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ABSTRACT

Distributed usage control is concerned with how data may
or may not be used in distributed system environments af-
ter initial access has been granted. If data flows through a
distributed system, there exist multiple copies of the data
on different client machines. Usage constraints then have to
be enforced for all these clients. We extend a generic model
for intra-system data flow tracking—that has been designed
and used to track the existence of copies of data on sin-
gle clients—to the cross-system case. When transferring,
i.e., copying, data from one machine to another, our model
makes it possible to (1) transfer usage control policies along
with the data to the end of local enforcement at the receiv-
ing end, and (2) to be aware of the existence of copies of the
data in the distributed system. As one example, we con-
cretize “transfer of data” to the Transmission Control Pro-
tocol (TCP). Based on this concretized model, we develop
a distributed usage control enforcement infrastructure that
generically and application-independently extends the scope
of usage control enforcement to any system receiving usage-
controlled data. We instantiate and implement our work for
OpenBSD and evaluate its security and performance.

Categories and Subject Descriptors

D.4.6 [Security and Protection]: Information flow con-
trols; D.4.6 [Security and Protection]: Access controls

General Terms

Security

Keywords

Distributed Usage Control; Policy Enforcement; Security
and Privacy; Sticky Policies; Data Flow Tracking

1. INTRODUCTION
Distributed usage control [26,30] has been proposed with

the goal of overcoming one shortcoming of access control
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models: loss of control over data once it has been released.
Usage control is therefore concerned with what must or must
not happen to data after access to it has been granted and is
particularly interesting in distributed system environments
[16, 18]. While traditional access control mechanisms are
deployed at the data provider’s site, distributed usage control
requirements must be enforced at the data consumer’s site.

Such requirements are expressed in usage control policies
by the data provider [11, 17, 34]. Example policies include
“only process my data with application X,” “do not redis-
tribute my data to company Y,” and “delete my data after
thirty days.” In a distributed setting, these policies must be
enforced at all systems that store, process, and distribute
data. Since data can easily be redistributed in today’s in-
ternet, it is particularly challenging to make sure that a
policy is enforced even after data has been transferred to an-
other system. This paper’s subject is the problem of build-
ing a usage control infrastructure that ensures that if data
is transferred, respective policies are transferred along with
the data, and that they will be enforced at the receiving end.

1.1 Motivating Example
Consider a company in which confidential digital busi-

ness reports are repeatedly handled by several cooperating
employees of the finance department for means of creation,
modification, approval, and reading. Although the com-
pany deployed state-of-the-art security mechanisms such as
encrypted and access controlled shared file servers, Public-
Key Infrastructures, and secured web services, a data breach
happened recently: an employee sent business reports to a
server outside the company. While the employees, including
Alice and Bob, should be able to do their work as usual, the
CEO does not want such incidents to happen ever again.

The CEO thus decides to equip all servers and client ma-
chines with a usage control infrastructure and to deploy a
policy stating that“business reports may not leave the finan-
cial department.” Now, once Alice tries to access a business
report on the shared file sever, the file server’s usage con-
trol infrastructure determines whether also Alice has such
an infrastructure in place and, if so, allows the access. Our
infrastructure will then also transfer the usage policy and
enforce it on Alice’s machine. Similarly, Alice would then
only be able to share the report with Bob if he has the
corresponding infrastructure in place. This way, the CEO
can be sure that the business reports are not leaked—be
the attempt intentional or inadvertent. Note that in general
the CEO may also provide more complex policies consisting
of additional rules such as “only use with application X,”
“delete after 30 days,” or “do not modify.”
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1.2 Realization of Usage Control
Within one computer system, data exists in different rep-

resentations (e.g., file, pixmap, Java object) at different sys-
tem layers (operating system, window manager, Java virtual
machine). Therefore, the flow of data must be tracked at
and across different system layers. It has been shown how
usage control requirements can be enforced at each of these
layers [28]. To this end, a generic data flow model [10, 29]
as well as a generic enforcement infrastructure have been
proposed and instantiated at several system layers [33]. By
combining the instantiations of the data flow model and the
enforcement infrastructures of each single layer, policies can
be enforced at and across different layers of one system [33].
These instantiations of the data flow model do not take

into account the fundamentally distributed nature of data
usage control enforcement [10,29,33]. Other proposed mod-
els and implementations do not consider data flow track-
ing and/or fix data provider and data consumer before-
hand [2,12,18,20,21]. Despite being the natural way of data
dissemination in today’s internet, generic and application-
independent data dissemination in the context of usage con-
trol has, to our knowledge, not yet been investigated.
We address this shortcoming by extending a generic data

flow model for intra-system data flow tracking to the case
of cross-system data flow tracking. We use this model to
develop a Data Distribution Infrastructure (DDI). As one
example, we concretize the data flow model for internet com-
munication using the Transmission Control Protocol (TCP)
and instantiate both the concretized model and the DDI at
the operating system layer. This allows for generic, trans-
parent, and application-independent cross-system data flow
tracking, transferring usage control policies along with to-
be controlled data, and extending the scope of usage control
enforcement to any system receiving data.
Big Picture. If usage control requirements are to be

enforced within a single system, a Local Enforcement In-
frastructure (LEI) must be deployed on that system. The
task of the LEI is to (i) track the flow of data within and
across several system layers, (ii) take usage control policy de-
cisions, and (iii) enforce these decisions. Several LEIs have
been described and implemented [7, 10, 18, 29, 33, 44]. For
distributed systems, an additional Data Distribution Infras-
tructure (DDI) is needed. Its task is to (i) track the flow of
data across different connected systems, (ii) transfer the cor-
responding policies along with the data, and (iii) trigger the
receiving LEI to take care of local enforcement. The DDI
thus provides additional functionalities for usage control en-
forcement in distributed system environments. The subject
of this paper is the development of a generic DDI and its
integration with generic LEIs as depicted in Fig. 1. Because
the DDI transfers policies but is not responsible for local
enforcement, the content of any specific usage control policy
is irrelevant from the DDI’s perspective. As a consequence,
in this paper, we do not provide any concrete examples of
policies (see [7, 10, 18,29,33,44] for various LEIs).

1.3 Organization
We organize our work along six steps as follows:
Step A: Generic data flow model, §2.1. In order to

enforce usage control policies on all representations of a par-
ticular data item, the flow of that data must be tracked both
within one system and across systems. We recap a generic

System 1 System 2

Data Distribution

Infrastructure (DDI)

Local Enforcement

Infrastructure (LEI)
DDI LEI

System 3
DDILEI

DDI communication
Figure 1: Integration of LEI and DDI.

data flow model, a transition system that has been designed
to allow for data flow tracking within single systems.

Step B: Cross-system data flows, §2.2. We extend
the data flow model from step A to the cross-system case.

Step C: Concretization, §3. As one example, we con-
cretize the model of step B for TCP; we identify TCP-related
actions and describe how they change the data flow state.

Step D: DDI, §4. We develop a Data Distribution In-
frastructure (DDI) that allows for transparent and applica-
tion-independent cross-system data flow tracking and that
transfers policies along with data to be controlled. Using
this infrastructure, the scope of policy enforcement can be
extended to any system receiving usage controlled data.

Step E: Integration with LEI, §4. We integrate our
DDI with a Local Enforcement Infrastructure (LEI) for sin-
gle independent systems, thus combining cross-system and
intra-system data flow tracking and policy enforcement.

Step F: Instantiation, §5. We instantiate and imple-
ment both the concretized model and the integrated infras-
tructure for the OpenBSD operating system.

We evaluate our work in §6. In §7, we discuss the limi-
tations of our work and point to future work. §8 puts our
work in context. §9 concludes.

1.4 Contribution and Assumptions
In sum, we tackle the following research problem. If

data usage is to be controlled across system boundaries, then
policies need to be (1) transferred together with data when
data is transmitted and (2) enforced at the receiving end.
Current instantiations and implementations of usage con-
trol models do not consider generic data flows in-between
different connected systems but rather focus on one single
machine. Other solutions fix data provider and data con-
sumer beforehand, therefore not catering to the complexity
of today’s internet environment, where data may be arbi-
trarily redistributed by any data possessor.

Our solution is a model for cross-system data flow track-
ing and its concretization for TCP. We develop and deploy
a DDI, realizing application-independent cross-system data
flow tracking and the sticky policy paradigm for usage con-
trol. We instantiate our concepts for the OpenBSD operat-
ing system and evaluate our work. A demo video is available
at http://www22.cs.tum.edu/index.php?id=64.

We see our contribution in the development of a generic
usage control enforcement model for distributed systems.
We are not aware of usage control solutions that generically,
transparently, and application-independently (1) track the
flow of data both within one system and in-between differ-
ent connected systems, and (2) extend the scope of policy
enforcement to any system receiving usage-controlled data.

An implementation of the system connected to a smart
metering system has been published as a short demo paper
before [13]. In contrast, the present paper describes the
underlying theory and evaluates and discusses the approach.

Assumptions. To reduce complexity, we assume a static
network structure: the same IP address may not be assigned
to more than one host over time. Policy considerations such
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as policy specification, policy translation, and policy evo-
lution are out of the scope of this work; they are discussed
in [17,34,35]. We assume an initial policy to be deployed and
assume that the receiving end of a data transfer is equipped
with a usage control enforcement infrastructure. Policies
are assumed to be formulated in terms of system calls as
described in [17,33]. We discuss these assumptions in §6-§8.
Attacker Model. As motivated in §1.1, we consider non-

privileged end users on both local and remote systems to
be a threat w.r.t. sensitive data. Attempts to use usage
controlled data without respecting the corresponding policy
may be either intentional or inadvertent.

2. APPLICATION-INDEPENDENT CROSS-

SYSTEM DATA FLOW TRACKING
To extend the scope of usage control to other systems over

the network, data flow between the communicating systems
must be tracked. We recap a generic data flow model in §2.1
and provide an extension in §2.2 that allows for tracking
both cross-system and intra-system data flows.

2.1 Generic Data Flow Model
Step A. The data flow model presented in [10,29] allows

to overapproximate the existence of data item copies in a
system by capturing the flow of data within this system. To
this end, the distinction between abstract data (e.g., picture)
and data representations (e.g., file or database entry), so-
called containers, is made: containers are entities that may
contain data. The data flow model is a transition system:
states capture which data is stored in which container; state
transitions are initiated by actions related to data flow and
change the mapping between data and containers (i.e., which
containers potentially contain which data).
Formally, the model is a tuple (D ,C ,F ,Σ, σi ,P ,A, ̺); D

is the set of data items whose usage is restricted by a policy,
C is the set of containers, and F is the set of identifiers
that are used to identify containers. P ⊆ C are all possible
principals in the system; principals may have read sensitive
data (which is why they are considered a subset of C ) and
they can, as opposed to other containers, invoke actions from
the set of all possible actions A. Σ = (C → P(D)) × (C →
P(C ))× (P × F → C ) are all possible states of the system;
σi is the initial state. A state therefore consists of three
mappings: (1) A storage function s : C → P(D) capturing
which data is potentially stored in which container. (2) An
alias function l : C → P(C ) capturing that some containers
may implicitly get updated whenever other containers do:
If c2 ∈ l(c1) for c1, c2 ∈ C , then any data written into
c1 is immediately propagated to c2. (3) A naming function
f : P×F → C capturing the mapping from principal-relative
identifiers to containers. f (p,n) thus returns the container
that can be accessed by principal p ∈ P via identifier n ∈ F .
Actions A change the system state; these changes are

described by relation ̺ ⊆ Σ × P × A × Σ. Additional
notation for specifying state changes is needed. For any
mapping m : S → T and an element x ∈ X ⊆ S , de-
fine m[x ← expr ]x∈X = m ′ with m ′ : S → T such that
m ′(y) = expr if y ∈ X and m ′(y) = m(y) if y 6∈ X .
Multiple updates for disjoint sets are combined by func-

tion composition ◦. The replacements are done simultane-
ously and atomically; the semicolon is syntactic sugar:

m[x1 ← exprx1 ; . . . ; xn ← exprxn ]x1∈X1,...,xn∈Xn =
m[xn ← exprxn ]xn∈Xn ◦ . . . ◦m[x1 ← exprx1 ]x1∈X1

Function f − returns the set of all names for a given con-
tainer: ∀ c ∈ C : f −(c) = {(p,n) ∈ P × F | f (p,n) = c}

The described model was originally designed to model
the flow of data within one system. In §2.2 we provide an
extended model to allow for both intra-system and cross-
system data flow tracking from a global point of view.

2.2 Cross-system Data Flow Tracking for IP
All major application-level protocols (e.g., HTTP, FTP,

SMB, SSH, DNS) in today’s internet build on the Internet
Protocol (IP) which transfers data packets between internet
hosts in a best-effort manner. Protocols at the transport
layer bridge the gap between IP (host-to-host communica-
tion) and application-layer protocols (end-to-end application
communication) by delivering the data packets addressed to
a particular host to the correct process running on that host.

Step B. On the basis of the model of step A we provide
a model that allows for both intra-system and cross-system
data flow tracking from a global point of view. Our model
supports any protocol building on IP and is applicable to all
unicast internet-based communication.

Hosts. Since we investigate cross-system data flows, we
need to introduce the concept of hosts. In real-world sys-
tems, multiple IP addresses may be assigned to the same
host, which is why we define a host as a set of IP addresses.
We consider all IP addresses to be globally unique: no IP
address may be assigned to more than one host over time.
Exceptionally, each host can refer to itself by using several
reserved IP addresses. For IPv4, these are all IP addresses
starting with “127.”, while in IPv6 the single address “::1”
is reserved. We refer to any of these addresses as localhost
(lo). We consider lo to be a reserved value within IPAddr
where IPAddr is the set of all IP addresses. The set of hosts
H ⊆ P(IPAddr \ {lo}) is defined such that

∀ hx , hy ∈ H : hx 6= ∅ ∧ hy 6= ∅ ∧ (hx ∩ hy 6= ∅⇒ hx = hy)

Therefore, each host hz ∈ H is identified by its set of
globally unique IP addresses. Note that ∀ hz ∈ H : lo 6∈ hz .
Additionally, we define Port as the set of network ports.

Principals. Principals P are processes. They are also
containers (P ⊆ C ) because their memory is a possible lo-
cation for data. Each process runs on exactly one host, while
a host can run multiple processes at the same time. Each
process p ∈ P is assigned a host-relative process ID (PID).
Thus, the set of principals P is defined as P = H × PID .
Function h : P → H returns for each process p ∈ P its host
hp ∈ H . In order to model the fact that a network communi-
cation endpoint (i.e., a network socket) bound to IP address
lo ∈ IPAddr is only able to communicate with processes run-
ning on the same host, we define ∀ p ∈ P , ∀ a ∈ h(p)\{lo} :
scope(p, lo) = {q ∈ P | h(p) = h(q)} and scope(p, a) = P as
the set of all processes that can communicate with process
p via p’s network socket that is bound to IP address a.

Containers. We consider both network sockets (CS )
and the runtime memory of each process (i.e., the processes
themselves) as containers: CS ∪ P ⊆ C .

Identifiers. Network socket containers are identified by
process-relative file descriptors e ∈ FS , which are only valid
for the process that created the socket. For network commu-
nication, processes refer to other processes’ sockets using an
IP address and a port. Yet, this is not sufficient to uniquely
identify a socket, since a process may use the same IP ad-
dress and port for different communications. For this rea-
son, a socket is identified by the IP address and port of the
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caller and the IP address and port of the receiver, called lo-
cal socket name and remote socket name, respectively. Note
that the remote socket is not necessarily on a different ma-
chine. Hence, the set of identifiers F is F = FS ∪ (FN ×FN )
with FN = (IPAddr × Port).
Actions. We consider all system calls related to IP net-

working and writing to and reading from file descriptors as
actions. System calls are provided by the operating system
kernel and may be invoked by user-space processes to access
resources, communicate, retrieve system information, and
the like. Actions (system calls) are performed by principals
(processes) and may change the system’s data flow state as
defined by ̺ (cf. §3).
The presented model allows for intra-system and cross-

system data flow tracking for any unicast communication
method building upon IP. As one example, §3 concretizes
this extended generic data flow model for TCP.G

3. CROSS-SYSTEM DATA FLOW

TRACKING FOR TCP
Since IP does not provide means for end-to-end appli-

cation communication, different protocols at the transport
layer bridge the gap between IP and the corresponding app-
lication-layer protocol. The most well-known protocols at
this layer are the User Datagram Protocol (UDP) and the
Transmission Control Protocol (TCP). While UDP is a con-
nectionless protocol (no dedicated connection is established
between the communication partners and no delivery guar-
antees are provided), TCP is a connection-based protocol
providing reliable data delivery. Using TCP, a client and a
server process establish a full-duplex connection before ex-
changing data. Two network sockets exist, each allowing for
sending and receiving data on one end of the connection.
We model and realize cross-system data flow tracking at

the level of TCP. Before we model the protocol in detail in
terms of ̺ in §3.1-§3.3, let us provide a high-level overview
of TCP-related system calls (cf. Fig. 2): First, both client
and server create a communication endpoint, called socket,
(system call socket) and bind a name, i.e. an IP address
and a port, to it (bind). The server then marks its socket as
passive (listen) and waits for incoming connections (accept).
The client then initiates a connection to the server’s passive
and listening socket (connect). Once accept and connect
return, the TCP communication channel has transparently
been set up by the underlying operating systems. The pro-
cesses may then exchange any kind of information by writing
to and reading from the network sockets using a variety of
system calls (e.g., write, read). Finally, the communication
channel is torn down (shutdown, close, exit).
Step C. We concretize the cross-system data flow model

for TCP networking at the layer of the operating system.
At this layer, TCP-relevant actions are system calls [10,21].
Since most application layer protocols rely on TCP, our con-

shutdown()

socket()

ServerClient

socket()

bind()

connect()

listen()

accept()

read()/write() read()/write()

shutdown()

bind()

Connection Establishment

Data Transmission

Figure 2: Sequence of TCP-related system calls.

cretization supports a variety of internet protocols, including
web browsing, e-mail, and file transfer. In order to model
the data flow according to our model (cf. §2.2), we need to
define the transitions ̺ for TCP-related system calls.

3.1 Connection Establishment
socket. First, each communication partner must execute

the socket system call. With parameter SOCK STREAM
socket creates a new unconnected socket for connection-
based communication (i.e., TCP) on top of IP. socket re-
turns a file descriptor e ∈ FS that identifies the newly cre-
ated socket container c ∈ CS for the calling process p ∈ P :

∀ s ∈ [C → P(D)], ∀ l ∈ [C → P(C )], ∀ f ∈ [P × F → C ],
∀ p ∈ P ,∀ e ∈ FS , ∀ c ∈ CS :
((s, l , f ), p, socket(e, c), (s, l , f [(p, e)← c])) ∈ ̺.

bind, listen. After creating a socket, each communication
partner p ∈ P must bind the local socket name to its socket.
bind is especially important for the server process, because
it will be waiting for incoming connections and its socket
name must therefore be fixed and known. The server process
then marks its socket as passive using system call listen. A
listening socket may neither initiate connections nor be part
of an actual communication channel. bind and listen do not
change the data flow state.

accept. The server process then performs an accept sys-
tem call on the passive and listening socket. accept does not
return until an actual connection establishment request to
that socket has been made. We discuss the accept response
and the respective state transition shortly.

connect. The client process then initializes the actual
connection establishment by issuing system call connect. Pa-
rameters are file descriptor e ∈ FS of the client’s socket, as
well as IP address aS ∈ IPAddr and port xS ∈ Port of the
server’s listening socket. If the client’s socket has not been
bound explicitly before, connect does an implicit call to bind.
connect returns successfully, once the connection to (aS , xS )
has been established. Parameters ac ∈ h(p) and xc ∈ Port
correspond to the local socket name of the client’s connected
socket. This information is retrievable from the operating
system via e once the connection has been established:

∀ s ∈ [C → P(D)], ∀ l ∈ [C → P(C )], ∀ f ∈ [P × F → C ],
∀ p ∈ P ,∀ e ∈ FS , ∀ aS ∈ IPAddr ,∀ aC ∈ h(p),
∀ xS , xC ∈ Port :
((s, l , f ), p, connect(e, aS , xS , aC , xC ), (s, l ,
f [(q , ((aC , xC ), (aS , xS )))← f (p, e)]q∈scope(p,aC ))) ∈ ̺.

The establishment of the communication channel is mod-
eled along with the accept response at the server’s side as
follows. Note that our model assumes that connect always
returns before accept ; we cater to this assumption in §5.1.

accept (cont.). Once the server’s accept returns, a new
communication channel has been established by the oper-
ating systems. For this purpose, a new socket has been
created and connected to the remote (client’s) socket that
requested the connection establishment. Output parame-
ters of accept are a socket file descriptor e ∈ FS referring
to the newly created socket container c ∈ CS and the local
socket name (aC , xC ) ∈ FN of the client’s connected socket.
(aS , xS ) ∈ h(p) × Port refers to the local socket name that
can be retrieved from the operating system via e.

Connection establishment finally is modeled by bidirec-
tionally aliasing the server’s and client’s socket containers:
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Figure 3: Integration of LEI and DDI and interplay of the DDI’s components.

∀ s ∈ [C → P(D)], ∀ l ∈ [C → P(C )], ∀ f ∈ [P × F → C ],
∀ p ∈ P ,∀ e ∈ FS , ∀ c ∈ CS ,

∀ aS ∈ h(p),∀ aC ∈ IPAddr ,∀ xS , xC ∈ Port :
((s, l , f ), p, accept(e, aC , xC , aS , xS , c), (s,
l [c ← f (p, ((aC , xC ), (aS , xS )));
f (p, ((aC , xC ), (aS , xS )))← c],

f [(p, e)← c;
(q , ((aS , xS ), (aC , xC )))← c]q∈scope(p,aS ))) ∈ ̺.

3.2 Data Transmission
Once the TCP connection has been established, the corre-

sponding processes may write to and read from the commu-
nication channel. Modelling sending and receiving of data
then corresponds to writing to and reading from any other
file descriptor as described in [10]. For completeness, we cite
the corresponding state changes for system calls write and
read ; l∗ denotes the reflexive transitive closure of function l .1

Other system calls for sending are sendmsg, pwritev, pwrite,
writev, send, sendto; system calls for reading are recvmsg,
preadv, pread, readv, recv, recvfrom. Their state transitions
are analogous: when writing, (potentially) all knowledge of
the process flows into the socket container and recursively
into all aliased containers. When reading, (potentially) all
knowledge from the socket container flows into the reading
process and recursively into all aliased containers:

∀ s ∈ [C → P(D)], ∀ l ∈ [C → P(C )], ∀ f ∈ [P × F → C ],
∀ p ∈ P ,∀ e ∈ FS :
((s, l , f ), p,write(e), (s[t ← s(t)∪s(p)]t∈l∗(f (p,e)), l , f )) ∈ ̺.

∀ s ∈ [C → P(D)], ∀ l ∈ [C → P(C )], ∀ f ∈ [P × F → C ],
∀ p ∈ P ,∀ e ∈ FS :
((s, l , f ), p, read(e), (
s[t ← s(t) ∪ s(f (p, e))]t∈l∗(p), l , f )) ∈ ̺.

3.3 Connection Teardown
After data transmission the connection is shut down. Sys-

tem calls shutdown, close, and exit cause a (potentially par-
tial) connection teardown.
shutdown. Using the shutdown system call, process p ∈

P may shut down all or part of the connection constituted by
the socket identified by file descriptor e ∈ FS . Parameter
SHUT RD disallows further receptions, SHUT WR disal-
lows further transmission, and SHUT RDWR forbids fur-
ther receptions and transmissions. In terms of the data
flow model, this has the following implications: In case of
SHUT RD, the socket container is emptied and all aliases
to it are deleted. In case of SHUT WR, all aliases from the
socket container are deleted. In case of SHUT RDWR, the

1∀ a ∈ C : l∗(a) is the smallest set satisfying
l∗(a) = {a} ∪ {b ∈ C | b ∈ l(a) ∨ (∃ c ∈ l(a) ∧ b ∈ l∗(c))}.

socket container is emptied and all aliases to and from it
are deleted; additionally, all its identifiers of type FN × FN

are deleted. We use the reserved value nil ∈ C to refer to
non-existing containers.

∀ s ∈ [C → P(D)], ∀ l ∈ [C → P(C )], ∀ f ∈ [P × F → C ],
∀ p ∈ P ,∀ e ∈ FS :
((s, l , f ), p, shutdown(e,SHUT RD), (s[f (p, e)← ∅],
l [c ← l(c)\{f (p, e)}]c∈C , f )) ∈ ̺.

∀ s ∈ [C → P(D)], ∀ l ∈ [C → P(C )], ∀ f ∈ [P × F → C ],
∀ p ∈ P ,∀ e ∈ FS :
((s, l , f ), p, shutdown(e,SHUT WR), (s,
l [f (p, e)← ∅], f )) ∈ ̺.

∀ s ∈ [C → P(D)], ∀ l ∈ [C → P(C )], ∀ f ∈ [P × F → C ],
∀ p ∈ P ,∀ e ∈ FS :
((s, l , f ), p, shutdown(e,SHUT RDWR), (s[f (p, e)← ∅],
l [f (p, e)← ∅; c ← l(c)\{f (p, e)}]c∈C ,

f [x ← nil ]x∈{(q,n)∈f−(f (p,e))|n∈FN×FN })) ∈ ̺.

close, exit. Process p ∈ P may close a file descriptor
e ∈ FS using system call close. The behaviour of close is
modeled as described in [10] by mapping identifier (p, e) to
nil . Yet, if (p, e) is the last remaining file descriptor for
socket c = f (p, e) (i.e., P×FS ∩ f

−(f (p, e)) = {(p, e)}), the
connection is implicitly shut down by the operating system.
In this case, we model an implicit shutdown with parameter
SHUT RDWR. When a process exits (system call exit), all
of its file descriptors and TCP connections are closed alike.

We have concretized the cross-system data flow model by
defining transition relation ̺ for TCP-related system calls.
It enables us to know which data is—due to over-approxi-
mations induced by the semantics of the write system call:
potentially—stored on which system whenever data has been
transferred via TCP. In §4 we develop a usage control en-
forcement infrastructure; §5 will show how this technical in-
frastructure uses the presented cross-system data flow model.

4. A DISTRIBUTED ENFORCEMENT

INFRASTRUCTURE
Step D. In order to practically extend the scope of us-

age control enforcement to the system that receives usage-
controlled data, we develop a Data Distribution Infrastruc-
ture (DDI, Fig. 3) to (1) track cross-system data flows as
modeled in §2.2 and §3, (2) transfer policies along with the
to-be controlled data, and (3) deploy the policy at the re-
ceiving end where the respective local enforcement infra-
structure is responsible for its local enforcement. The main
components are a distribution-enhanced Policy Information
Point (PIP), which implements ̺ as defined in §3, and a
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Figure 4: Connection establishment according to §3.1 and §5.1.

Policy Management Point (PMP). The infrastructure is dis-
tributed in that its components must be deployed on any
system that is expected to enforce usage control policies.
Each PIP holds the data flow state of the system on which
it is deployed. The PMP manages all usage control poli-
cies for data entering, leaving, and residing in the system on
which it is deployed. Both the PIP and the PMP are able
to communicate with their respective counterparts on other
systems. Thus they allow for the exchange of information
regarding cross-system data flows and usage policies when
data flows between systems take place. We provide more de-
tails of our infrastructure when presenting its instantiation
in §5. At this point we assume that the receiving system has
the necessary infrastructure in place; this is discussed in §6.
Step E. We integrate the DDI into a Local Enforcement

Infrastructure (LEI) for single independent systems [10,33].
The main components of the latter are a Policy Enforcement
Point (PEP), a Policy Decision Point (PDP), and a local Pol-
icy Information Point (PIP). Fig. 3 shows an instantiation
of the integrated infrastructure for two operating system in-
stances, C and S .
Initially, the PMP of system C deploys a usage control pol-

icy (Fig. 3, step 0) for some specified data. From this point
onward, the LEI monitors the corresponding data, tracks its
local copies—including any derivations even after operations
such as compression or encryption—, and enforces the policy
upon every usage of that data as follows: The PEP is tai-
lored to one system layer (in our case the operating system);
its task is to intercept attempted and actual events within
this layer (system calls). The PEP temporarily blocks the
execution of these events and signals them to the PDP (step
1). The PDP decides for each event whether it conforms to
the deployed usage control policy. In order to take this de-
cision, the PDP queries the PIP for additional information
about the data flow state (steps 2,3) and then decides, on
the grounds of this information and the usage control pol-
icy, whether to allow, inhibit, delay, or modify the event in
question [31]. The PDP returns the decision to the PEP
(step 4) which enforces it. If an actual event happened, the
PEP signals the event to the PIP (step 5) that then updates
the system’s data flow state accordingly. [10] describes how
the state evolves for intra-system data flow system calls and
thus also how any modifications to the data are tracked.
If a TCP-related system call happens on system C (anal-

ogous for system S), it is intercepted and evaluated by the
components of LEIC (PEPC, PDPC). The PIPC compo-
nent of DDIC, which implements the transition relation ̺

described in §3, then communicates the fact that the sys-
tem call happened as well as the relevant parameters to
PIPS (step 6), thus realizing cross-system data flow tracking.

Upon data transmission, PIPC additionally informs PMPC

(step 7). PMPC then transfers the respective usage control
policies to PMPS (step 8), thereby realizing the sticky policy
paradigm. PMPS eventually deploys the policy on system S
(step 9). Details for steps 6 through 9 are provided in §5.

5. INSTANTIATION
Step F. To show the usefulness of our approach, we in-

stantiate the concretized cross-system data flow model (§3)
and the integrated enforcement infrastructure (§4) for the
OpenBSD operating system. As explained in §4, all usage
control enforcement components are deployed on each op-
erating system instance. While the PEP must be deployed
locally, this is not inevitable for PDP, PIP, and PMP. How-
ever, deploying PDP and PIP remotely would lead to com-
munication overhead and thus to higher system response
times and lower performance. This is because system calls
happen frequently and usage control decisions must be taken
for each. Hence, we chose to deploy all components locally.
PIPs keep the data flow state of their local system. The
work presented here extends the knowledge of local PIPs
with information about data that has been communicated
to or from other PIPs. The product of the storage, alias,
and naming functions (cf. §2.1) of all PIPs corresponds to
the system’s global data flow state.

Systrace [36] has been used to implement the PEP; it al-
lows to intercept, observe, modify, and prohibit system calls
both before and after their execution by the kernel. Using
systrace, no modifications to the operating system itself are
needed; details are provided in [10, 36]. While LEIs at the
operating system layer have been built before [7,10,44], our
DDI implementation complements this work for TCP-based
data flows and policy enforcement on multiple machines. We
will now look into the crucial parts of the implementation.

5.1 Connection Establishment
If two communicating processes, pS and pC (server and

client), run on the same host, the local PIP tracks the data
flow through the local TCP connection. In contrast, if pS

and pC run on two different hosts (cf. Fig. 4), the PIPs
of the two DDIs must communicate the fact of connection
establishment. As soon as the TCP communication chan-
nel has been set up by the underlying operating systems,
both the server’s accept and the client’s connect return and
are intercepted by the corresponding PEPs. On the server
side, PEPS then asks OSS for the assigned local socket name
(as , xs) and notifies PIPS that the event happened. PIPS

then creates a new socket container c and assigns the corre-
sponding identifiers as described in §3.1 by updating naming
function f . PIPS then communicates the socket’s ID (c),
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Figure 5: Data transmission according to §3.2 and §5.2.

its local socket name (as , xs), and its remote socket name
(ac , xc) to PIPC. If this remote procedure call (establish con-
nection()) is about to be handled by PIPC before the cor-
responding client’s connect response, it is put on hold un-
til the client’s connect returned. Similarly, upon return of
the client’s connect, PEPC asks OSC for the assigned local
socket name (ac , xc) and notifies PIPC, which then assigns
the corresponding identifiers according to §3.1 by updating
naming function f . From the information sent by PIPS,
PIPC can then identify the client’s socket container (c′) and
create the alias to the server’s socket container (c) by up-
dating the alias function l as described in §3.1. PIPC replies
to PIPS with the ID of the client socket container (c′) and
PIPS then creates the second alias from c to c′.

5.2 Data Transmission
After connection establishment, pS and pC may cause

cross-system data flows by writing to the TCP channel. If pC

(analogous for pS) executes sytem call write (or any equiva-
lent, cf. §3.2) on a file descriptor referring to a TCP channel
to pS, PIPC and PIPS realize cross-system data flow track-
ing, while PMPC and PMPS implement the sticky policy
paradigm as follows (cf. Fig. 3 steps 6-9 and Fig. 5)2:
When pC’s write is intercepted and temporarily blocked

by PEPC, PIPC is informed and updates its storage function
s according to §3.2. PIPC then performs a call to PIPS con-
veying the information that the set of abstract data items
Dpc (i.e., all data read by pC) is going to be transmitted to
the aliased socket container c (data flow update()). PIPS

therefore updates its storage function s according to §3.2.
PIPC then informs PMPC about the transmission of Dpc to
socket container c (inform()), and PMPC performs a call to
PMPS, transferring the set of usage control policies Ppc that
apply to any of the data items in Dpc (transfer()). PMPS

then deploys the policies on system S. On success, pC’s
write is unblocked and the actual data transfer succeeds.
While they are conceptually different, our implementation
bundles the two remote procedure calls (data flow update(),
transfer()) for performance reasons.
As soon as pS reads from the aliased socket container c,

PDPS and PIPS are already aware of the cross-system data
flow and the corresponding policies, therefore extending us-
age control to system S. Note that PIPC’s data flow state
may change in-between two write system calls of pC (e.g.,
if pC reads additional data). In this case the remote com-
munication (i.e., data flow update(), transfer()) needs to be
repeated upon the next write system call.

2We assume that PDPC decided to allow the write; other-
wise no cross-system data flow (tracking) would happen.

5.3 Connection Teardown
If a TCP connection between two processes on different

hosts is torn down, this fact is communicated between the
corresponding PIPs; parameters are the connection’s iden-
tifiers (local socket name and remote socket name) and the
type of connection teardown. Each PIP is then responsible
for updating its state according to §3.3.

Note. By its very nature TCP communication is limited to
two communication partners. Thus all considerations in §3-
§5 are limited to a client and a server system. For distributed
scenarios with a larger number of systems our infrastructure
and its features apply transitively.

6. EVALUATION

6.1 Provided Guarantees
If the presented integrated infrastructure (LEI and DDI) is

in place and not tampered with, the CEO (cf. §1.1) can now
be sure that all copies and derivations of business reports
are accompanied with the usage control policy he specified
(duty of the DDI), and that employees can use the business
reports only in accordance with the policy (duty of the LEI).
As described in §2-§5, the CEO’s policy is always transferred
along with the business reports and enforced on any receiv-
ing system—as long as TCP is used as the transport layer.
Via intra-system and cross-system data flow tracking at the
level of system calls, all copies and derivations of the busi-
ness reports are detected and protected on both local and
remote systems. While our DDI realizes cross-system data
flow tracking and the sticky policy paradigm, the LEI is
responsible for intra-system data flow tracking, policy deci-
sions and policy enforcement.

Assume that the CEO has defined a weaker policy that
permits Alice to share business reports with the PR depart-
ment after blackening certain parts of the report. Our sys-
tem would make sure that if Alice sends the report to Char-
lie, (1) Alice’s LEI blackens the corresponding parts and
(2) Alice’s DDI would send the policy along with the modi-
fied report to Charlie. Charlie’s usage control infrastructure
would work identically. A further recipient outside of the
company would then get the report from Charlie only after
blackening further details. Different semantics of this kind
of requirements are discussed in [35]. In other words, us-
ing our system, enforcement of usage control requirements
is not restricted to the initial data provider and the initial
data consumer, but rather to all (transitive) consumers of a
data item, as long as they are equipped with LEI and DDI.

We obviously assume that the receiving system has the
necessary distributed usage control infrastructure in place.
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Our current instantiation gives some kind of weak assur-
ance for this fact by (1) detecting whether usage controlled
data is transmitted to another system and (2) disallowing
the data transfer if the receiving system does not follow the
infrastructure’s protocol. We are aware that this only consti-
tutes an interim solution while more sophisticated solutions
are being developed, since attackers could easily circumvent
such a solution (cf. §6.2).
Considering the increasing amount of sensitive digital in-

formation in various environments (e.g., businesses, govern-
mental institutions, car to car communication, smart meters,
cyber-physical systems) as well as the increasing number of
embedded and integrated devices (e.g., phones, tablets, cars,
smart meters), we are convinced that within (semi-)closed
environments such usage control solutions can and will be-
come reality. For this, users must not have administrative
privileges on their computing devices and there must not
be means to modify underlying hard- and software. In con-
trast, in completely open environments it is unclear whether
such technologies can become reality, since trusted comput-
ing technologies would be needed to assure the existence of
a usage control infrastructure on a remote machine.

6.2 Attack Vectors
While we are aware that a security analysis cannot be ex-

hausting, the purpose of this section is to understand the
attack surface and vulnerabilities in our work. We consider
two attacker models: non-privileged end users (root users
cannot be controlled but only observed [25]) and a man-in-
the-middle between the two communicating systems. Goals
of the attackers (w.r.t. usage control in general and our in-
frastructure in particular) may be to (1) use usage-controlled
data without respecting the applicable policies or (2) render
the usage control infrastructure useless or unusable.
Assumptions. Since our work focuses on the distributed

aspect of usage control, we assume that usage control poli-
cies are enforced once they have been deployed locally. By
tackling usage control at the operating system layer, we must
assume that the operating system and the underlying hard-
ware are not vulnerable and that the user does not have
root privileges, since a root user could easily switch off the
usage control infrastructure. The latter assumption could
be avoided by exploiting trusted computing technologies to
assure that the usage control infrastructure, the operating
system, as well as underlying hardware are in a proper state
and that they cannot be modified in an unwanted way (i.e.
by disabling the enforcement infrastructure), cf. §8.
Non-TCP Communication. Since our implementation

investigates usage control at the TCP-layer, data could unre-
strictedly be redistributed using other transport layer proto-
cols, e.g. by tunneling TCP via UDP [23] or by redistribut-
ing data via non-TCP application-layer protocols such as
DNS. Additionally, users can share usage controlled data us-
ing protocols such as USB or Bluetooth. These attacks can
be addressed by disallowing any non-TCP data flows. Since
this is unlikely to be accepted in real world scenarios, usage
control must be extended to support these protocols. Our
model for cross-system data flow tracking has been devel-
oped for unicast communication using the Internet Protocol
(IP); in this paper TCP serves as just one example.
Portable media. In general, users have the possibility

to save usage controlled data to portable media, physically
removable hard disks, or the like. Such attacks can be pre-

vented by inhibiting all attempts to save usage-controlled
data to portable media or by mediating all corresponding
actions through encryption tools such as TrueCrypt [42].

Fool Infrastructure. If data is sent, the DDIs of the
communicating systems exchange information about cross-
system data flows and usage control policies. A malicious
user could set up fake usage control components, partic-
ularly the distributed parts of PIP and PMP, pretending
to have an enforcement infrastructure in place. An hon-
est infrastructure will then be fooled into thinking that the
remote enforcement infrastructure is in place while it ac-
tually isn’t. The malicious user would then receive usage
controlled data without having an enforcement infrastruc-
ture in place. Certificates cannot eliminate this attack but
introduce means for liability. Trusted computing technolo-
gies would be needed to defend against such attacks, cf. §8.

Man-in-the-Middle (MitM) Attack. A MitM attack
can be performed both on the actual data transfer and on
the DDI’s communication.

Considering the actual data transfer, a MitM could sniff or
modify the usage controlled data, and hence use the sniffed
data without having a usage control infrastructure in place.
Means to protect the data transfer exist, e.g. TLS [6], IPSec
[14], tcpcrypt [3]. While TLS is commonly used for security-
critical internet applications, it comes with the drawback
that it must be supported by both the application-layer pro-
tocol and the corresponding applications. For non-TLS ap-
plications, tcpcrypt and IPSec can be integrated, since they
are transparent to the application layer while providing sim-
ilar guarantees in terms of confidentiality.

A MitM could also attack the DDI’s communication by (1)
inserting, dropping, or changing usage control policies or in-
formation regarding cross-system data flow (e.g., dropping
messages between the PIPs) or by (2) changing the map-
ping between policies and data. Similarly, techniques like
IPSec or tcpcrypt may be used to transparently secure this
communication without interference with our infrastructure.

(Distributed) Denial-of-Service ((D)DoS) Attack.
(D)DoS attacks may be mounted both by the local user and
by a remote user by causing high amounts of system calls.
While a local user could mount such an attack by issuing any
kind of system calls, a remote user could do so by sending
(potentially from different sources) messages to open ports
that then result in system calls for the corresponding pro-
cess. Such attacks may lead to high system response times
and in the worst case render the usage controlled system
unusable. Since in this case no data usage is possible at all
(all system calls are handled sequentially by the same PEP),
soundness of the infrastructure (i.e., no non-controlled usage
of data) is not compromised by such an attack. Of course,
availability of data can then no longer be guaranteed.

6.3 Performance
Influencing Factors. Hardware as well as system and

network load will impact measurement results; in our case
network interfaces and bandwidth are particularly impor-
tant. The amount of system calls plays a significant role,
since we intercept the security-relevant ones and take us-
age control decisions at each. This amount is given by the
applications used for performance measurements, i.e. client
and server process. Another influencing factor is the time
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Figure 6: Performance measurement results.

needed for policy evaluation, which heavily depends on the
complexity of the policies that must be evaluated3.
Test Setup. For testing the performance of cross-system

data flow tracking, policy transfer, and policy deployment
(being the crucial parts of the presented DDI), we trans-
ferred files of sizes 100KB, 4MB, and 128MB between a
client process and a server process using HTTP and FTP—
two of the most popular protocols for transferring data on
today’s internet. Both server and client run the integrated
infrastructure consisting of (1) systrace for intercepting sys-
tem calls, (2) a LEI for intra-system data flow tracking and
policy enforcement (§4, step E, [10]), and (3) our DDI as
instantiated in §5.
We ran our tests on two dedicated computers4 that were

linked via a 100Mbit switch. No services other than the
enforcement infrastructure and the applications needed for
testing run on the machines. For file transfers via HTTP and
FTP we used Apache 2.2.15 and vsftpd 2.3.2 as server,
respectively. In both cases wget 1.12 was used as client ap-
plication. The time of data transfer was measured by invok-
ing wget with the time command. Each test was repeated
ten times; the observed standard deviation was negligible.
Since policy evaluations in the PDP are not subject of this

paper, we deployed a policy that constantly evaluated to al-
low. Also, our evaluation does not focus on other overhead
introduced by the LEI, since the overhead of such infras-
tructures has been discussed before [7, 10, 44].
Results. Fig. 6 and Table 1 show the results of our per-

formance evaluation. The overhead stems from (1) systrace
( ), (2) the LEI for tracking intra-system flows at the level
of the operating system ( ), and (3) the overhead induced
by this paper’s DDI in the best case ( ) and in the worst
case (the induced overhead being the sum of and : ).

Time for native systrace LEI DDI best DDI worst
file transfer case case
in seconds �

FTP 100KB 0.017 0.084 0.148 0.215 0.240

HTTP 100KB 0.014 0.043 0.105 0.120 0.145

FTP 4MB 0.369 0.397 0.499 0.597 0.800

HTTP 4MB 0.365 0.402 0.474 0.560 2.153

FTP 128MB 11.454 11.601 12.672 13.063 18.987

HTTP 128MB 11.463 11.602 12.426 14.394 64.816

Table 1: Detailed performance measurement results.

We differentiate the overhead of the DDI in a best case and
a worst case scenario for the following reason: As described
in §5.2, it may happen that the data flow state changes

3These are all policies referring to some data being stored
in some container being a parameter of the system call.
4Each Athlon 64 X2 3800+, 4GB RAM, Gigabyte GA-
K8NF-9 mainboard, Gigabit LAN; clean OpenBSD 4.9.

number of FTP Server: vsftpd HTTP Server: Apache
syscalls 100KB 4MB 128MB 100KB 4MB 128MB

write() 43 139 4107 22 996 32740

total 148 358 8294 52 1523 49139

performance overhead factor w.r.t. native execution

best case 11.66 0.61 0.14 7.29 0.53 0.25

worst case 13.15 1.16 0.65 9.01 4.90 4.65

Table 2: Number of system calls and performance overhead
for transferring files in OpenBSD 4.9.

in-between two write system calls, e.g. if the correspond-
ing process reads additional sensitive data. In this case the
communication between the remote PIPs and PMPs must be
repeated in order to update the data flow state of the receiv-
ing system and to transfer policies that have not been trans-
ferred before. In the worst case this communication must be
repeated upon every write, while in the best case the PMPs
and PIPs must communicate upon the initial write only.

In the best case the accumulated overhead induced by
the integrated infrastructure ranges from a factor of 0.14 to
11.66 w.r.t. native execution (�) (cf. Table 2). For trans-
ferring small files (100KB), we observe that the accumulated
overhead is higher for FTP than for HTTP. This is because
FTP operates on two TCP channels, a data channel and a
control channel, and our DDI monitors both. Operating on
two TCP channels also results in vsftpd issuing much more
system calls for transferring the same file of 100KB than
Apache (cf. Table 2). On the other hand, we observe that
for the 128MB test case, the overhead induced by our DDI
is higher for HTTP than for FTP. There are two reasons
for this: First, the overhead for establishing and monitoring
the FTP control channel is negligible for larger files. Sec-
ond, Apache issues eight times more write system calls than
vsftpd for transferring the same file (cf. Table 2). Since
the DDI has to re-evaluate the data flow state upon every
write in order to decide whether the PIPs and PMPs need
to communicate, this leads to a higher overhead for HTTP.

In the worst case, the accumulated overhead ranges be-
tween factors of 0.65 to 13.15 w.r.t. native execution (cf.
Table 2). Since in this case the PMPs and PIPs must com-
municate upon every write, the amount of write system calls
determines the induced overhead. Again, since Apache issues
much more write system calls for transferring large files, the
accumulated worst case overhead is higher for HTTP.

In sum, large parts of the performance overhead induced
by our infrastructure depends on the amount of system calls
issued by the server process. For this reason, the perfor-
mance overhead depends on the implementation of a proto-
col rather than the protocol itself. Also, we observed that
the performance overhead is smaller when transferring larger
files (cf. Table 2). Reasons for this are the bootstrapping
process of the file transfer, which has smaller performance
impact for large files, as well as the one-time policy transfer
and data flow tracking in our best case scenario.

While we did not take into account other protocols or
other implementations of HTTP/FTP, we are confident that
our measurement results are close to best and worse case sce-
narios for other protocols and implementations as well. We
base our confidence on two facts: First, the internal handling
of buffers and system calls of vsftpd and Apache is quite dif-
ferent: While vsftpd operates with little write system calls
on large buffers (4107 writes for 128MB), Apache operates
with many writes on small buffers (32740 writes for 128MB).
Second, HTTP and FTP are quite different from a techni-
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cal perspective, since FTP operates on two TCP channels.
Considering these differences and the fact that performance
overheads for our best case scenario are similar5, we are con-
fident that our results are representative. Considering the
difference in performance between our best case and worse
case scenario, we are convinced that our best case results are
close to real-world data usage scenarios, since (1) real world
applications do not read additional data while sending data
over the network and (2) usage control policies are rather
long-lived and thus they usually do not have to be resend
upon data transfer. Of course, additional overhead would
be introduced by securing our infrastructure with IPSec [9],
tcpcrypt [3], or remote attestation [15,25,38].
While we measured performance overheads of factors be-

tween 0.14 and 13.15 w.r.t. native execution (the worst case
overhead is thus one order of magnitude), we contextualize
these measurements in order to give an impression whether
such overheads are acceptable. In case of a one-time trans-
fer of 100KB, our measurements resulted in performance
overheads between factors of 7.29 and 13.15. Considering
that the transfer of a single file may then take 240ms in-
stead of 17ms, such an overhead is likely to be acceptable
in user-interactive workflows where such transfers happen
occasionally. In contrast, when large amounts of small files
are transferred in a sequence, e.g. 100 files of 100KB, a total
transfer time of 24s instead of 1.7s is likely not to be accept-
able in user-interactive applications. For transferring larger
files in the best case scenario, performance overhead factors
of 0.14 (FTP 128MB) to 0.61 (FTP 4MB) w.r.t. native ex-
ecution are likely to be acceptable. In general, acceptability
of performance overheads depends on the specific context.
Note that we did not optimize performance of our prototype;
the results thus show an upper bound for solutions like ours.

7. LIMITATIONS & FUTURE WORK
In our solution we focused on locally enforceable policies,

meaning that the local information flow state is sufficient to
take usage control decisions. We plan to extend our work
to support usage control policies that refer to the global in-
formation flow state, therefore being able to enforce policies
like “this data item must not reside in more than three sys-
tems,”“not more than five instances of this process may be
run at the same time,” or “access that data only four times.”
In this work we assumed a static network structure. Since

technologies such as DHCP and network address translation
(NAT) are in widespread use in today’s internet, we plan to
extend our work to this dynamic dimension.
Although our implementation supports most internet ap-

plications by realizing cross-system data flow tracking at the
level of TCP, other important usage control applications like
multimedia streaming and Voice over IP are not covered.
This is because such applications use UDP as transport
layer, as low-latency delivery is preferred to the guarantees
provided by TCP. We thus plan to instantiate our model for
UDP and/or tackle the problem of usage control at the level
of IP. This way, we are also able to address some “non-TCP
communication” attacks described in §6.2. This necessitates
the definition of state transitions ̺ for UDP/IP and adjust-
ment of the infrastructure to cope with the unreliability of

5100KB: 11.66 FTP overhead vs. 7.29 HTTP overhead;
4MB: 0.61 vs. 0.53; 128MB: 0.14 vs. 0.25; cf. Table 2.

UDP/IP. Multimedia streaming then also motivates to in-
vestigate multicast communication in usage control.

At the level of system call interposition, processes are con-
sidered black boxes that might write any of their knowledge
into a TCP channel. By tainting the communication channel
once usage-controlled data is (potentially) sent, all further
data transmitted on the same channel is considered tainted
as well. In order to overcome these overapproximations in
an application-independent manner, we plan to (1) apply
declassification techniques to our proposed solution and (2)
bring in knowledge about the application-level protocol.

Our solution does not cover side channels such as timing
attacks or power monitoring. Moreover, we did not put ex-
cessive effort into securing the prototypically implemented
infrastructure. Solutions to this have been proposed and
implemented; we give an overview in §8.

8. RELATED WORK
Application-dependent distributed usage control.

Some distributed usage control concepts [12,18] are applica-
tion(-protocol) dependent by integrating the PEP into the
application and incorporating policies into the application
protocol. These solutions fix data provider and data con-
sumer beforehand, thus not catering to bidirectional data
flows and redistribution of data as usual in today’s inter-
net. [5, 21, 22] realize usage control for grid computational
services by making the grid user deploy her application to-
gether with the policy. The application is monitored at the
level of the Java Virtual Machine, whereby system calls are
considered as security-relevant actions. Their approach is
different from ours in that the policy is defined for the appli-
cation instead of data. Since this approach does not consider
data flow, cooperating applications could circumvent the us-
age control policy, which is not possible with our solution
due to intra-system and cross-system data flow tracking.

Sticky Policies. In terms of sticking policies to data,
the back channel model [4] is close to our approach. In
this approach, on each system the communication between
PEP and PDP is mediated through an application indepen-
dent PEP (AIPEP). Once data is sent to another system,
the AIPEP is responsible for sending the sticky policy to
the AIPEP of the receiving system. The model differs from
ours, since it was one of our goals to integrate seamlessly into
an existing infrastructure for independent systems. Further-
more, we are not aware of corresponding implementations.

Trustworthiness of security mechanisms. As usage
control is naturally distributed and policies must be enforced
at the data consumer’s site, the latter must implement at
least the PEP. In order to convincingly spread distributed
usage control mechanisms, any remotely deployed compo-
nent must“behave in a ‘good’ manner and this manner [must
be verifiable] by the policy stakeholder” [45]. To this end,
solutions leveraging the Trusted Platform Module (TPM)
have been proposed [25,37,39,45]. Their basic idea is to ver-
ify the integrity of crucial system components (e.g., BIOS,
Bootloader, Operating System, usage control infrastructure)
before their execution and verify their integrity by compar-
ing the measurements to a set of known“good”values. [2,16]
propose to send data that is to be controlled only to data
consumers that persuade the data provider of having usage
control mechanisms deployed.

Digital Rights Management (DRM). DRM [1, 8, 19,
24, 41] refers to concepts and techniques that aim at con-
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trolling the usage and distribution of copyrighted, usually
read-only, digital information at the data consumer’s site.
DRM can therefore be considered a specialization of usage
control [32] that largely focuses on payment-based dissemi-
nation [26]; end users are not considered content providers:
DRM does not provide means to protect their valuable (per-
sonal) information. While some solutions [1] work with cen-
tral servers for storing keys, such a central component is
not needed in our approach. Also, DRM solutions [1, 24]
are tailored to specific file types and rely on specific appli-
cations to enforce digital licenses. Instead, our approach is
independent of particular file types and applications.
Detective enforcement. The work presented in this

paper enforces policies in a preventive manner: it is made
sure that policies are adhered to. Enforcement can also be
detective [27]: if a policy violation is detected, then vari-
ous measures can be taken; prevention is thus replaced by
accountability [43]. Our infrastructure can also be used for
detective enforcement: rather than preventing Alice from
forwarding the original business report to Charlie, the fact
that she did not blacken certain parts before forwarding can
be stored. A different approach is taken by Seneviratne [40]
who directly embeds information accountability into HTTP.
Different to our work, this approach is limited to one par-
ticular application-layer protocol and does not implement
preventive enforcement mechanisms but rather gives users
the opportunity to figure out how their data was misused
and to take appropriate action.

9. CONCLUSIONS
Today’s highly distributed computing environments lack

mechanisms when it comes to enforcing restrictions on the
usage of data after its release. This is relevant for both
privacy and the protection of intellectual property or se-
crets. To fill this gap, we have extended a model that allows
for intra-system data flow tracking to the cross-system case.
We have concretized the model for tracking all TCP data
flows at the level of the operating system by considering
networking-related system calls as security-relevant actions.
We based our work on a previously implemented infrastruc-
ture that can detect local intra-system data flows. In or-
der to extend this infrastructure to the enforcement of us-
age control policies in distributed systems, we developed a
distributed infrastructure for transparently and application-
independently tracking cross-system data flows as well. In
addition to tracking data flows to remote systems, this in-
frastructure takes care of transferring policies along with the
data to be controlled. By integrating this infrastructure with
an existing infrastructure for single independent systems, we
manage to track data both within and across systems and
enforce usage control policies at all systems processing usage
controlled data. We instantiated and evaluated the data flow
model and the enforcement infrastructure for the OpenBSD
operating system. Our measurement results yielded over-
heads between factors of 0.14 and one order of magnitude
w.r.t. native execution in a best case and a worst case sce-
nario, respectively. We conclude that acceptability of such
overheads depends on the specific context.
With an infrastructure like ours, it is now possible to not

only track and control the local flow of data in-between dif-
ferent representations (files, pixmaps, Java objects, etc.) on
one machine, but also across several machines. We believe
that this constitutes a further step towards the represen-

tation-independent protection of data in today’s company
intranets as well as cloud-based systems on the internet.
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