k) 6|= αM ∧ S(τ,M, k,¬α)))

∧(∃k ∈ [0, i] : (tτM , k) 6|= αM ∧ S(τ,M, k,¬α)))
∨(ϕ = α and β ∧ S(τ,M, i, α) ∧ S(τ,M, i, β))
∨(ϕ = α or β ∧ ((tτM , i) |= αM ∧ S(τ,M, i, α)
∨(tτM , i) |= βM ∧ S(τ,M, i, β))))

This formalism allows us to identify situations such as in timesteps 4 and 5
of our example: After the CFO’s PDP has observed event archive(F3) at time 4,
subformula not((archive, {(obj ,D2), (user ,CFO)})) since false will always eval-
uate to false, implying that policy P2’s overall condition ϕ will always evaluate
to true. Consequently, all further edit requests can safely be disallowed by the
CFO’s PDP despite the fact that |sys(ϕ, i, τ)| > 1. Once Alice’s PDP gets in-
formed that archive(D2) happened (Fig. 3, time 4), it is capable of disallowing
any further edit requests (time 5) without coordination. In sum, all further co-
ordination for enforcing policy P2 can be omitted. Because of space limitations,
we do not detail this additional information exchange between PDPs here.

Decentralized Distributed Data Usage Control 11

5 Related Work

Chadwick et al. [9] investigate the coordination of distributed stateless PDPs in
the access control context. To synchronize resource access across time and space,
PDPs synchronize via central ‘coordination objects’ holding the coordination
attributes. Our work is different in that the distributed components are stateful:
even policies of a global scale might be evaluated locally (§4.2). Further, our focus
is on usage control rather than on access control and our contributions might
be implemented in a purely decentralized fashion. Also, our approach enforces
policies on all copies of the protected data rather than on only one instance.

Service Automata [11] realize distributed decisions by delegation: If a local
monitor’s (‘service automaton’ in [11]) knowledge is insufficient for taking a
decision, the decision process is delegated to another local monitor. However, this
delegatee is fixed for any pair of conflicting events, thus effectively being a central
enforcement point for all corresponding policies. Our approach, in contrast, can
be implemented in a pure decentral fashion. As [11] exclusively discusses ‘critical
events’, it remains unclear to which extent Service Automata are able to enforce
policies on all copies and derivations of data across systems.

Basin et al. [19] monitor compliance with data usage policies in distributed
systems in a detective manner: Locally collected logs are merged and a-posteriori
evaluated against data usage policies. While [19] also considers propagation of
data through the system, our solution targets preventive enforcement.

Lazouski et al. [8] allow for continuous usage control enforcement of data
whose copies are distributed. Among policies, also PDP/PIP allocation policies
are embedded into the protected data, and they are used by PEPs to locate
the PDPs/PIPs responsible for taking decisions. Different to our approach, the
responsible PDP is fixed throughout the data’s lifetime and for all its copies

Kelbert et al. [10] enable tracking of usage controlled data across systems, as
well as enforcement of local usage control policies. While distributed PDPs and
PIPs exchange information upon cross-system data flows, policies that are of a
global scale can not be enforced due to missing coordination between PDPs.

Complementary to our work, Janicke et al. [20] perform static analysis of
usage control policies with the goal to identify (in)dependencies between PDPs
(‘Controllers’ in [20]). Their analysis results reveal which concurrent decision
processes do (not) require synchronization via a central PIP.

Bauer et al. [21] monitor LTL formulas in distributed systems. By leveraging
formula rewriting techniques and exchanging rewritten formulas, local monitors
can detect satisfaction or violation. Instead of rewriting formulas, our approach
exchanges additional information between local monitors. Further, we leverage
peculiarities of data usage control policies to minimize communication overhead.

6 Conclusion, Discussion, and Future Work

We have shown how to reduce overall communication overhead when enforcing
global data usage control policies such as “only one employee may be editing

12 Florian Kelbert and Alexander Pretschner

document D1 at each point in time”. While a naive centralized enforcement
infrastructure would impose heavy communication overhead, we provide a dis-
tributed data usage control model that supports decentral monitoring of multiple
concurrently running systems. Once copies of the protected data, as well as their
corresponding usage policies, have been distributed, enforcement of policies that
refer to data and data usage events within multiple systems, necessitates the co-
ordination of the decentrally deployed enforcement mechanisms (i.e. PDPs and
PIPs). While naively each PDP/PIP could disclose all of its knowledge to all
other PDPs/PIPs, our contributions aim at reducing this communication over-
head. Hence, we provide formal methods to approximate all systems potentially
relevant for evaluating a given policy at each point in time. Subsequently, we can
limit coordination to this set of identified systems for enforcement of the given
policy. Moreover, we provide insights in which situations coordination between
distributed PDPs/PIPs can safely be omitted although the policy to be enforced
is of a global scale. Further, we show the correctness of our formal approaches.

We occasionally omitted details for simplicity’s sake. The literature [3,10,12,
22,23] discusses more complex data flow states, a slightly more expressive policy
language, and the differentiation between intended and actual system events:
While intended events can be intercepted, and consequently denied, before their
execution, actual events can only be observed thereafter. As our intention was
to prevent policy violations, we implicitly assumed events to be intended rather
than actual. However, the considerations in §3 and §4 apply to actual events as
well. We also tacitly assumed policies to be shipped along with the protected
data in case of cross-system data flows. Corresponding mechanisms have been
described in the literature [5, 8, 10,24].

While we have exemplified our general contributions along a running exam-
ple, the performance of our approach depends on the event traces being observed
(predicate S). While in our example no more coordination is needed starting from
timestep 5, other formulas might necessitate coordination between subsystems
at each point in time. Because of this and because there are usually several ways
to technically implement high-level usage policies, we see our contributions as
a basis for future work that investigates how policies ought to be specified or
transformed to allow for their most efficient enforcement. Along the same lines,
our contributions can serve as a basis for building efficient usage control enforce-
ment infrastructures: Given a set of concrete uses cases, i.e. event traces and
policies, our contributions can help to answer questions such as where to place
PDPs/PIPs in order to minimize communication and performance overhead.

We have not investigated whether the described coordination mechanisms
should be implemented in a centralized or decentralized fashion. Since both is
possible, we plan to implement both approaches and to compare them for several
use cases. Depending on the use case, we expect diverse evaluation results, thus
providing further insights into how an efficient enforcement infrastructure can
be built. While we have an intuitive understanding which information must
be exchanged between PDPs/PIPs (e.g. parts of the data flow state or events
happening), the planned implementation will shed further light on this question.

Decentralized Distributed Data Usage Control 13

Acknowledgements. This work was supported by the DFG Priority Pro-
gramme 1496 “Reliably Secure Software Systems - RS3”, grant PR-1266/3.

References

1. J. Park and R. Sandhu. The UCONABC Usage Control Model. ACM Transactions
on Information and System Security, 7(1):128–174, February 2004.

2. A. Pretschner, M. Hilty, and D. Basin. Distributed Usage Control. Communications
of the ACM, 49(9):39–44, September 2006.

3. A. Pretschner, E. Lovat, and M. Büchler. Representation-Independent Data Usage
Control. In Data Privacy Management, LNCS 7122, pages 122–140. Springer, 2012.

4. M. Harvan and A. Pretschner. State-Based Usage Control Enforcement with Data
Flow Tracking using System Call Interposition. In 3rd International Conference
on Network and System Security, pages 373–380, 2009.

5. M. Lörscher. Data Usage Control for the Thunderbird Mail Client. Master’s thesis,
University of Kaiserslautern, Germany, 2012.

6. T. Moses (ed.). eXtensible Access Control Markup Language (XACML) Version
2.0. OASIS Standard, pages 1–141, 2005.

7. T. Wüchner and A. Pretschner. Data Loss Prevention Based on Data-Driven Usage
Control. In IEEE 23rd Intl. Symp. Software Reliability Eng., pages 151–160, 2012.

8. A. Lazouski, G. Mancini, F. Martinelli, and P. Mori. Architecture, Workflows,
and Prototype for Stateful Data Usage Control in Cloud. In IEEE Security and
Privacy Workshops, 2014.

9. D. Chadwick, L. Su, O. Otenko, and R. Laborde. Coordination between Distributed
PDPs. In 7th IEEE Intl. Works. on Policies for Distr. Systems and Networks, 2006.

10. F. Kelbert and A. Pretschner. Data Usage Control Enforcement in Distributed
Systems. In Proc. 3rd ACM Conference on Data and Application Security and
Privacy, pages 71–82, 2013.

11. R. Gay, H. Mantel, and B. Sprick. Service Automata. In Formal Aspects of Security
and Trust, LNCS 7140, pages 148–163. Springer, 2012.

12. M. Hilty, A. Pretschner, D. Basin, C. Schaefer, and T. Walter. A Policy Language
for Distributed Usage Control. In Computer Security – ESORICS 2007, LNCS
4734, pages 531–546. Springer, 2007.

13. A. Pretschner, M. Büchler, M. Harvan, C. Schaefer, and T. Walter. Usage Con-
trol Enforcement with Data Flow Tracking for X11. In Proc. 5th International
Workshop on Security and Trust Management, pages 124–137, 2009.

14. A. Pretschner, M. Hilty, D. Basin, C. Schaefer, and T. Walter. Mechanisms for
Usage Control. In Proc. 2008 ACM Symposium on Information, Computer and
Communications Security, pages 240–244, 2008.

15. P. Kumari and A. Pretschner. Deriving Implementation-level Policies for Usage
Control Enforcement. In Proc. 2nd ACM Conference on Data and Application
Security and Privacy, pages 83–94, 2012.

16. P. Kumari and A. Pretschner. Model-Based Usage Control Policy Derivation. In
Eng. Secure Software and Systems, LNCS 7781, pages 58–74. Springer, 2013.

17. A. Fromm, F. Kelbert, and A. Pretschner. Data Protection in a Cloud-Enabled
Smart Grid. In Smart Grid Security, LNCS 7823, pages 96–107. Springer, 2013.

18. C. Kloukinas, G. Spanoudakis, and K. Mahbub. Estimating Event Lifetimes for
Distributed Runtime Verification. In Proc. 20th Intl. Conf. on Software Eng., 2008.

14 Florian Kelbert and Alexander Pretschner

19. D. Basin, M. Harvan, F. Klaedtke, and E. Zalinescu. Monitoring Data Usage in
Distributed Systems. IEEE Trans. on Software Eng., 39(10):1403–1426, 2013.

20. H. Janicke, A. Cau, F. Siewe, and H. Zedan. Concurrent Enforcement of Usage
Control Policies. In IEEE Workshop on Policies for Distributed Systems and Net-
works, pages 111–118, 2008.

21. A. Bauer and Y. Falcone. Decentralised LTL Monitoring. In FM 2012: Formal
Methods, LNCS 7436, pages 85–100. Springer, 2012.

22. E. Lovat, J. Oudinet, and A. Pretschner. On Quantitative Dynamic Data Flow
Tracking. In Proc. 4th ACM Conference on Data and Application Security and
Privacy, pages 211–222, 2014.

23. E. Lovat and F. Kelbert. Structure Matters – A new Approach for Data Flow
Tracking. In IEEE Security and Privacy Workshops, May 2014.

24. F. Kelbert and A. Pretschner. Towards a Policy Enforcement Infrastructure for
Distributed Usage Control. In Proc. 17th ACM Symposium on Access Control
Models and Technologies, pages 119–122, 2012.

A Proofs: Correctness of function sys

Assuming the formulas to be given in disjunctive normal form (DNF), we show
that function sys as defined in §4.1 is correct in the following sense: For any
tuple of concurrently executing traces τ ∈

∏
n∈N Tracen, point in time i ∈ N,

formula ϕ ∈ Φ, set of subsystems M = sys(ϕ, i, τ) and N ⊆ N\M it holds that

(tτM , i) |= ϕ ⇐⇒ (tτM∪N , i) |= ϕ.

In other words, the set of subsystems sys(ϕ, i, τ) is sufficient to evaluate ϕ at
time i given τ . Adding any other set of subsystems to the evaluation process
does not change the evaluation’s result. For each of the following proofs,
part a) shows (tτM , i) |= ϕ =⇒ (tτM∪N , i) |= ϕ, while
part b) shows (tτM , i) |= ϕ ⇐= (tτM∪N , i) |= ϕ.

Because subsystems’ states do not overlap (Σs : Cs → P(D) and Cs ∩ Cs′ = ∅
for s 6= s′), for any tuple of concurrently executing traces τ ∈

∏
n∈N Tracen,

any point in time i ∈ N, and any set of subsystems M ⊆ N we can define their
common state as σitτM = {x ∈ (C → P(D)) | ∃m ∈ M : x ∈ σitτm}. It follows that

∀M,N ⊆ N,M ⊆ N : σitτM ⊆ σitτN . We will make use of this relation between
states of sets of subsystems throughout the following proofs.

Decentralized Distributed Data Usage Control 15

Proof. For ϕ = e.

a) ∀τ ∈
∏
n∈N Tracen, i ∈ N, e ∈ E , ϕ = e,M = sys(ϕ, i, τ), N ⊆ N\M :

(tτM , i) |= ϕ
⇐⇒ ∃e′ ∈ tτM (i) : (e′, σitM)refinesΣ e
=⇒ ∃e′ ∈ tτM∪N (i) : (e′, σitM∪N

)refinesΣ e
⇐⇒ (tτM∪N , i) |= ϕ ut

b) Assume: ∃τ ∈
∏
n∈N Tracen, i ∈ N, e ∈ E , ϕ = e,M = sys(ϕ, i, τ)

N ⊆ N\M : (tτM∪N , i) |= ϕ ∧ (tτM , i) 6|= ϕ
⇐⇒ ∃e′ ∈ tτM∪N (i) : (e′, σitM∪N

) refinesΣ e
∧@e′′ ∈ tτM (i) : (e′′, σitM) refinesΣ e

=⇒ ∃e′ ∈ tτN (i) : (e′, σitN) refinesΣ e
=⇒ N ∩mayHappen(e, i, τ) 6= ∅

Since M = sys(e, i, τ) = mayHappen(e, i, τ) and N ⊆ N\M
=⇒ N ∩M 6= ∅ ∧N ∩M = ∅. Contradiction. ut

Proof. For ϕ = isCombined(d1, d2, C).

a) ∀τ ∈
∏
n∈N Tracen, i ∈ N, d1, d2 ∈ D, C ⊆ C, ϕ = isCombined(d1, d2, C),

M = sys(ϕ, i, τ), N ⊆ N\M :
(tτM , i) |= ϕ ⇐⇒ ∃c ∈ C : {d1, d2} ⊆ σitτM (c)

=⇒ ∃c ∈ C : {d1, d2} ⊆ σitτM∪N
(c) ⇐⇒ (tτM∪N , i) |= ϕ ut

b) Assume ∃τ ∈
∏
n∈N Tracen, i ∈ N, d1, d2 ∈ D, C ⊆ C,

ϕ = isCombined(d1, d2, C),M = sys(ϕ, i, τ), N ⊆ N\M :
(tτM∪N , i) |= ϕ ∧ (tτM , i) 6|= ϕ

⇐⇒ ∃c ∈ C : {d1, d2} ⊆ σitτM∪N
(c) ∧ @c′ ∈ C : {d1, d2} ⊆ σitτM (c′)

=⇒ ∃c ∈ C : {d1, d2} ⊆ σitτN (c) =⇒ ∃c ∈ CN : {d1, d2} ⊆ σitτN (c)

Since N ⊆ N\M and M = sys(isCombined(d1, d2, C), i, τ)
= awareD({d1}, i, τ) ∩ awareD({d2}, i, τ) ∩ awareC (C)

=⇒M ∩N = ∅ ∧M ∩N 6= ∅. Contradiction. ut

We omit proofs for further operators due to space limitations.

B Proofs: Correctness of predicate S

We show that predicate S as defined in §4.2 is correct in the following sense: For
any tuple of concurrently executing traces τ ∈

∏
n∈N Tracen, set of subsystems

M ⊆ N, point in time i ∈ N, formula ϕ ∈ Φ, it holds that

(tτM , i) |= ϕM ∧ S(τ,M, i, ϕ) =⇒ (tτN , i) |= ϕ.

Proof. For sys(ϕ, i, τ) ⊆M .

Follows immediately with the claims and proofs presented in §4.1 and §A.

16 Florian Kelbert and Alexander Pretschner

Proof. For ϕ = e

∀τ ∈
∏
n∈N Tracen, e ∈ E ,M ⊆ N, i ∈ N, ϕ = e :

(tτM , i) |= ϕM ⇐⇒ ∃e′ ∈ tτM (i) : (e′, σitτM) refinesΣ e

=⇒ ∃e′ ∈ tτN(i) : (e′, σitτN) refinesΣ e ⇐⇒ (tτN , i) |= ϕ ut

Proof. For ϕ = isCombined(d1, d2, C)

∀τ ∈
∏
n∈N Tracen, d1, d2 ∈ D, C ⊆ C,M ⊆ N, i ∈ N, ϕ = isCombined(d1, d2, C) :

(tτM , i) |= ϕM ⇐⇒ (tτM , i) |= isCombined(d1, d2, C ∩ CM)
⇐⇒ ∃c ∈ C ∩ CM : {d1, d2} ⊆ σitτM (c) =⇒ ∃c ∈ C : {d1, d2} ⊆ σitN(c)

⇐⇒ (tτN , i) |= isCombined(d1, d2, C) ⇐⇒ (tτN , i) |= ϕ ut

Proof. For ϕ = ¬isNotIn(d,C)

∀τ ∈
∏
n∈N Tracen, d ∈ D, C ⊆ C,M ⊆ N, i ∈ N, ϕ = ¬isNotIn(d,C) :

(tτM , i) |= ϕM ⇐⇒ (tτM , i) |= ¬isNotIn(d,C ∩ CM)
⇐⇒ ¬(∀c ∈ C ∩ CM : d 6∈ σitτM (c)) ⇐⇒ ∃c ∈ C ∩ CM : d ∈ σitτM (c)

=⇒ ∃c ∈ C : d ∈ σitτN (c) ⇐⇒ ¬(∀c ∈ C : d 6∈ σitτN (c))

⇐⇒ (tτN , i) |= ¬isNotIn(d,C) ⇐⇒ (tτN , i) |= ϕ ut

Proof. For ϕ = ¬isMaxIn(d,m,C)

∀τ ∈
∏
n∈N Tracen, d ∈ D,m ∈ N, C ⊆ C,M ⊆ N, i ∈ N, ϕ = ¬isMaxIn(d,m,C) :

(tτM , i) |= ϕM ⇐⇒ (tτM , i) |= ¬isMaxIn(d,m,C ∩ CM)
⇐⇒ |{c ∈ C ∩ CM | d ∈ σitτM (c)}| > m =⇒ |{c ∈ C | d ∈ σitN(c)}| > m

⇐⇒ (tτN , i) |= ¬isMaxIn(d,m,C) ⇐⇒ (tτN , i) |= ϕ ut

Proof. For ϕ = α before j

∀τ ∈
∏
n∈N Tracen, α ∈ Φ, j ∈ N,M ⊆ N, i ∈ N, ϕ = α before j :

(tτM , i) |= ϕM ∧ S(τ,M, i− j, α) ⇐⇒ (tτM , i) |= αM before j ∧ S(τ,M, i− j, α)
⇐⇒ (tτM , i− j) |= αM ∧ S(τ,M, i− j, α) =⇒ (tτN , i− j) |= α
⇐⇒ (tτN , i) |= α before j ⇐⇒ (tτN , i) |= ϕ ut

Decentralized Distributed Data Usage Control 17

Proof. For ϕ = α since β

∀τ ∈
∏
n∈N Tracen, α, β ∈ Φ,M ⊆ N, i ∈ N, ϕ = α since β :

(tτM , i) |= ϕM
∧(∃j ∈ [0, i] : ((tτM , j) |= βM ∧ S(τ,M, j, β)
∧∀k ∈ (j, i] : (tτM , k) |= αM ∧ S(τ,M, k, α))

∨∀k ∈ [0, i] : (tτM , k) |= αM ∧ S(τ,M, k, α))
⇐⇒ (∃j ∈ [0, i] : ((tτM , j) |= βM ∧ ∀k ∈ (j, i] : (tτM , k) |= αM

∨∀k ∈ [0, i] : (tτM , k) |= αM))
∧(∃j ∈ [0, i] : ((tτM , j) |= βM ∧ S(τ,M, j, β)

∧∀k ∈ (j, i] : (tτM , k) |= αM ∧ S(τ,M, k, α))
∨∀k ∈ [0, i] : (tτM , k) |= αM ∧ S(τ,M, k, α))

⇐⇒ ∃j ∈ [0, i] : ((tτM , j) |= βM ∧ S(τ,M, j, β)
∧∀k ∈ (j, i] : (tτM , k) |= αM ∧ S(τ,M, k, α))

∨∀k ∈ [0, i] : (tτM , k) |= αM ∧ S(τ,M, k, α)
=⇒ ∃j ∈ [0, i] : ((tN, j) |= β ∧ ∀k ∈ (j, i] : (tN, k) |= α)

∨∀k ∈ [0, i] : (tN, k) |= α
⇐⇒ (tN, i) |= α since β ⇐⇒ (tN, i) |= ϕ ut

Proof. For ϕ = α or β

∀τ ∈
∏
n∈N Tracen, α, β ∈ Φ,M ⊆ N, i ∈ N, ϕ = α or β :

(tτM , i) |= ϕM ∧ ((tτM , i) |= αM ∧ S(τ,M, i, α) ∨ (tτM , i) |= βM ∧ S(τ,M, i, β))
⇐⇒ ((tτM , i) |= αM ∨ (tτM , i) |= βM)
∧((tτM , i) |= αM ∧ S(τ,M, i, α) ∨ (tτM , i) |= βM ∧ S(τ,M, i, β))

⇐⇒ (tτM , i) |= αM ∧ S(τ,M, i, α) ∨ (tτM , i) |= βM ∧ S(τ,M, i, β)
=⇒ (tτN , i) |= α ∨ (tτN , i) |= β ⇐⇒ (tτN , i) |= α or β ⇐⇒ (tτN , i) |= ϕ ut

Proof. For ϕ = repmin(j,m, e)

∀τ ∈
∏
n∈N Tracen, j,m ∈ N, e ∈ E ,M ⊆ N, i ∈ N, ϕ = repmin(j,m, e) :

(tτM , i) |= ϕM ⇐⇒ (tτM , i) |= repmin(j,m, e)

⇐⇒ m ≤
∑j−1
k=0 |{e′ ∈ tτM (i− k) | (e′, σi−ktτM

) refinesΣ e}|
=⇒ m ≤

∑j−1
k=0 |{e′ ∈ tτN(i− k) | (e′, σi−ktN) refinesΣ e}|

⇐⇒ (tτN , i) |= repmin(j,m, e) ⇐⇒ (tτN , i) |= ϕ ut

Again, we omit proofs for further operators due to space limitations.

	Decentralized Distributed Data Usage Control
	Introduction
	A Formal Usage Control Model
	System events and system runs
	System states
	Data usage policies

	A Distributed System Model
	Individual and Concurrently Executing Subsystems
	Policy Projections

	Coordinating Subsystems
	Identifying Subsystems Relevant for Evaluating Formulas
	Omitting Unnecessary Coordination

	Related Work
	Conclusion, Discussion, and Future Work
	Proofs: Correctness of function sys
	Proofs: Correctness of predicate S

