
Compliance Monitoring of Third-Party
Applications in Online Social Networks

Florian Kelbert
Technische Universität München
Garching b. München, Germany

kelbert@in.tum.de

Alexander Fromm
Technische Universität München
Garching b. München, Germany

fromm@in.tum.de

Abstract—With the widespread adoption of Online Social Net-
works (OSNs), users increasingly also use corresponding third-
party applications (TPAs), such as social games and applications
for collaboration. To improve their social experience, TPAs
access users’ personal data via an API provided by the OSN.
Applications are then expected to comply with certain security
and privacy policies when handling the users’ data. However,
in practice, they might store, use, and distribute that data in
all kinds of unapproved ways. We present an approach that
transparently enforces security and privacy policies on TPAs
that integrate with OSNs. To this end, we integrate concepts and
implementations from the research areas of data usage control
and information flow control. We instantiate these results in
the context of TPAs in OSNs in order to enforce compliance
with security and privacy policies that are provided by the OSN
operator. We perform a preliminary evaluation of our approach
on the basis of a TPA that integrates with the Facebook API.

I. INTRODUCTION

Today, billions of users interact using Online Social Net-
works (OSNs) such as Facebook, Twitter, and LinkedIn.
These users increasingly use OSNs’ third-party applications
(TPAs) that offer additional services, such as social games
and entertainment, but also productivity apps such as slide
sharing. To provide their social experience, TPAs ask for their
users’ consent to retrieve data about them from the OSN,
e.g. personal information, photos, messages, and contact lists.
TPAs then access the users’ data from the OSN via well-
defined APIs. Noteworthy, OSNs use OAuth [4] to ensure that
TPAs only access data for which the corresponding users gave
their explicit consent.

Yet, once a TPA retrieved user data, it remains unclear
whether, how and where this data is stored, processed, and
disseminated [3, 8, 15, 20]. Noteworthy, TPAs that integrate
into major OSNs are obliged to present a privacy policy and
terms of service to users. In addition, many OSN operators de-
mand TPA providers to adhere to certain security and privacy
policies [6, 17, 24]. Laws and regulations further constrain
the allowed data usage. Facebook even performs a manual
security audit of TPAs in case they request access to certain
sensitive data. Technically, however, there do not exist means
for users, OSN operators, and legislators to monitor whether
TPAs actually comply with the above policies and regulations.
Even if the application is audited before its initial deployment,
the application developers might change its behavior soon
thereafter, possibly using data in illegitimate ways.

We provide an OSN-independent solution to enforce com-
pliance of TPAs with security and privacy policies, such as
“you may cache the content for up to 24 hours” [17], “Only
use friend data in the person’s experience in your app” [6], and
“You may not disclose confidential information to a third party
without the prior explicit consent of Tumblr.” [24]. To do so,
we integrate concepts and technologies from the research field
of data usage control and tailor them to the particular needs
of online social networks and their TPAs. While most parts of
our infrastructure and implementation generalize to scenarios
beyond OSNs, we provide a prototype for Facebook.

Our solution works as follows: Data usage control tech-
nology [7, 12, 18, 19] is integrated into the Software Exe-
cution Environment (SEE) (e.g., Java Runtime Environment
(RTE), .NET CLR, PHP interpreter) which is then supposed
to be provided in a Platform-as-a-Service (PaaS) manner by
trustworthy entities. Such trustworthy entities might include
the OSN operator herself, public universities, or consumer
protection organizations (cf. Assumptions). TPA providers will
then choose to deploy their application on these platforms,
the incentive being to provide concerned users technical
confidence in their application’s compliance with security
and privacy policies. Once the TPA is accessed by the user
and retrieves her personal data from the OSN, the data is
accompanied with machine-enforceable data usage policies.
Compliance with these policies is then transparently enforced
by the underlying usage control enabled SEE.

We prototypically implement the described concepts for the
Java RTE, which will then serve as a usage control enabled
SEE. TPAs are implemented in Java and deployed as Java
Web Application Archives. Once any such TPA is deployed
on a data usage controlled SEE and retrieves user data from the
OSN, the application’s compliance with selected policies from
the Facebook Platform Policy [6] is transparently enforced.

Example Use Case. Alice uses BirthdayCalendar, an ap-
plication that displays the dates of birth of her Facebook
friends. After Alice logs in, BirthdayCalendar (i) fetches
Alice’s friendlist from Facebook, (ii) fetches the dates of birth
of all of her friends, and (iii) renders these dates as a calendar
within her browser. Using existing technology, BirthdayCal-
endar might use the received data in any imaginable way.
However, if BirthdayCalendar is run on a PaaS which uses



a usage control enabled SEE, then BirthdayCalendar can be
kept from data misuse. We refer to this example throughout
the paper. Note that we use BirthdayCalendar just for the sake
of illustration; Facebook provides a similar built-in function.

Problem. Many legal contracts and regulations define how
data may be stored, processed, and disseminated by TPAs in
the context of OSNs. However, we are not aware of technical
means that enforce compliance.

Solution. We leverage that web applications are increasingly
executed in the cloud and show how data usage control
technology can be integrated into SEEs on which modern PaaS
platforms are based. We assume PaaS platforms to be operated
by trustworthy entities. Providers of TPAs are supposed to run
their applications on these compliance-monitoring platforms,
thus assuring users that their data is not misused.

Contribution. We integrate several methodological and tech-
nical data usage control solutions and instantiate them to
the ecosystem of OSNs and their TPAs. To the best of our
knowledge, we are the first to generically and transparently
ensure the compliance of TPAs with security and privacy
policies, thus increasing users’ confidence when using TPAs.

Assumptions. We consider the OSN operator to be trustwor-
thy w.r.t. the proper processing, storage, and dissemination of
user data. We believe that this is a realistic assumption, since
it is in the very interest of the operator that user data is used
in accordance with laws, terms and conditions, and the users’
preferences. Violations would result in reputational damage. In
fact, users implicitly trust OSN operators, as they intentionally
disclose their information on the corresponding platforms.
Since untrustworthy TPAs may have severe impact on the
OSN’s reputation, the OSN operator seeks their compliance.

Another central assumptions is that the PaaS operator is
trusted. We believe that this assumption is realistic, as the
OSN operator, which is entrusted with the users’ data in the
first place, could provide a PaaS. Similarly, organizations that
are generally trusted by the public, such as customer protection
organizations or universities, could act as PaaS provider.

Attacker Model. We focus on misbehaving TPAs that try to
process, store, or disseminate user data without complying to
respective policies. Note that such behavior might be deliberate
or accidental. Social plugin buttons (Like, +1) are out of scope.
OSN end users are not considered attackers, as previous work
showed how they can be kept from data misuse.

Generalization of the Approach. The work at hand integrates
multiple previous works and instantiates them to one particular
use case. Our approach is generic in that it is independent of
the OSN, the TPA, as well as the policies. Beyond the current
scenario, we are confident that both our general approach as
well as our implementation can be easily ported to mobile
phones, in which applications request sensitive user data from
the operating system. Generalizing even further, the underlying
data usage control solutions and technologies generalize to any
scenario in which privacy policies ought to be enforced.

Application

PaaS (SEE)

Monitor

Libraries

1. Request9. Response

Coordinator
2. Request

Decision Engine

OSN

API

Policy Database

6. Request

7. Response

8. Response

3. getPolicies

4. Policies

0. Technical Policies 
(Templates)

5. deployPolicy

Signal Events
for tracking 

and decisions

PaaS Provider OSN Operator

Fig. 1. Crucial components and their interactions as detailed in § II.

II. APPROACH

After giving an overview over our approach in § II-A
(Fig. 1), the subsequent sections detail the involved entities,
their functionalities, and their interactions. This section is
intentionally kept high-level; details are provided in § III.

A. Overview

OSNs provide an API which allows TPAs to access users’
personal data, such as photos, contacts, email addresses, etc.
OSN operators protect access to this data using OAuth [4].
Hence users must give their explicit consent to release such
data to TPAs. However, once TPAs gained access to such
personal data, there do not exist technical means to enforce
their compliance with security and privacy policies which are
provided by the OSN operator in natural language [6, 17, 24].

In order to foster TPAs’ compliance with such policies, we
assume that each OSN operator provides a Policy Database
containing machine-readable policies in line with aforemen-
tioned natural language policies. Leveraging the trend to
run applications on cloud platforms, we further suppose the
providers of TPAs to deploy and run their applications in a
PaaS-manner on platforms which are operated by trusted par-
ties. Technical monitors are then integrated into the SEE (i.e.,
the PaaS platform), allowing them to enforce the compliance
of TPAs with provided policies in a transparent manner, i.e.
without the need to adapt existing applications.

While the monitors integrated into the PaaS take care about
policy enforcement, they depend on an external Decision
Engine from the literature [12, 19] which is responsible
for decision making and further management tasks. In order
to keep the architecture modular, a Coordinator coordinates
the interactions between components. The following sections
detail the general workflow and the involved components.

B. Policy Provisioning via the Policy Database

The security and privacy policies to be enforced on TPAs are
usually not available in a machine-readable format but rather
in natural language. Hence, a first step towards their automated



enforcement is their translation into appropriate formats. Since
our enforcement infrastructure builds upon data usage control
solutions, we demand policies to be formalized as Event-
Condition-Action (ECA) rules. Thereby, conditions are written
in an Linear Temporal Logic (LTL) dialect as detailed in [14,
19], which allows to formalize propositional, temporal, and
cardinal constraints. Actions of ECA rules include inhibition
and allowance of the attempted event, its execution in a
modified manner, as well as the execution of additional events.
In the following, we derive an ECA rule in an intuitive manner.
Structured and semi-automated derivation of such ECA rules
from natural language policies is possible [16].

Facebook’s policy “If you cache data you receive from us,
[. . . ] keep it up to date” [6] may be interpreted as follows:
Whenever some data data is processed by the application,
then it must have been received from Facebook within the last
24 hours. Using the formalism described in [11, 14, 16, 19],
one possible ECA rule expressing this policy is:

Event: process(data)
Condition: not(repmin(24 [hours], 1 , receive(data))

Action: inhibit

The semantics are as follows: If an attempt to exe-
cute event process(data) is observed and if the ac-
tual execution of that event would make the condition
not(repmin(24 [hours], 1 , receive(data)) true, i.e. if the
data being processed was not received (receive(data))
at least once from Facebook within the last 24 hours
(repmin(24 [hours], 1 , . . .), then the attempted event is to be
inhibited. Note that this ECA rule is actually an ECA rule
template which will be instantiated for different types of data
as required. This step is detailed in § II-D.

We assume the OSN operator to take care of the above
policy translation process and the provisioning of the resulting
ECA rule templates via a Policy Database (Fig. 1, step 0). This
ensures that different PaaS operators do not interpret the same
high level policy differently. Note that the above ECA rule
template is abstract, as it depends on implementation details
what it means to process or receive data. We instantiate the
above ECA rule template to one specific SEE in § III.

C. PaaS Operation

We hypothesize that developers of TPAs are willing to run
their application on a PaaS hosted by a trusted operator, thus
indicating to users that the application handles user data in
compliance with provided policies. Our approach enables PaaS
operators to enforce ECA rules on any TPA as follows.

In order to ease control over the deployed applications, the
PaaS is configured to only allow access to the OSN’s API via
well-defined libraries. Further, the PaaS’ SEE is enriched with
monitoring technology which allows to (i) intercept events
happening within deployed applications (e.g., process(data),
receive(data), transfer(data)), (ii) notify those events to the
Decision Engine, (iii) enforce the Decision Engine’s decision.
How interception and notification of events, as well as enforce-
ment of the decision is technically achieved differs between

SEEs; one instantiation is described in § III. The following
paragraphs abstractly describe the general workflow.

Once a user accesses a TPA for the first time, she is required
to grant the application access to certain parts of her user data
being stored at the OSN. Note that granting such access is
a prerequisite for the usage of the TPA, otherwise the OSN
would deny access and not return any user data; major OSNs
use the OAuth protocol for this purpose.

Whenever a TPA requests user data from an OSN via any
of the libraries provided by the PaaS (Fig. 1, step 1), the PaaS
redirects these requests to the Coordinator (Fig. 1, step 2).
The Coordinator inspects the request in order to determine
which types of data (e.g. date of birth, contacts, email address,
photos) are requested from which OSN. This is important
because different policies, i.e. ECA rule templates, might be
applicable for different data types. Hence, the Coordinator
retrieves all applicable ECA rule templates from the OSN’s
Policy Database (Fig. 1, steps 3/4) and deploys them at the
Decision Engine (Fig. 1, step 5) as further detailed in §§ II-D
and III-B. Once the successful deployment was acknowledged,
the Coordinator forwards the original request to the OSN
(Fig. 1, step 6). Upon retrieval of the corresponding response
(Fig. 1, step 7), it merely remains to forward the payload
(actual data) to the requesting application (Fig. 1, steps 8/9).

D. Policy Instantiation and Deployment

Before the Coordinator may deploy an ECA rule at the De-
cision Engine, the corresponding ECA rule template received
from the Policy Database must be instantiated for the concrete
data being protected. For this, the Coordinator replaces all
placeholders within the template with concrete values. For the
above template, data is replaced with a uniquely generated
id, say d9235 , which from now on identifies the data received
from the OSN for its entire lifetime:

Event: process(d9235 )
Condition: not(repmin(24 [hours], 1 , receive(d9235 ))

Action: inhibit

The Coordinator then (i) sends this ECA rule to the Decision
Engine for actual enforcement and (ii) informs the Decision
Engine about the presence of data d9235 and its initial storage
location (container), say variable c1, within the TPA. This
container reflects where the requested data will be stored by
the TPA and might be a file, a memory address, a variable,
etc. This differentiation between an abstract data id (d9235 )
and the data’s actual storage location(s) (e.g., c1) is necessary
to be able to enforce ECA rules not only on particular copies
of that data, but on all of them. Note how the above ECA rule
talks about the protection of one such abstract data id (i.e.,
d9235 ) rather than concrete containers (e.g., c1). In order to
enforce the ECA rule on all copies of the data, the flow of
this protected data (identified by d9235 ) throughout the TPA,
and possibly beyond, must be tracked.

E. Data Flow Tracking

The Decision Engine tracks data flows within TPAs that
are deployed on the PaaS. For this, it maintains a mapping



between the data identifiers being tracked and these data’s
containers at each point in time. Considering the above exam-
ple of informing the Decision Engine that data d9235 is in
container c1, this implies a mapping from c1 to d9235 .

In order for this mapping to accurately reflect the data’s
actual distribution within the TPAs at each point in time, the
SEE informs the Decision Engine about any relevant events,
such as copying data from one variable to another, sending data
to a network socket, or writing data to a file. Whenever such
an event is signaled to the Decision Engine, the latter updates
its mapping in correspondence with the event’s semantics. For
example, if the event copy(c1 , c2 ) copies all content from
container c1 to container c2, then c2 is updated to contain
all data that is associated with c1. Such event semantics were
defined and implemented for a multitude of applications and
platforms such as MS Windows [25], Unix [10], and Java [7].

F. Policy Decisions and Decision Enforcement

Whenever the SEE observes an attempt to execute an event,
it must be determined whether this event is in compliance with
the deployed policies. For this, the SEE signals any such event
to the Decision Engine before execution. Based on the history
of events, the current mappings between data and containers,
as well as the deployed policies, the Decision Engine decides
about the event’s compliance. While this decision process is
detailed in [12, 14, 19], we describe its most relevant aspects.

Assume that a TPA stored data in a variable c3 and
performs computations on that variable. Then, depending on
the implementation, the SEE might observe this computation
and signal event process(c3 ) to the Decision Engine in order
to get a decision whether this event is compliant. Notably,
however, the deployed policies are formulated in terms of
data ids (d9235 ), whereas events observed by the SEE always
refer to containers (c3). Thus, in order to take a decision, the
Decision Engine uses its mapping between containers and data
ids to know whether at this particular point in time container
c3 contains any data id for which a policy was deployed (such
as d9235 ). In the light of this information, the corresponding
policies are evaluated and a corresponding decision is taken
and sent to the SEE for enforcement.

The Decision Engine might take the following decisions:
Allowance indicates that the signaled event does comply
with all deployed policies and hence it may be executed. In
other words, there was no ECA rule for which the signaled
event matched the trigger event and for which the condition
evaluated to true. If however, the signaled event matched an
ECA rule’s trigger event and if that event made the ECA rule’s
condition true, then the Decision Engine’s decision depends on
the matched ECA rule’s action: Inhibition implies that the SEE
must suppress the signaled event’s execution, thus preventing
non-compliant behavior of the TPA. An alternative would be
to allow the modified execution of the signaled event, e.g.
by demanding anonymization of parts of the processed data.
In this case the SEE might enforce the policy by replacing
certain parts of the data with Null-Bytes. Lastly, the ECA
rule’s action might specify to allow/deny the event in question,

but demand the execution of additional events, such as logging
or notification of an administrator. While in this last example
TPAs might behave in a non-compliant manner, it is possible
to detect such behaviour a posteriori.

III. IMPLEMENTATION

To show the feasibility of our approach, we (i) translated
real-world natural language Facebook Platform Policies into
ECA rule templates and provide them in XML format via
a Policy Database, (ii) implemented a Monitor for the Java
Virtual Machine which is used to monitor Java Web Services
that integrate with the Facebook Graph API, (iii) implemented
an example BirthdayCalendar web service that integrates with
the Facebook Graph API, (iv) implemented a generic Coordi-
nator which is independent of the PaaS, online social network,
and policies being used, and (v) instantiated all of the above
together with an existing Decision Engine.

A. Application Deployment and Monitoring

Whenever a TPA is deployed on the PaaS, its compliance
with the OSN’s policies must be assured. Our prototype
provides such compliance assurance for Java-based web ap-
plications, i.e. Java Web Application Archives (WARs).

We leverage that TPAs exhibit data input channels (sources)
and data output channels (sinks), through which data enters
and leaves the application, respectively. Examples for such
channels are (parameters of) methods for reading/writing
from/to files or sockets. In between the execution of such
channels, a multitude of instructions implement the applica-
tion’s functionality. Importantly, those instructions define data
flow dependencies between sources and sinks. We enforce
compliance with policies by (i) monitoring which protected
data enters the application via sources, (ii) tracking this data
through the application, and (iii) inhibiting or modifying the
execution of sinks if this would violate policies. Technically,
our approach is hybrid by performing both a static analysis
of the application and dynamic runtime tracking as follows.

Static analysis. Upon deployment of the TPA’s bytecode
at the PaaS, we perform a static analysis on the application
in order to detect all sources and sinks as well as possible
data flow dependencies between them. Sources and sinks that
target the OSN’s API are of particular interest. As we assume
the PaaS to only allow access to the OSN’s API via provided
libraries (cf. § II-C; our implementation leverages RestFB1),
the PaaS operator specifies in an application-independent
manner which kinds of sources and sinks (i.e., which method
parameters) of which libraries should be considered for the
static analysis. We then use Joana [9], a static information flow
analysis tool for Java-based applications, to retrieve a static
report of sources, sinks, and potential data flow dependencies,
cf. Fig. 2. For each source and sink the report provides the
method and bytecode-offset (Location), the method signature
of the sink/source (Signature), as well as which parameters
of the method invocation are classified as sink/source (Return

1http://www.restfb.com

http://www.restfb.com


Sources:
Source36:
Location: Common.updateCurrentUser(...)V:61
Signature: com.restfb.DefaultFacebookClient.

fetchObject(Ljava/lang/String;
Ljava/lang/Class;[Lcom/restfb/Parameter;

)Ljava/lang/Object;
Return

Sinks:
Sink15:
Location: Main.loggedInWork(...)V:153
Signature: org.apache.catalina.connector.

CoyoteWriter.println(Ljava/lang/String;)V
ParamIndex: 1

Flows:
Sink15 --> Source36

Fig. 2. Abstracted Joana report of sources, sinks, and dependencies (flows).

or ParamIndex). In addition, dependencies between sources
and sinks are reported (Flows).

Dynamic runtime tracking. In contrast to pure dynamic data
flow tracking, in which each instruction is monitored, we lever-
age Joana’s results and inject additional instructions selectively
only at those locations within the TPA that are relevant for
tracking data flows and enforcing policy compliance.

We use the OW2-ASM2 framework to inject additional
instructions for each reported flow into the bytecode of the
TPA. At runtime, those instructions extract context information
(e.g., what kind of source/sink was executed) and signals
corresponding events to the Decision Engine in order to
(i) verify if the execution of the sink/source is compliant with
the deployed policies, and (ii) to track the flow of data from
sources to sinks.

Whenever a source is executed, the injected instructions
signal this fact to the Decision Engine, thus reporting that
sensitive data was read by the TPA. The Decision Engine
leverages this information for later decision making: Once
a sink is attempted to be executed, the injected instructions
signal this mere execution attempt to the Decision Engine in
order to verify if the actual execution of the sink is compliant
with the deployed policies. For taking this decision, the
Decision Engine not only considers this current information
and the policies, but also information about sources that were
executed earlier as well as the reported information about data
flow dependencies. In case the attempted execution of the sink
is compliant, the Decision Engine records this fact of execution
and propagates the flow of data from the sources to the
sink in correspondence with the statically computed data flow
dependencies. In case execution of the sink is not compliant,
the Decision Engine replies with Inhibition or Modification
which will then be enforced by the injected instructions.

B. Requests for User Data and Policy Deployment

Any request from the TPA to the Facebook Graph
API is redirected to the Coordinator (cf. § II-C). We
realize this redirection by modifying a few lines in

2http://asm.ow2.org

classes java.net.InetAddress and java.net.URL

of OpenJDK8, which is used to run the JRE-based SEE.
The additional code essentially checks whether the contacted
hostname refers to a supported OSN (e.g., Facebook,
Google+), and, if so, subsitutes that hostname with that of the
Coordinator; the original request is consequently redirected.
Further, one additional URL GET parameter (osn) is added to
the request in order to keep track of the online social network
for which the request was intended. For example, the request
〈https://graph.facebook.com/me/?fields=inbox〉,
which requests the current user’s message inbox, is modified
to 〈http://coordinator/me/?fields=inbox&osn=FB〉.
The substituting host coordinator is configurable. Parameter
osn=FB indicates to the Coordinator that the request was
intended for Facebook—information that was originally
encoded within the URL. Note that the above modification
replaces HTTPS by HTTP. Since the Coordinator is within
the domain of the PaaS provider, we do not consider this
to be insecure. Notably, the communication between the
Coordinator and the OSN does use HTTPS.

Upon receiving such a request, the Coordinator extracts the
requested data types (for Facebook: URL parameter fields)
as well as the OSN for which the request was intended (param-
eter osn). Using this information, the Coordinator retrieves all
applicable policy templates from the Policy Database (§ II-B),
instantiates them (§ II-D), and deploys the resulting ECA rules
at the Decision Engine.

In accordance with the ECA rule specification in § II-B,
Fig. 3 shows a concrete XML policy template specifying
that processed data must not be older than 24 hours. Note
that placeholders {DATA_ID} and {CONTAINER_NAME} are
filled when the policy is instantiated. For each mechanism,
the trigger specifies upon which action the mechanism
is applied. Concretely, this is the case whenever the trigger
action, all parameter names, as well as all values match
a signaled event. For instance, the trigger action in Fig. 3
specifies that the mechanism is triggered whenever a
source event is attempted (attempt="true") that selects
(calleeMethod="execute", sqlType="SELECT") data
from a database (calleeClass="java.sql.Statement")
where the value of identifier is part of the query-
statement. The condition specifies the ECA rule’s
condition. Concretely, the condition formalizes that within
the last 24 hours there must have occurred at least one
(limit="1") “Source” event that retrieved the data in
question from the Facebook-API. The action specifies
which actions are executed once the trigger event occurs and
the condition evaluates to true. Here, the triggering event’s
parameters are overwritten with default values.

Before deployment, the Coordinator replaces the place-
holder values with concrete values. For doing so, we assign
each source a unique identifier and signal this identifier
to the Coordinator whenever a request to the OSN’s API
is made. Once the Coordinator receives such an identifier,
it replaces the placeholder within the policy template and
deploys the resulting ECA rule at the Decision Engine. Upon

http://asm.ow2.org


<policy>
<mechanism>
<trigger action="Source" attempt="true">

<param name="calleeClass" val="java.sql.Statement" />
<param name="calleeMethod" val="execute" />
<param name="sqlType" val="SELECT" />
<param name="identifier" val="{DATA_ID}" />

</trigger>

<condition>
<repmin amount="24" unit="HOURS" limit="1">
<event action="Source" tryEvent="false">

<param name="calleeClass"
val="com.restfb.DefaultFacebookClient"/>

<param name="calleeMethod" val="fetchObject" />
<param name="identifier" val="{DATA_ID}" />

</event>
</repmin>

</condition>

<action>
<allow>
<modify>

<param name="firstname" val="John"/>
<param name="lastname" val="Doe"/>
<param name="gender" val="unknown"/>

</modify>
</allow>

</action>
</mechanism>

<initialRepresentations>
<container name="{CONTAINER_NAME}">

<dataId>{DATA_ID}</dataId>
</container>

</initialRepresentations>
</policy>

Fig. 3. Policy template specifying to not process data older than 24 hours.

policy deployment, the Decision Engine analyzes the policy’s
initialRepresentation-tag and creates a container that
serves as initial storage location for the data to be received
from the OSN.

IV. PRELIMINARY PERFORMANCE EVALUATION

As we inject additional instructions into the application, we
performed a preliminary evaluation of the imposed runtime
overhead along our motivating example from § I.

Experiment Setup. We run our experiments on a virtual
machine with 8GB RAM and a 4-core 2.6GHz CPU. We
instantiated a simplified PaaS platform, i.e. a single instance
of Apache Tomcat 8, which was equipped with our runtime
monitor and provided the SEE for running BirthdayCalendar.
The server provided the restfb-library, which is used by
BirthdayCalendar to query Facebook’s API. The Decision
Engine and the Coordinator run on the same machine.

The BirthdayCalendar provides a Login-function that au-
thenticates a user at Facebook, and a Rendering-function
that fetches and displays the dates of birth of the authenticated
user’s Facebook friends. Combining these functionalities, we
executed two sequences of actions, 50 times each: (A1) Login
and Rendering, and just (A2) Rendering. We measured the
native and instrumented execution times of our prototype.

Results. Native and instrumented average runtimes for A1

and A2 are reported in Table I. We observe that the relative
overhead (Relative = Instr ./Native ∗ 100 − 100) imposed

TABLE I
AVERAGE RUNTIME PERFORMANCE IN MILLISECONDS.

Action Native Instr. Relative
A1 394.60 454.28 15%
A2 49.89 70.50 41%

by action A1 is comparatively small (15%) in contrast to
A2 (41%). The reason is that A1 queries the Facebook API
twice: Once to authenticate the user, and once to fetch the
user’s data, i.e. the friendlist and all corresponding dates of
birth. In contrast, A2 queries the Facebook API only once,
since the user is already authenticated. Based on these early
results, it seems that our infrastructure exhibits a lower relative
performance overhead for computationally expensive tasks for
which even native runtimes are high (A1, authentication).

To identify possible options for performance optimization,
we also measured the time that it takes to craft an event-
signalling message that is to be sent to the Decision Engine for
decision taking purposes (Create). Further, we measured the
time that it takes to signal this event to the Decision Engine,
have a decision taken, and have the decision signaled back
(Signal). We realize that the event creation time Create

averages at 13.95ms, while the event signaling time Signal

averages at 3.5ms. To improve runtime performance, we thus
plan to provide tailored event templates that can be quickly
instantiated with concrete values at runtime. While the event
signaling time Signal is comparatively low, signaling events
to the Decision Engine via function calls rather than socket
communication would definitely contribute to even lower
runtimes. Admittedly, our current experiment setup does not
cater to potential network latencies in case the infrastructure’s
components are deployed remotely from one another.

We expect to significantly improve upon the above numbers
by integrating the suggested improvements as future work.

V. LIMITATIONS

Static Information Flow Analysis. By using Joana for static
analyses of TPAs, our prototype does not support applications
that make use of callback handlers. Indeed, this is a challenge
for any static program analysis, as additional knowledge on the
usage of callback handlers would be required. Such knowledge
could be obtained by executing the application, by specifying
it in a dedicated language, or by simulating all possible
callbacks. Java reflections pose a similar challenge. Additional
code analyses might reveal reflective code, but generally either
coarse assumptions are required or unresolvable reflective
code has to be ignored. Bodden et al. [2] exploit runtime
information to resolve reflective code.

Java Native Interface (JNI). Java applications may ship
together with native libraries which are then used via JNI to
perform native operations, e.g. on files or the network. JNI
might thus be used to provide custom implementations to com-
municate over the network, e.g. by mimicking the behaviour
of DatagramSocket.send(). We assume the PaaS operator



to disallow the usage of such native code, e.g. by scanning the
deployed applications for native libraries and rejecting them.

System Boundaries. We enforce policies at and above the
PaaS layer. Once data is about to leave these system bound-
aries, e.g. if data is sent to a remote system, the infrastructure
must either ensure that remote systems are equipped with a
similar data protection infrastructure [12, 13], or that sensitive
data is not disclosed at all. Similarly, our approach is not able
to prevent data misuse at software or hardware layers below
the PaaS. To mitigate corresponding attacks, usage control
technology would need to be implemented at these layers,
either at the operating system layer [10, 25] or below.

Enforcement of Policies. We focused on the enforcement of
policies that are provided by the OSNs in a TPA-independent
manner. However, our approach is also able to enforce com-
pliance with policies provided by legislators, TPAs, or end
users. In terms of the latter, a solution might be to retrieve
the users’ privacy settings from the OSN, translate those into
enforceable ECA rules, and enforce compliance with them.

While this work focused on the preventive enforcement of
policies, enforcement might also be detective. This can be
easily achieved by deploying policies that explicitly allow for
policy violations (ECA-Action: Allow unmodified execution),
but trigger some form of logging at the same time.

Seal of Compliance. As of now, our solution does not
indicate to users whether some TPA is running on a trusted
PaaS. We envision the presence of a “Seal of Compliance”
(similar to SSL indicators) that indicates to users whether or
not a particular TPA runs on a trusted PaaS that enforces
compliance. Such an indicator could be built into the web
browser, e.g. in the form of a browser plugin. Alternatively,
a “Seal of Compliance” could be displayed to users on the
TPA’s site within the OSN, or on the OAuth authentication
site that is displayed to users upon initial login to the TPA.

VI. RELATED WORK

xBook [23] is most similar to our approach. It provides a
framework for developing privacy-preserving TPAs. Thereby,
TPAs are split into client-side and server-side components.
All communication between them as well as to any external
entities is mediated through xBook. Both information flow
tracking and policy enforcement is performed at the JavaScript
layer. Similar to our approach, TPAs must be executed on
a trusted platform which provides the xBook framework.
However, xBook demands TPAs to be rewritten from scratch,
adopting the notion of components and communicating solely
using the xBook library framework.

MUTT [20] is a set of PaaS extensions that ensure that the
users’ access control rules, as specified within the OSN, are
also enforced within TPAs. For instance, MUTT ensures that
a TPA only shares a user’s picture with legitimate friends in
correspondence with the user’s access control settings within
the OSN. For this, MUTT dynamically tracks and controls the
flow of data within the TPA. Our approach is more expressive
by allowing to enforce compliance with arbitrary policies that
go beyond access control settings provided by the OSN.

Several works address the problem of untrustworthy TPAs
by limiting their access to sensitive user data in the first place
[1, 3, 5, 21, 22]: Anthonysamy et al. [1] implement a trusted
proxy through which all requests to the Facebook API are
redirected. Responses from Facebook are only forwarded to
the TPA after sensitive data was sanitized in correspondence
with the user’s configuration. PoX [5] takes a similar approach
but implements the proxy within the user’s browser, thus
avoiding an additional trusted third party. A fallback solution
exists for browsers and TPAs that do not support PoX. Cheng
et al. [3] propose to run parts of the TPA within the domain
of the OSN rather than on an external server, thus limiting
the amount of user data being released to the outside. The
approach by Shehab et al. [21, 22] allows users to define for
each TPA and data type whether access is allowed. All of
these approaches might compromise the utility of TPAs, since
essential data to provide proper service might be missing. Our
approach only compromises utility in case of policy violations.
Also, it goes a step further by controlling how the TPA might
handle user data after it was received.

VII. CONCLUSIONS

Users of Online Social Networks (OSNs) increasingly also
use third-party applications (TPAs), which provide their social
experience on the basis of sensitive user data accessed through
the OSN. In this work we provide mechanisms to ensure the
compliance of such TPAs with security and privacy policies in
a generic and transparent manner. Using our approach, TPAs
are kept from misusing sensitive user data, e.g. by releasing
it to advertisement services or by not keeping it up-to-date.

We achieve this compliance of TPAs by building usage
control technology into PaaS platforms on which the TPAs
are assumed to be executed. Whenever requests for sensitive
user data at the OSN are performed, our infrastructure deploys
corresponding security and privacy policies. These policies are
expected to be provided in a machine-readable format by the
OSN operator. Once sensitive data was received by the TPA,
our infrastructure ensures compliance with aforementioned
policies. By leveraging information flow control technology,
our approach even enforces policies correctly in case the
sensitive data is copied to different storage locations within
the TPA. Notably, our approach is transparent for TPAs: no
changes to existing applications are required.

We implement our approach for Facebook and the Java
Runtime Environment, thus allowing to ensure the compliance
of TPAs with Facebook’s Platform Policy. Concretely, we
develop and deploy a sample BirthdayCalendar application
that displays a user’s friends’ birthdays. We show how the
policy “you may cache the content for up to 24 hours” maps
to a machine-readable format and how it is actually enforced.
On the basis of this use case, we provide a preliminary
performance evaluation of our prototype, revealing an overall
runtime performance overhead between 15% and 41%.

As future work, we plan to improve the runtime perfor-
mance of our approach (cf. § IV). We further seek to instantiate
our approach for other SEE, such as PHP. The goal is to cover



a broader set of TPAs, and hence, to be able to evaluate our
approach on a more comprehensive set of applications as well
as security and privacy policies.
Acknowlegdements. This work was sponsored by the Ger-
man Federal Ministry of Education and Research (grant
01|S12057).

REFERENCES

[1] P. Anthonysamy, A. Rashid, J. Walkerdine, P. Green-
wood, and G. Larkou. “Collaborative Privacy Man-
agement for Third-party Applications in Online Social
Networks”. In: Proc. 1st Workshop on Privacy and
Security in Online Social Media. ACM, 2012, 5:1–5:4.

[2] E. Bodden, A. Sewe, J. Sinschek, H. Oueslati, and M.
Mezini. “Taming Reflection: Aiding Static Analysis in
the Presence of Reflection and Custom Class Loaders”.
In: 33rd Int’l Conf. Software Engineering. ACM, 2011.

[3] Y. Cheng, J. Park, and R. Sandhu. “Preserving User
Privacy from Third-party Applications in Online Social
Networks”. In: 22nd Int’l Conf. World Wide Web. 2013.

[4] D. Hardt (Ed.) RFC6749: The OAuth 2.0 Authorization
Framework. Oct. 2012.

[5] M. Egele, A. Moser, C. Kruegel, and E. Kirda. “PoX:
Protecting Users from Malicious Facebook Applica-
tions”. In: Computer Communications 35.12 (2012).

[6] Facebook, Inc. Facebook Platform Policy. Accessed:
2016/02/02. Mar. 2015. URL: http : / / developers .
facebook.com/policy.

[7] A. Fromm, F. Kelbert, and A. Pretschner. “Data Protec-
tion in a Cloud-Enabled Smart Grid”. In: Smart Grid
Security. Vol. 7823. LNCS. Springer, 2013, pp. 96–107.

[8] H. Gao, J. Hu, T. Huang, J. Wang, and Y. Chen.
“Security Issues in Online Social Networks”. In: IEEE
Internet Computing 15.4 (July 2011), pp. 56–63.

[9] J. Graf, M. Hecker, and M. Mohr. “Using JOANA
for Information Flow Control in Java Programs - A
Practical Guide”. In: Proc. 6th ATPS. 2013.

[10] M. Harvan and A. Pretschner. “State-Based Usage Con-
trol Enforcement with Data Flow Tracking using Sys-
tem Call Interposition”. In: 3rd International Conf. on
Network and System Security. Oct. 2009, pp. 373–380.

[11] M. Hilty, A. Pretschner, D. Basin, C. Schaefer, and
T. Walter. “A Policy Language for Distributed Usage
Control”. In: Computer Security – ESORICS 2007.
Vol. 4734. LNCS. Springer, 2007, pp. 531–546.

[12] F. Kelbert and A. Pretschner. “A Fully Decentralized
Data Usage Control Enforcement Infrastructure”. In:
Applied Cryptography and Network Security. Vol. 9092.
LNCS. Springer, 2015, pp. 409–430.

[13] F. Kelbert and A. Pretschner. “Data Usage Control
Enforcement in Distributed Systems”. In: 3rd Conf. on
Data and App. Security and Privacy. ACM, 2013.

[14] F. Kelbert and A. Pretschner. “Decentralized Distributed
Data Usage Control”. In: Cryptology and Network Se-
curity. Vol. 8813. LNCS. Springer, 2014, pp. 353–369.

[15] F. Kelbert, F. Shirazi, H. Simo, T. Wüchner, J. Buch-
mann, A. Pretschner, and M. Waidner. “State of Online
Privacy: A Technical Perspective”. In: Internet Privacy.
acatech Studie. Springer, 2012, pp. 189–279.

[16] P. Kumari and A. Pretschner. “Model-Based Usage
Control Policy Derivation”. In: Engineering Secure Soft-
ware and Systems. Vol. 7781. LNCS. Springer, 2013.

[17] LinkedIn Corp. API Terms of Use. Accessed:
2016/02/02. Feb. 2015. URL: http : / / developer .
linkedin.com/documents/linkedin-apis-terms-use.

[18] E. Lovat, A. Fromm, M. Mohr, and A. Pretschner.
“SHRIFT: System-Wide HybRid Information Flow
Tracking”. In: ICT Systems Security and Privacy Pro-
tection. Vol. 455. IFIP Advances in Information and
Communication Tech. Springer, 2015, pp. 371–385.

[19] A. Pretschner, E. Lovat, and M. Büchler.
“Representation-Independent Data Usage Control”.
In: Data Privacy Management and Autonomous
Spontaneus Security. Vol. 7122. LNCS. Springer, 2012.

[20] A. Shakimov and L. P. Cox. “MUTT: A Watchdog
for OSN Applications”. In: 1st Conference on Timely
Results in Operating Systems. ACM, 2013, 6:1–6:14.

[21] M. Shehab, A. Squicciarini, G.-J. Ahn, and I. Kokkinou.
“Access Control for Online Social Networks Third Party
Applications”. In: Computers & Security 31.8 (2012).

[22] M. Shehab, A. Squicciarini, and G.-J. Ahn. “Beyond
User-to-User Access Control for Online Social Net-
works”. In: Information and Communications Security.
Vol. 5308. LNCS. Springer, 2008, pp. 174–189.

[23] K. Singh, S. Bhola, and W. Lee. “xBook: Redesigning
Privacy Control in Social Networking Platforms”. In:
18th USENIX Security Symposium. 2009, pp. 249–266.

[24] Tumblr, Inc. Application Developer and API License
Agreement. Accessed: 2016/02/02. Jan. 2014. URL: http:
//www.tumblr.com/docs/en/api_agreement.

[25] T. Wüchner and A. Pretschner. “Data Loss Prevention
Based on Data-Driven Usage Control”. In: IEEE 23rd
Int’l Symp. on Software Reliability Engineering. 2012.

http://developers.facebook.com/policy
http://developers.facebook.com/policy
http://developer.linkedin.com/documents/linkedin-apis-terms-use
http://developer.linkedin.com/documents/linkedin-apis-terms-use
http://www.tumblr.com/docs/en/api_agreement
http://www.tumblr.com/docs/en/api_agreement

