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Abstract—Usage control (UC) is concerned with how data may
or may not be used after initial access has been granted. UC
requirements are expressed in terms of data (e.g. a picture, a song)
which exist within a system in forms of different technical repre-
sentations (containers, e.g. files, memory locations, windows). A
model combining UC enforcement with data flow tracking across
containers has been proposed in the literature, but it exhibits
a high false positives detection rate. In this paper we propose
a refined approach for data flow tracking that mitigates this
overapproximation problem by leveraging information about the
inherent structure of the data being tracked. We propose a formal
model and show some exemplary instantiations.

I. INTRODUCTION

The goal of Data Flow Tracking (DFT) is to know where
particular data resides within a computing system. Correspond-
ing locations, or containers, for data include, among others,
memory locations, files, Java objects, windows, and hardware
registers. DFT has been investigated for many different system
layers using different approaches [1]–[4]. A common idea is
to mark containers with taint marks representing particular
data and to propagate these taint marks according to observed
system events. At any moment in time, every marked container
possibly contains the data represented by its taint marks.

Taint analysis is usually performed in three phases: (1)
Initial classification of containers; (2) Propagation of taint
marks according to the general rule “the result of an oper-
ation is marked with all taint marks of its operands”; (3)
Declassification of containers, e.g. if all content of a container
is deleted.1 The results of the taint analysis can then be
used for security purposes such as data leakage prevention or
enforcement of data integrity and data usage policies [5]–[7].

Because of these security goals, taint analyses tends to be
conservative, resulting in many false positives. Over time,
these overapproximations cumulate and lead to the so-called
label creep situation, where all taint marks are associated with
many system containers, making further data flow tracking
pointless. In particular, if the usage of tracked data is con-
strained by policies, the system’s stability might get compro-
mised because every marked container, actually containing the
data or not, would be subject to these constraints.

1 Because a taint mark represents a policy that imposes restrictions on
the usage of data, classification corresponds to assigning a taint mark to a
container and declassification corresponds to removing it.

Example Scenario: Email application
In an email application, where each different part of a mail

(Recipients, Subject, Body, Attachments, etc.) is modeled as
a container, events causing data flows are user actions such as
send, reply, forward, save, load, and print [8]. Assume a data
usage policy for the message body stating “this content must
not be printed”. Therefore, container ‘Body’ will be marked
with the “no-print” taint mark d3—in addition to other existing
restrictions, represented by taint marks d1 and d2 in Fig. 1.

If containers with different taint marks are combined into
one single container, existing DFT approaches will lead to
the result that these taint marks can no longer be separated. In
other words, all further operations on this single container will
propagate all taint marks, even if only part of it is accessed. If
the mail is saved into a file and then reopened (Fig. 1, top), a
naive application of the basic DFT principle leads to a situation
in which also the attachment could not be printed, because it
gets erroneously marked with d3 due to overapproximation.

Instead, what we would like to achieve is presented in
the bottom part of Fig. 1: After reopening a saved mail,
the association between containers and taint marks should
correspond to their association before the mail was saved.

Our solution works as follows: Once the mail’s containers
are aggregated into the single file container upon save, the file
is marked with a special taint mark dnew that captures which
source container is related to which taint marks (Fig. 1, bottom
center). From then on, dnew is propagated like any other taint
mark by the operating system’s and other applications’ DFT,
e.g. upon copying, compression, or encryption. Even if these
layers are not able to interpret the structure associated with
dnew, they will preserve and propagate it. Once the file, or any
copy of it, is reopened by the mail client (load), the structure
of dnew is used to properly declassify each part of the mail,
maintaining only the original taint marks (Fig. 1, bottom right).
Proposed Solution

Generalizing from the example, a common source of over-
approximations is the bottle-neck pattern depicted in Fig. 2: If
the content of multiple containers with different taint marks is
merged into one single container, then the resulting container
(intermediate container, from now on) is marked with all
taint marks of its sources. By applying the basic rule of
taint propagation explained above, further operations on this
intermediate container will unconditionally propagate all taint
marks, resulting in the aforementioned overapproximation.
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Fig. 1. Result of tracking the flow of data while saving a mail to a file and reopening it with (above) and without (below) the use of structured taint marks.

Other scenarios in which the bottleneck pattern can be
observed include: compression of several files into one archive
and subsequent decompression, copy-pasting data via the
clipboard, and transferring content via pipes or sockets. In all
of them, each destination container (like a file extracted from
an archive) should only be tainted with the taint marks of one
specific source (the same file before compression), rather than
with all taint marks of the intermediate container (archive file).

Our solution builds on one central observation common to
all of these scenarios: there exists a pair of dual merge and split
operations. While a merge operation (such as save) aggregates
content from different sources into one intermediate container,
like c in Fig. 2, the corresponding split operation (such as
load) reads the same content and separates it into multiple
containers, each matching exactly one of the source containers.

The solution we propose is a generic model for data flow
tracking that, in correspondence of a merge operation, marks
the intermediate container with a special structured taint mark
that represents all taint marks of the source containers. Such
taint mark is then leveraged by split operations to propagate
only selected taint marks to each destination, thus effectively
declassifying the destination containers. This mitigates the
label creep issue by decreasing the amount of false positives.

Note that a trivial solution for the email example is to
embody the taint mark as additional content in the file while
saving, and to use this information at loading time. Because we
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Fig. 2. Bottle-neck pattern.

believe that DFT analysis should not interfere with the original
behavior of the system, our solution achieves the same result
in a transparent way, never changing the actual content. The
reasons behind this choice are that (a) adding to the content
may compromise its integrity or make it unusable (e.g. if a file
is signed, adding content would invalidate the signature), and
(b) this way our model is generic enough to be applicable at
any layer and does not depend on the technical representation
of a container nor on how taint marks can be embodied.

Also note, that the precision of our analysis for the interme-
diate container is equivalent to that of basic taint propagation
(cf. §III-C); the reduction in terms of false positives is in the
destination containers of the split operation.

Before performing declassification, however, we must make
sure that the structured taint mark associated with an interme-
diate container is valid: the structured taint mark must not have
been propagated due to overapproximations, and the integrity
of the intermediate container’s content must be assured; if this
is not the case, we fall back to basic taint propagation. To this
end we perform additional integrity checks.

Problem. We tackle the problem of label creep in taint-
based data flow tracking analyses.

Solution. We propose a generic model for taint-based data-
flow tracking of structured data. Our model can be instantiated
for different contexts at different system layers.

Contribution. We see our contribution in the first generic
solution for event-based structured data-flow tracking. Our
model transparently builds, propagates, and uses taint marks
that reflect the inherent structure of data without semantic anal-
ysis of the tracked content. With minimal assumptions on the
system and without modifying the number or the granularity of
events or containers, we can increase the precision of existing
DFT analyses and mitigate the label creep problem.

Assumptions. We assume the existence of dual merge and
split events as explained above. These events (i) must be



detectable and identifiable at runtime, (ii) must have clearly
defined semantics, in particular in terms of how they propagate
data, (iii) must be trusted, i.e. there must exist confidence that
they behave according to the expected semantics.

Structure. We introduce the formal model underlying our
work in §II. §III presents our model, formally defining struc-
tured taint marks, describing how the structure is constructed,
and how it can be used for declassification. §IV describes
instantiations of the model; §V compares our work to existing
solutions; §VI concludes and discusses remaining challenges.

II. FORMAL MODEL

We base our model on a model for generic data flow tracking
from the literature [7]. A system is described as a tuple

(D ,E,C ,F,V , partId , checksum,Σ, σ0, %)

where D is the set of data taint marks, E is the set of system
events, C is the set of containers, and F = FC ∪FP is the set
of identifiers, where FC is a set of container names and FP

is a set of identifiers for parts of data structures (explained in
more detail in §III-A), also called partIDs.

partId : C 7→ FP assigns partIDs to containers. We use it in
split operations to decide which part of a structured taint mark
corresponds to a destination container. In the model partId is
an oracle, while §IV describes possible instantiations of it.

checksum : (C ×D)→ V is another oracle that computes
a checksum of the content of a specific container (e.g. the hash
of a file), with V the set of all possible checksum values. The
set of system states Σ = (t, struct , checkList) is defined as
(1) a taint function of type t : C → P(D), describing which
container is marked with which taint marks; if two containers
are marked with the same taint mark, they are (possibly) two
different representations for the same abstract data;
(2) a structure function of type struct : D → P(FP × P(D)),
mapping taint marks to a structure, cf. §III;
(3) a checklist checkList ⊆ P(D×V ), used to check whether
a certain structured taint mark is valid, cf. §III.
σ0 = (∅,∅,∅) ∈ Σ is the initial state. The transition

relation % ⊆ Σ × E → Σ is the core of the model, as it
encodes how σ ∈ Σ must be updated in case an event occurs.

III. STRUCTURED DATA FLOW TRACKING

A. Structured Taint Marks

Sometimes data presents an inherent structure: a mail has a
recipient, a subject, and a body; a story is divided into chapters
and sections; a song into chorus and verses, etc. Although
sometimes this structure is reflected by the container in which
the data is stored, conceptually it remains a property of the
data rather than the container. Data structure is preserved even
when its concrete representation is “obfuscated”, e.g. by means
of compression. For this reason, our model binds the structure
to the data (i.e. the taint mark) rather than to the container.

More precisely, if some data has an inherent struc-
ture, we associate its taint mark with a set of partIDs
{partID1, . . . , partIDn} ⊆ FP , each of which is in turn
associated with a set of taint marks. The rationale is that

these partIDs identify the different parts of the structured data
(‘Recipient’, ‘Subject’, ‘Body’, ‘Attachment’ in Fig. 1), whilst
the associated taint marks represent the data items associated
with the corresponding part (e.g., d4 and d5 for ‘Attachment’).
Formally, the relation between each taint mark and its structure
is given by the function struct : D → P(FP × P(D)).

Associating the structure with the taint mark rather than
a container has the advantage that the taint mark is then
propagated independently of the type of containers in which
the content is actually stored and independently of whether
operations on such containers are aware of the structure or not.
This allows us to easily reuse DFT event semantics described
in earlier work [1], [2], [5], [7], [9], and thus to seamlessly
integrate with existing DFT instantiations at different system
layers. Only the semantics of those events that correspond to
merge and split operations need to be updated.

Note, that our model allows us to nest structured taint marks.
Also note, that if a container c is marked with a structured
taint mark d, then if σ.struct(d) = {(p1, {d1}), (p2, {d2})}
the restrictions imposed by d1 and d2 both apply to c.

B. Merge Operations
Some scenarios allow to mitigate overapproximations by

leveraging additional information about merge operations. In
our terminology, merge operations are special system events
that (1) aggregate data from multiple sources into a single
destination container, (2) have corresponding dual split opera-
tions, and (3) allow us to infer information about the structure
of data. The latter usually comes from external knowledge
about the system, e.g. the fact that process ‘zip’ is an archiver.
The inferred structure is associated with a new structured
taint mark for the destination container (i.e. the intermediate
container in a bottleneck pattern).

Formally, a merge operation me(SRC , dst) merges the
content of the set of source containers SRC ⊆ C into the
single destination container dst ∈ (C\SRC ) in a structured
way. This means that all taint marks associated with all source
containers are grouped into multiple (possibly overlapping)
sets, each of which is identified by a partID. The partIDs are
derived by some properties of the set SRC , e.g. the name
of the containers, and they are captured by the layer-specific
function partId : C 7→ FP . At the model level, we use partId
as an oracle to determine which parts of a structured taint mark
correspond to which destination container of a split operation.
The implementation of partId is instantiation-specific, cf. §IV
for some examples. In contrast, the semantics of any merge
event me can be described in a generic way:

∀σ, σ′ ∈ Σ,∀SRC ⊆ C ,∀ dst ∈ C\SRC :
(σ,me(SRC , dst), σ′) ∈ %
⇒ σ′.t(dst) = σ.t(dst) ∪ {dnew}
σ′.struct(dnew) = {(partId(c), σ.t(c)) | c ∈ SRC}
σ′.checkList = σ.checkList ∪
{(dnew, checksum(dst , dnew))}
\ {(dnew, v) | v 6= checksum(dst , dnew)}

where dnew represents a previously unused taint mark and
σ.t, σ.struct and σ.checkList indicate, respectively, the taint



function, the structure function, and the checklist of state σ.
Performing a merge operation requires updating the list of
valid checksums, which is why we replace all old checksum
values of (dst , dnew) with the new checksum value.

While we implicitly assumed merge operations to be atomic,
a merge operation might be composed of multiple subsequent
events. In this case, the structure must be built incrementally;
this more complex case is work in progress (§VI).

C. Split Operations

A split operation se(src,DST ) is the dual of a corre-
sponding merge operation. It propagates the content of one
source container src ∈ C to a set of destination containers
DST ⊆ C . In the bottleneck pattern, the source container
src corresponds to the intermediate container. In contrast to
normal taint propagation events, split operations leverage the
fact that the source container is marked with a structured taint
mark. As this structure was built based on information about
the corresponding merge operation, split operations use this
additional information to declassify the destination containers
DST . In other words, split operations do not necessarily
propagate all taint marks associated with the source container
src to all destination containers DST , but only selected taint
marks to selected containers.

For this reason, split operations do not follow the conserva-
tive approach of overapproximating data flows. Instead, they
perform selected declassification of the destination containers,
thus mitigating the label creep problem. Which taint marks
are in fact propagated to which destination containers is
determined by applying the partId function to each destination
container. If the result is such that a corresponding partID
exists in one of the source container’s structured taint marks,
only the taint marks related to this partID are propagated; if
no such match is found, all taint marks are blindly propagated,
which is equivalent to basic taint propagation. Formally:

∀σ, σ′ ∈ Σ,∀ src ∈ C ,∀DST ⊆ C\{src} :
(σ, se(src,DST ), σ′) ∈ %

⇒ ∀ dst ∈ DST ,∀ d ∈ σ.t(src) :
σ′.t(dst) =σ.t(dst) ∪ D′ if (partId(dst),D′) ∈ σ.struct(d) ∧

(d, checksum(src, d)) ∈ σ.checkList
σ.t(dst) ∪ {d} otherwise

Note, that if (d, checksum(src, d)) is not in σ.checkList , the
integrity of the source container has been compromised and
we fall back to basic taint propagation.

Let us call closure(c) the set of all taint marks associated
with a container c—either directly via tainting function t, or
indirectly, i.e. as part of a structured taint mark which, in turn,
is directly or indirectly associated with c. Note, that whenever
a restriction is associated with a taint mark d, it applies
to every container c that is marked with d, either directly
(d ∈ t(c)) or indirectly (d ∈ closure(c)). Considering the mail
example from Fig. 1, it is thus irrelevant from a precision
perspective whether we taint the intermediate file container

with dnew or with {d1, . . . , d8}. The enhanced precision is only
achieved at the time of the split operation.

IV. INSTANTIATIONS

The model we have described is applicable to any scenario
similar to the described mail example, where application-
specific DFT is combined with tracking at the operating system
layer. However, there are more situations in which our model
can improve the precision of basic taint propagation.

Consider the action of copy-and-pasting multiple data
within an application. Although the system clipboard will
preserve the structure of the content, if the clipboard is
modeled as a single container [5], [8], it will behave as an
intermediate container in the bottleneck pattern and propagate
all taint marks of the sources to all destination containers. In
this case the event “copy” (“paste”) corresponds to a merge
(split) operation. The instantiation of partId is application-
specific: for a spreadsheet application it would map the cells
to their ‘coordinates’, while for a word processor it would
work on internal identifiers of sections, paragraphs, or words.

Similarly, consider a DFT analysis for the operating system
[1], where containers are files, pipes and memory locations,
and events are system calls. Unless there exists a ded icated
monitor for the application, whenever a process reads from a
file, its memory gets tainted with all taint marks of that file.
These taint marks will then be propagated to every file the
process writes. However, if we consider the special case of
an archive process such as ‘zip’, the extraction (split) of an
archive should propagate to each extracted file only the taint
marks that were associated with it at the moment the archive
was created (merge), rather than all taint marks associated
with the archive file. Function partId would map source and
destination containers using their relative filenames.

Our model also applies in distributed scenarios, e.g. if many
files are transferred over a TCP connection. While existing
solutions [9] explain how to propagate the taint marks from
one system to another, the communication channel behaves
like the intermediate container in the bottle-neck pattern. In
this scenario, the merge operation would be the sequence of
read (from files) and write (to the socket) events observed
on the “sender” side, whereas the split operation corresponds
to the dual sequence on the “receiver” side. In a simple
file transfer scenario, function partId would map source and
destination containers using filenames.

In all these examples, a simple hash of the content or a set
of hash values for the different parts of the content could be
used for the checksum function, to guarantee that the content
to-be-split exactly matches the one at the moment of merge.

V. RELATED WORK

Several techniques have been proposed for dynamic taint
analysis, usually tailored to one specific system layer, like
a programming language (Java [10], Perl [11], PHP [12]), a
particular application (Internet Explorer [13], Mozilla Thun-
derbird [8]), a service (ESB [14]), an operating system [15],
[16] or a certain hardware/machine level code. In this last



category we find solutions based on binary rewriting [17]–[20],
memory and pointer analysis [21], and partial- or full-system
emulation [6], [22], [23]. The goal of all these solutions is a
dedicated model for one particular system layer. Our model, in
contrast, is generic and not bound to one specific architecture
or platform, thus making it instantiable at any or all of them.

An interesting exception stems from the area of provenance
aware storage systems [24], where representations of data are
considered at three system layers at the same time (network,
file system, workflow engine). Depending on the type of the
content being handled, different tracking solutions are used.
However, taint marks are propagated like in other taint analy-
ses, i.e. without any special form of structured aggregation.

In parallel to us, Alvim et al. [25] developed an abstract
model for quantitative information flow tracking that accounts
for the structure of data. While promising from a theoretical
perspective, no realistic instantiation of the model is presented.

Lastly, the model presented in this paper builds on top of the
generic data flow tracking model presented in [7] and refines
it in terms of precision. For this reason, our solution can easily
be integrated in a fully-fledged usage control architecture like
[2], [5], [7], [8] to support advanced policy enforcement.

VI. CHALLENGES AND CONCLUSIONS

We presented a new idea for a generic model to reduce
overapproximations in taint-based data flow tracking. While
an implementation is still work in progress, the core of the
model is formalized and example instantiations are discussed.

In terms of limitations, this work assumes merge and
split operations to be atomic. Yet, in some scenarios these
operations actually correspond to sequences of events, e.g.
if data is consecutively written to the same pipe. An easy
solution is to model every event in the sequence using basic
taint-propagation and then, in correspondence of the last event,
replace the result with the structured taint mark. The drawback
of this solution is that in some scenarios merge/split operations
correspond to possibly infinite sequences of events, like a
network stream of data. In these cases, split events may take
place before the merge sequence is over. For this reason, we
are working on extending our model to support an incremental
building of the structure that copes with these situations.

At a technical level, additional challenges come from find-
ing appropriate checksum and partId functions. In general, a
basic hash function like SHA1 is enough for the checksum,
but in some scenarios, like the archiver example, it is not
obvious what a good choice for a partId function is. Our
model is general enough to support any choice, as long as
partId maps each source container (before merge) and its
respective destination container (after split) to the same partID.
Depending on the monitor capabilities and the assumptions
about the archiver process, we may use just the filename or
additional information, like creation date or checksum.

After extending the model to cope with the above challenges
and implementing it, the next step is a proper comparison
of this work in terms of performance and precision (false
positives vs. false negatives) with existing DFT technologies.
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