
TaLoS: Secure and Transparent TLS Termination inside SGX Enclaves

Pierre-Louis Aublin†, Florian Kelbert†, Dan O’Keeffe†, Divya Muthukumaran†, Christian Priebe†,
Joshua Lind†, Robert Krahn‡, Christof Fetzer‡, David Eyers¶, Peter Pietzuch†

†Imperial College London ‡TU Dresden ¶University of Otago

ABSTRACT
We introduce TaLoS1, a drop-in replacement for existing transport
layer security (TLS) libraries that protects itself from a malicious
environment by running inside an Intel SGX trusted execution en-
vironment. By minimising the amount of enclave transitions and
reducing the overhead of the remaining enclave transitions, TaLoS
imposes an overhead of no more than 31% in our evaluation with
the Apache web server and the Squid proxy.

1. INTRODUCTION
TaLoS is a TLS [4] library that securely terminates TLS connec-
tions by maintaining security sensitive code and data inside a hardware-
protected Intel SGX execution environment [5]. In particular, Ta-
LoS protects private keys and session keys from a malicious envi-
ronment.

TaLoS compiles to a shared library and exposes the same API
as OpenSSL [10] and LibreSSL [13]. As a result, TaLoS acts as
a drop-in replacement for existing TLS libraries and can be used
transparently by a wide range of existing applications, including
the Apache [1] and Nginx [11] web servers, the Squid [12] proxy,
and the JabberD [8] XMPP server. Applications merely require
linking against TaLoS rather than OpenSSL or LibreSSL.
TaLoS meets the following objectives:

Security and privacy. TaLoS is resilient to different threats, in-
cluding a compromised operating system, hypervisor, BIOS, and
malicious administrators. In addition, TaLoS does not affect the
confidentiality or integrity of data handled by the application.

Ease-of-deployment. TaLoS is easy to deploy with existing ap-
plications, requiring no changes to the client implementation and
no or only minor modifications of the server. In addition, TaLoS
does not affect the scalability or availability of applications.

Performance overhead. TaLoS imposes a low performance over-
head with respect to native application execution.

2. INTEL SGX
Intel’s Software Guard Extensions (SGX) [5] is a set of CPU in-
structions that enables applications to maintain data confidentiality
and integrity, even when the hardware and all privileged software,
including the OS, hypervisor and BIOS, are controlled by an un-
trusted entity.
Enclaves. With Intel SGX, enclaves provide an isolated execution
environment that is protected by the CPU. Enclave code and data
reside in a region of protected physical memory called the enclave
page cache (EPC). When enclave code and data are cache-resident,

1The source code of TaLoS is publicly available at https://github.
com/lsds/TaLoS.

they are guarded by CPU access controls; when flushed to DRAM
or disk, they are transparently encrypted and integrity protected by
an on-chip memory encryption engine. Non-enclave code cannot
access enclave memory, but only invoke enclave execution through
a predefined enclave interface; enclave code is permitted to access
enclave and non-enclave memory. Since enclaves execute in user
mode, privileged operations such as system calls must be executed
outside the enclave.

Enclaves are created by untrusted application code. Memory
pages can then be assigned to the EPC, which records page per-
missions and enforces security restrictions. When the enclave is
initialised, a cryptographic measurement of it is created, which al-
lows a third-party to attest the enclave is genuine. For a thread to
execute enclave code, the CPU switches to enclave mode and con-
trol jumps to a predefined enclave entrypoint.

The use of enclaves incurs a performance overhead: (i) thread
transitions between enclave code and the outside incur additional
CPU operations for checks and updates, such as a TLB flush; (ii) en-
clave code pays a higher penalty for cache misses because the hard-
ware must encrypt and decrypt cache lines; and (iii) in current im-
plementations, enclaves that use memory beyond the EPC size limit
(typically less than 128 MB) must swap pages between the EPC and
unprotected DRAM, which incurs a high overhead.
SGX SDK. Intel provides an SDK for programmers to use SGX [6].
Developers can create enclave libraries that are loaded into an en-
clave. A developer defines the interface between the enclave code
and other, untrusted application code: (i) a call into the enclave is
referred to as an enclave entry call (ecall). For each defined ecall,
the SDK adds instructions to marshal parameters outside, unmar-
shal the parameters inside the enclave and execute the function;
conversely (ii) outside calls (ocalls) allow enclave functions to call
untrusted functions outside of the enclave.

3. TaLoS TLS TERMINATION
TaLoS is a port of LibreSSL [13] that securely terminates TLS con-
nections by executing and maintaining security-sensitive code and
data inside an SGX enclave. Fig. 1 shows which parts of TaLoS are
placed inside the enclave.

Among others, TaLoS places the following parts inside the en-
clave: private keys, session keys used to communicate with clients,
and code related to the TLS protocol implementation, e.g., func-
tion SSL_read(), which reads encrypted data from the network, de-
crypts it and returns the plaintext to the application, and function
SSL_write(), which takes plaintext as input, encrypts it and sends
the result along an existing TLS network connection.

Non-sensitive code and data, such as the BIO data structure that
abstracts an I/O stream, as well as API wrapper functions, are placed
outside of the enclave for performance reasons. Function calls that

https://github.com/lsds/TaLoS
https://github.com/lsds/TaLoS

User-level
threads

Cryptographic
algorithms TLS X509

BIO
codePEMASN1Multi-

threading
Random
numbers
enclave

Application-specific data (ex_data)

Shadowing Secure callback

BIO
data

Figure 1: TaLoS TLS implementation

cross the enclave boundary are converted into ecalls and ocalls, as
supported by the SGX SDK (see §2).

3.1 Enclave TLS implementation
We face two challenges when implementing TLS inside the en-
clave: (i) function callbacks are part of the LibreSSL API, but are
untrusted and must be invoked outside the enclave, which could
leak sensitive data. We address this issue by implementing secure
callbacks; and (ii) applications may try to access internal TLS data
structures that are security-sensitive and thus placed inside the en-
clave. We support this by shadowing such data structures as ex-
plained below.
Secure callbacks. Some API functions permit applications to sub-
mit function pointers. For example, SSL_CTX_set_info_callback()
registers a callback to obtain information about the current TLS
context. To execute such callback functions referring to outside
code from within the enclave, TaLoS must execute corresponding
ocalls rather than regular function calls. TaLoS proceeds in four
steps as shown in the following listing (with error checks, shadow
structures and SDK details omitted for simplicity):2

1 /* LibSEAL API */
2 void SSL_CTX_set_info_callback(SSL_CTX *ctx, void (*cb)(const

SSL *ssl, int type, int val)) {
3 ecall_SSL_CTX_set_info_callback(ctx, (void*)cb);
4 }
5
6 int ocall_SSL_CTX_info_callback(const SSL* ssl, int type, int

val, void* cb) {
7 void (*callback)(const SSL*, int, int) = (void (*)(const

SSL*, int, int))cb;
8 return callback(ssl, type, val);
9 }

10
11 /* inside the enclave */
12 void* callback_SSL_CTX_info_address = NULL;
13
14 static int callback_SSL_CTX_info_trampoline(const SSL* ssl, int

type, int val) {
15 return ocall_SSL_CTX_info_callback(ssl, type, val,

callback_SSL_CTX_info_address);
16 }
17
18 void ecall_SSL_set_info_callback(SSL_CTX *ctx, void* cb) {
19 callback_SSL_CTX_info_address = cb;
20 SSL_CTX_set_info_callback(ctx,

&callback_SSL_CTX_info_trampoline);
21 }

(1) The TaLoS API function executes an ecall into the enclave
(line 3); (2) the enclave code saves the address of the outside call-
back (line 19) and passes the address of a newly-defined callback
trampoline function (line 14) to the original API function (line 20);
(3) when the callback function is invoked, the trampoline function
is called instead (line 14); and (4) the trampoline function retrieves
the callback address and performs an ocall into the outside appli-
cation code (lines 6 and 15).

2Note that while there are two functions SSL_CTX_set_info_
callback(), there is no name clash as only one is inside the enclave.

SGX enclave

ecalls ocalls

Busy-waiting threadA application threads

T lthread tasks

S SGX threads

lthread
scheduler

lthread
scheduler

lthread
scheduler

Figure 2: Asynchronous enclave transitions in TaLoS

For applications that register multiple callback functions, TaLoS
uses a hashmap to store and retrieve callback associations.

We manually inspect 17 callbacks for LibreSSL to ensure that
TaLoS does not leak sensitive data. In the worst case, TaLoS can
pass a pointer to trusted memory outside of the enclave. SGX en-
sures that these pointers can not dereferenced by untrusted code.
Further manual checks and the shadowing mechanism presented
below mitigate pointer swapping attacks.
Shadowing. Applications may access fields of TLS data structures
directly. For example, Apache and Squid access the SSL structure,
which stores the secure session context. TaLoS supports such ac-
cesses in a secure manner by employing shadow structures. In ad-
dition to the security-sensitive structure inside the enclave, TaLoS
maintains a sanitised copy of the SSL structure outside the enclave,
with all sensitive data removed. TaLoS synchronises the two SSL

structures at ecalls and ocalls as follows:

1 BIO * ecall_SSL_get_wbio(const SSL *s) {
2 SSL* out_s = (SSL*) s;
3 SSL* in_s = (SSL*) hashmapGet(ssl_shadow_map, out_s);
4
5 SSL_copy_fields_to_in_s(in_s, out_s);
6 BIO* ret = SSL_get_wbio((const SSL*)in_s);
7 SSL_copy_sanitized_fields_to_out_s(in_s, out_s);
8 return ret;
9 }

The association between the enclave structure and the shadow
structure is stored in a in-enclave thread-safe hashmap.

3.2 Reducing enclave transitions
Implementing the TLS API requires enclave transitions. However,
each enclave transition imposes a cost of 8,400 CPU cycles—6×
more costly than a typical system call. We therefore apply three
techniques to reduce the number of ecalls and ocalls in TaLoS:
(1) Instead of performing ocalls to allocate non-sensitive objects
from within the enclave, TaLoS uses a pre-allocated memory pool
to manage small objects frequently allocated from inside the en-
clave. This avoid ocalls to malloc() and free() by replacing them
with less costly enclave-internal calls to the memory pool.
(2) Instead of using the pthread library [2] for synchronisation,
TaLoS avoids ocalls to pthread by using the thread locks imple-
mentation provided by the SGX SDK. TaLoS further uses the SGX
random number generator inside the enclave to avoid ocalls to the
random system call.

SGX enclave

application
thread 1

1) write async-ecall

3) write async-ocall

6) read async-ecall result
and resume execution

lthread
task

ocallsecalls

4) read and execute async-ocall

2) read and execute
async-ecall

5) read async-ocall
result and resume
execution

Figure 3: Asynchronous ecall invoking an asynchronous ocall

(3) TaLoS reduces the number of ecalls by storing application-
specific data written to TLS data structures outside the enclave.
For example, Apache references a structure representing the cur-
rent request in the TLS object. As the TLS object is stored inside
the enclave, this would require an ecall for access. To avoid such
enclave transitions, TaLoS stores application-specific data and their
association with the TLS object outside of the enclave.

Together, these optimisations reduce the number of ecalls and
ocalls for Apache by up to 31% and 49%, respectively, improving
request throughput by up to 70%.

3.3 Reducing transition overhead
TaLoS reduces the overhead of the remaining enclave transitions
by executing them asynchronously. Instead of threads entering and
exiting the enclave, user-level tasks, implemented by the lthread
library [9] inside the enclave, perform call executions.

Fig. 2 shows how these asynchronous enclave transitions are ex-
ecuted. Inside the enclave, S enclave threads execute T lthread
tasks, each handling the async-ecalls from A application threads3.
Application threads are further responsible for processing async-
ocalls made by enclave-internal lthread tasks.

TaLoS uses an array of ecall request slots that is shared between
the enclave and outside code. The array provides one slot for each
application thread. While an lthread task can execute an async-
ecall for any application thread, the opposite is not true: application
threads have their own context (e.g. a client network connection).
TaLoS ensures that when application thread a executes an async-
ecall, the necessary async-ocalls and the result are also handled by
a. To that end, each application thread is bound to a slot in both
the async-ecalls and async-ocalls arrays. Similarly, the lthread task
resuming an async-ecall after an async-ocall is the same as the one
starting the async-ecall.

When an application thread wants to invoke an ecall, it issues
an asynchronous ecall (async-ecall) as follows (see Fig. 3): (1) the
ecall type and its arguments are written into this application thread’s
request slot; (2) the lthread scheduler detects a pending async-ecall.
It finds the first available lthread task inside the enclave and re-
sumes its execution, passing it the async-ecall arguments. In the
meantime, the application thread waits for the result of the async-
ecall or an async-ocall; (3) if it is necessary to execute a function
outside the enclave, the lthread task adds its request to the applica-
tion thread’s slot in the ocalls array; (4) the application thread then
retrieves the async-ocall arguments, executes the call and returns
the result; (5) once the result of the async-ocall is available, the
3Due to limitations of current SGX implementations, it is not pos-
sible to dynamically add threads to the enclave.

Webpage 0 B 1 KB 10 KB 64 KB

No async. calls 1,126 1,095 882 644
With async. calls 1,771 1,722 1,693 1,375
Improvement 57% 57% 92% 114%

Table 1: Throughput (in requests/sec) of Apache with TaLoS
when using asynchronous enclave transitions

lthread scheduler finds the lthread task that requested this async-
ocall and schedules it; and (6) when the async-ecall result is avail-
able, the application thread retrieves it and resumes execution.

To avoid having all application threads busy waiting for asyn-
chronous call results, TaLoS uses a dedicated busy waiting thread
that polls both arrays and wakes up the corresponding application
thread.

Using asynchronous ecalls/ocalls, the performance of Apache
with TaLoS increases by more than 57%, from 1126 requests/sec
to 1771 requests/sec (see §4.2).

4. EVALUATION
Implementation. TaLoS uses the Intel SGX SDK 1.7 for Linux
and LibreSSL 2.4.1. It consists of 282,200 lines of code (LOC),
270,600 of which are LibreSSL. TaLoS exposes 205 ecalls and
55 ocalls (28 of which are to standard C library functions). Around
5,400 LOC of the API are auto-generated ecall and ocall wrappers.
Experimental set-up. We run experiments on an SGX-capable 4-
core Intel Xeon E3-1280 v5 at 3.70 GHz (no hyper-threading) with
64 GB of RAM, Ubuntu 16.04 LTS, Linux kernel 4.4. Clients con-
nect via a Gigabit network. We use Apache 2.4.23 and Squid 3.5.23.

4.1 Enclave TLS overhead
We evaluate the overhead of TaLoS by measuring the throughput
and latency of Apache and Squid with a libcurl [3] client. For
Squid, the clients request webpages from an HTTPS server on a
third machine within the same cluster.

We compare the maximum throughput of LibreSSL to TaLoS.
Since we are interested in worst case performance, we focus on
non-persistent connections, i.e. the client initiates a TLS handshake
for each request. Indeed, the TLS handshake operation becomes the
performance bottleneck.

Fig. 4a and Fig. 4b report the latency and throughput for Apache
and Squid for webpages of 1 KB. For Apache, TaLoS incurs a
23% performance overhead, decreasing the maximum throughput
from 2,200 requests/sec to 1,700 requests/sec. The overhead for
Squid is 31%, from 850 requests/sec to 590 requests/sec. The low
throughput of Squid is due to the presence of two TLS connections:
from the client to the proxy and from the proxy to the server.

In these experiments the CPU is the bottleneck. We observed
similar results for webpages of different sizes until the network be-
came the bottleneck, at which point TaLoS and LibreSSL offer the
same performance.

4.2 Impact of asynchronous calls
Asynchronous enclave transitions (§3.3) are motivated by the in-
creasing cost of enclave transitions as more threads execute inside
the enclave. For example, executing an empty ecall takes 20× more
CPU cycles with 48 concurrent threads compared to one, from
8,500 cycles to 170,000 cycles.

Tab. 1 shows that asynchronous enclave transitions increase per-
formance by at least 57% when serving webpages of different sizes

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0 500 1000 1500 2000 2500

La
te

n
cy

 (
m

s)

Throughput (req/s)

Apache-libressl
Apache-libSEAL

(a) Apache throughput versus latency

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0 100 200 300 400 500 600 700 800 900

La
te

n
cy

 (
m

s)

Throughput (req/s)

Squid-libressl
Squid-libSEAL

(b) Squid throughput versus latency

 0

 500

 1000

 1500

 2000

 2500

 3000

 1 2 3 4

T
h
ro

u
g
h
p
u
t

(r
e
q
/s

)

Number of cores

Apache-libressl
Apache-libSEAL

Squid-libressl
Squid-libSEAL

(c) Scalability

Figure 4: Performance of Apache and Squid

using Apache. For pages larger than 10 KB, the performance ben-
efit over synchronous enclave transitions is around 100%.

4.3 Scalability
We observe the maximum throughput for Apache and Squid as we
increase the number of CPU cores. As Fig. 4c shows, performance
improves linearly with the number of cores, demonstrating that Ta-
LoS exploits multi-core CPUs. Due to the current unavailability
of SGX-capable CPUs with more than 4 cores, we cannot evaluate
further scaling behavior.

5. RELATED WORK
Intel’s SgxSSL [7] and mBedTLS-SGX [14] are TLS libraries de-
signed to execute inside Intel SGX enclaves. WolfSSL [15] is a tra-
ditional TLS library that can be executed within an SGX enclave.
We highlight differences with TaLoS.

Transparency to applications. Unlike TaLoS, both SgxSSL and
mBedTLS-SGX require the entire application to execute inside an
SGX enclave. Depending on the application, this approach may
require substantial changes to the application, in particular if the
latter is written in a language different from C or C++. TaLoS,
instead, only requires the TLS library to be executed inside the en-
clave, requiring no changes to existing applications.

Interface compatibility. Unlike TaLoS, both mBedTLS-SGX and
WolfSSL are not compatible with the widely used OpenSSL/Li-
breSSL API. By providing the OpenSSL/LibreSSL API, TaLoS
(i) supports a broad range of existing applications, and (ii) acts as a
transparent drop-in replacement for existing applications, since no
or only minor changes to the application code are required.

6. REFERENCES
[1] APACHE. HTTP server project. https://httpd.apache.org/,

2017.
[2] BARNEY, BLAISE. POSIX Threads Programming.

https://computing.llnl.gov/tutorials/pthreads/, 2017.
[3] CURL PROJECT. libcurl - the multiprotocol file transfer

library. https://curl.haxx.se/libcurl/, 2017.
[4] DIERKS, T., AND RESCORLA, E. RFC 5246: The Transport

Layer Security (TLS) Protocol Version 1.2, 2008.
[5] INTEL CORP. Software Guard Extensions Programming

Reference, Ref. 329298-002US. https://software.intel.com/
sites/default/files/managed/48/88/329298-002.pdf, 2014.

[6] INTEL CORP. Intel Software Guard Extensions (Intel SGX)
SDK. https://software.intel.com/sgx-sdk, 2016.

[7] Intel SgxSSL Library.
https://software.intel.com/en-us/sgx-sdk/download, Nov.
2016.

[8] JabberD 2.x project. http://jabberd2.org/, 2017.
[9] LTHREAD. lthread, a multicore enabled coroutine library

written in C. https://github.com/halayli/lthread, 2017.
[10] OPENSSL SOFTWARE FOUNDATION, INC. OpenSSL.

https://www.openssl.org/, 2017.
[11] REESE, W. Nginx: the high-performance web server and

reverse proxy. Linux Journal 2008, 173 (2008), 2.
[12] Squid project. http://www.squid-cache.org/, 2017.
[13] THE OPENBSD PROJECT. LibreSSL.

https://www.libressl.org/, 2017.
[14] TLS for SGX: a port of mbedtls.

https://github.com/bl4ck5un/mbedtls-SGX, Mar. 2017.
[15] WOLFSSL. wolfSSL with Intel SGX.

https://www.wolfssl.com/wolfSSL/Blog/Entries/2017/1/17_
wolfSSL_with_Intel_SGX.html, Jan. 2017.

https://httpd.apache.org/
https://computing.llnl.gov/tutorials/pthreads/
https://curl.haxx.se/libcurl/
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sgx-sdk
https://software.intel.com/en-us/sgx-sdk/download
http://jabberd2.org/
https://github.com/halayli/lthread
https://www.openssl.org/
http://www.squid-cache.org/
https://www.libressl.org/
https://github.com/bl4ck5un/mbedtls-SGX
https://www.wolfssl.com/wolfSSL/Blog/Entries/2017/1/17_wolfSSL_with_Intel_SGX.html
https://www.wolfssl.com/wolfSSL/Blog/Entries/2017/1/17_wolfSSL_with_Intel_SGX.html

	Introduction
	Intel SGX
	TaLoS TLS Termination
	Enclave TLS implementation
	Reducing enclave transitions
	Reducing transition overhead

	Evaluation
	Enclave TLS overhead
	Impact of asynchronous calls
	Scalability

	Related Work
	References

