
Exploring Symbolic Manipulation and other Code
Generation Techniques for Finite Element Local

Assembly
FEniCS’11 Presentation

Francis Russell

Imperial College London
Department of Computing

5/11/2011

Francis Russell (ICL DoC) Exploring Symbolic Manipulation. . . 5/11/2011 1 / 29

Software Performance Optimisation Group

Member of Software Performance Optimisation (SPO) group at
Imperial College London.

Other investigators are Mike Giles (Oxford), David Ham (Imperial
College Earth Science and Engineering) and Michael Fagan
(University of Hull Medical and Biological Engineering).

Also includes Graham Markall and Florian Rathgeber who presented
their work at FEniCS’10.

UFL

Many-Core Form
Compiler

Unstructured Mesh
Abstraction (OP2)

Optimisation
Framework

Francis Russell (ICL DoC) Exploring Symbolic Manipulation. . . 5/11/2011 2 / 29

Local Assembly

Traditional approach has been to use quadrature.

Development of the Unified Form Language (UFL) and the FEniCS
Form Compiler (FFC) have facilitated the exploration of other
implementations, especially those too complex to hand-implement.

The tensor contraction implementation of local assembly1 (in
particular the topological optimisations) is a prime example of this.

Ølgaard and Wells have analysed2 the differing performance
characteristics of quadrature and tensor implementations.

Can we use symbolic algebra techniques to find novel implementation
choices that outperform quadrature and tensor contraction
implementations?

1R. Kirby, A. Logg, L. Ridgeway Scott, A. Terrel, “Topological Optimization of the
Evaluation of Finite Element Matrices”, 2006.

2K. Ølgaard, G. Wells, “Optimizations for Quadrature Representations of Finite Element
Tensors through Automated Code Generation”, 2010.

Francis Russell (ICL DoC) Exploring Symbolic Manipulation. . . 5/11/2011 3 / 29

Symbolic Techniques

These techniques are not new:

These techniques have been investigated as early as 1984 by Wang
during development of the finger system.

More recently, investigated by Alnæs and Mardall in the SyFi Form
Compiler (a FEniCS sub-project).

Typically:

Treats each entry of the local assembly matrix as an independent
expression.

Using quadrature or symbolic integration, computes the integral of
each expression over a general cell.

Applies common sub-expression elimination techniques to reduce
computation cost by exploiting inter and intra expression redundancy.

Francis Russell (ICL DoC) Exploring Symbolic Manipulation. . . 5/11/2011 4 / 29

What’s new?

Apply recent research on efficiently evaluating sets of multivariate
polynomial expressions.

We scale these techniques to some (relatively) large problem sizes.

We extend this research to take account of the numerical
relationships between expressions to improve the evaluation strategies
that can be found.

We compare operation counts of code generated by our library
(Excafé) against FFC generated quadrature and tensor contraction
implementations over a range of forms.

We compare how effectively the Intel C++ Compiler and the GNU
C++ Compiler can optimise these implementations.

We look at the numerical accuracy effects of the tensor contraction
topological optimisations as well.

Francis Russell (ICL DoC) Exploring Symbolic Manipulation. . . 5/11/2011 5 / 29

Quadrature

Take the Laplace operator:

a(u, v) =

∫
Ω
∇u(x) · ∇v(x) dx

Evaluation of the p×q local assembly matrix by quadrature for some cell k
involves evaluating a weighted sum at Q points over the element volume:

Mk
qp =

Q−1∑
i=0

wi (∇χk)−1 · ∇φp · (∇χk)−1 · ∇ψq|J(χk)|

χk is the local-to-global coordinate mapping for cell k .
Q is usually determined by the polynomial order of the form.

Francis Russell (ICL DoC) Exploring Symbolic Manipulation. . . 5/11/2011 6 / 29

Tensor Contraction

Tensor contraction representation involves representing the local assembly
matrix as a contraction of a geometry-independent reference tensor (A0)
and a geometry-dependent tensor (Gk).

Mk = A0 : Gk

For the Laplacian example, these can be defined as follows:

A0
qpαβ =

∫
Ωst

∂φp
∂ξα

∂ψq

∂ξβ
dξ

Gαβ
k = |J(χk)|

d∑
γ=0

∂ξα
∂xγ

∂ξβ
∂xγ

The cost of performing the tensor contraction can be reduced through
topological analysis of the reference tensor.

Francis Russell (ICL DoC) Exploring Symbolic Manipulation. . . 5/11/2011 7 / 29

Quadrature versus Tensor Contraction

Ølgaard and Wells have compared of the evaluation cost of different
classes of bilinear forms using quadrature and tensor contraction
based implementations.

Tensor contraction performs better with high-order basis functions
whereas quadrature performs better with forms that contain large
numbers of functions and/or derivatives.

The operation count ratio for quadrature versus tensor contraction
based assembly can be anything from 0.01 to 350, for extreme (but
not unrealistic) cases.

Both quadrature and tensor contraction can be considered particular
strategies for evaluating and reusing certain sub-expressions.

The symbolic approach makes it trivial to support arbitrary
sub-expressions.

Key to efficient code generation is to exploit domain-specific
knowledge about variational forms and basis functions.

Francis Russell (ICL DoC) Exploring Symbolic Manipulation. . . 5/11/2011 8 / 29

Characteristics of the Symbolic Manipulation Approach

The integral can be evaluated at code-generation time (either
analytically or symbolically) for linear elements, making the cost of
assembly independent of the degree of the basis functions.

Symbolic integration can be extremely computationally expensive to
perform on large expressions, even when using optimised computer
algebra systems such as Maxima.

Treating each expression individually makes it impossible to generate
the loop structures that are used in quadrature and tensor contraction
based implementations.

We note that the tensor contraction topological optimisations also
destroy these loop structures.

Francis Russell (ICL DoC) Exploring Symbolic Manipulation. . . 5/11/2011 9 / 29

What We Do

We manipulate representations of variational forms and basis
functions at code-generation time.

∫
Ω α∇φ · ∇ψdX

 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.5

 1

Bilinear forms Basis functions

The local-to-global geometry transformation can be represented
symbolically.

We can apply differential operators such as grad and div to symbolic
representations of our basis functions.

We symbolically integrate these expressions over the reference cell.

Francis Russell (ICL DoC) Exploring Symbolic Manipulation. . . 5/11/2011 10 / 29

Symbolically factorising local assembly

After symbolic integration, we have independent multivariate rational
expressions for each entry of the local assembly matrix.

Generating efficient code from these requires identifying and reusing
certain computations.

Standard compiler CSE passes neither have the freedom nor the
capacity to take advantage of the numerical relationships we wish to
exploit.

In particular, we want to be able to perform optimisations that take
advantage of the distributivity of multiplication over addition.

We have extended existing work by Hosangadi et al.3 on optimising
evaluation of sets of multivariate polynomials as part of our local
assembly code generator.

3A. Hosanagadi, F. Fallah, R. Kastner, ”Optimizing Polynomial Expressions by
Algebraic Factorization and Common Subexpression Elimination”, 2006.

Francis Russell (ICL DoC) Exploring Symbolic Manipulation. . . 5/11/2011 11 / 29

The Hosangadi et al. Algorithm

Handles extracting common subexpressions across multiple
independent polynomial expressions.

For each polynomial expression F , forms factorisations of the form
C ∗ F1 + F2 where C is a monomial and F1 and F2 are polynomials.
Example: e1 = x3 + 2x2y + y

= 1(x3 + 2x2y + y) (1a)

= y(2x2 + 1) + x3 (1b)

= x2(x + 2y) + y (1c)

Example: e2 = x3 + 2x2 + 1

= 1(x3 + 2x2 + 1) (2a)

= x2(x + 2) + 1 (2b)

The search space of possible new subexpressions is expressed as a
matrix.

Francis Russell (ICL DoC) Exploring Symbolic Manipulation. . . 5/11/2011 12 / 29

The Factorisation Matrix

Rows correspond to different factorisations of each expression.
Columns correspond to terms in those factorisations.
Subscripts denote term numberings.

e1 = x3
(1) + 2x2y (2) + y(3)

e2 = x3
(4) + 2x2

(5) + 1(6)

1 2 2x2 2x2y 2y x x3 y

(e1) 1 0 0 0 1(2) 0 0 1(1) 1(3)

(e1) y 1(3) 0 1(2) 0 0 0 0 0

(e1) x2 0 0 0 0 1(2) 1(1) 0 0

(e2) 1 1(6) 0 1(5) 0 0 0 1(4) 0

(e2) x2 0 1(5) 0 0 0 1(4) 0 0

Francis Russell (ICL DoC) Exploring Symbolic Manipulation. . . 5/11/2011 13 / 29

The Factorisation Matrix

Factorisations correspond to a subset of rows and columns in which every
entry is equal to one.

f = 2x2 + 1
e1 = x3

(1) + 2x2y (2) + y(3)

e2 = x3
(4) + 2x2

(5) + 1(6)

1 2 2x2 2x2y 2y x x3 y

(e1) 1 0 0 0 1(2) 0 0 1(1) 1(3)

(e1) y 1(3) 0 1(2) 0 0 0 0 0

(e1) x2 0 0 0 0 1(2) 1(1) 0 0

(e2) 1 1(6) 0 1(5) 0 0 0 1(4) 0

(e2) x2 0 1(5) 0 0 0 1(4) 0 0

Francis Russell (ICL DoC) Exploring Symbolic Manipulation. . . 5/11/2011 14 / 29

The Factorisation Matrix

The factorised sum becomes a new expression and the original expressions
are rewritten.

f = 2x2
(7) + 1(8)

e1 = x3
(1) + fy (9)

e2 = x3
(4) + f(10)

1 f fy 2x2 x3

(f) 1 1(8) 0 0 1(7) 0

(e1) 1 0 0 1(9) 0 1(1)

(e2) 1 0 1(10) 0 0 1(4)

Francis Russell (ICL DoC) Exploring Symbolic Manipulation. . . 5/11/2011 15 / 29

The Hosangadi et al. Algorithm

Factorisations are chosen based on the number of floating point
operations they save over the naive evaluation choice.

For complex problems, the matrix can have hundreds of thousands of
rows and columns.

We represent the matrix as a bipartite graph so possible factorisations
become bicliques within the graph.

We’ve written an optimised branch and bound biclique search
algorithm specific to our scoring function.

Picking the best factorisation at each step means the algorithm is still
greedy.

Scalability is an issue for more complex forms.

Francis Russell (ICL DoC) Exploring Symbolic Manipulation. . . 5/11/2011 16 / 29

Taking account of numeric relationships

The Hosangadi et al. CSE pass is oblivious to numerical values.
We want to be able to take advantage of numeric relationships. e.g.

e0 =
3

5
x +

5

7
y (3a)

e1 = 1
1

5
x + 1

3

7
y (3b)

We decompose rationals into primes raised to positive and negative
exponents:

e0 = 315−1x + 517−1y (4a)

e1 = 31215−1x + 51217−1y (4b)

The extracted common sum c only needs to be computed once:

c = 315−1x + 517−1y (5a)

e0 = c (5b)

e1 = 21c (5c)

Francis Russell (ICL DoC) Exploring Symbolic Manipulation. . . 5/11/2011 17 / 29

Exploiting exact knowledge of numerical values

At every step of our analysis, we maintain our coefficients as rational
numbers.

We generate our Lagrange basis functions in the same way as
implemented in FIAT, but solve the resulting linear system over the
rationals.

We must use symbolic integration rather than quadrature to evaluate
the integral at code-generation time in order to preserve rational
coefficients.

We can now search for common subexpressions taking account of
both distributivity of multiplication over addition and of numeric
relationships between coefficients.

Francis Russell (ICL DoC) Exploring Symbolic Manipulation. . . 5/11/2011 18 / 29

Some generated code...

void tabulate_tensor(double* const A, const double* const* w, const ufc::cell& c) const

{

const double * const * x = c.coordinates;

const double var_0 = -1.0000000000000000000000000*x[0][1];

const double var_1 = x[2][1] + var_0;

const double var_2 = -1.0000000000000000000000000*x[0][0];

const double var_3 = x[1][0] + var_2;

const double var_4 = var_0 + x[1][1];

const double var_5 = var_2 + x[2][0];

const double var_6 = var_1*var_3 + -1.0000000000000000000000000*var_4*var_5;

const double var_7 = std::abs(var_6);

const double var_8 = 0.0166666666666666664353702*var_7*w[0][0];

const double var_9 = 0.0166666666666666664353702*var_7*w[0][1];

const double var_10 = 0.0166666666666666664353702*var_7*w[0][2];

const double var_11 = var_9 + var_10;

A[5] = 0.0083333333333333332176851*var_7*w[0][0] + var_11;

const double var_12 = var_9 + var_8;

A[1] = 0.0083333333333333332176851*var_7*w[0][2] + var_12;

A[3] = A[1];

const double var_13 = var_10 + var_8;

A[2] = 0.0083333333333333332176851*var_7*w[0][1] + var_13;

A[6] = A[2];

A[7] = A[5];

A[4] = 0.0500000000000000027755576*var_7*w[0][1] + var_13;

A[8] = 0.0500000000000000027755576*var_7*w[0][2] + var_12;

A[0] = 0.0500000000000000027755576*var_7*w[0][0] + var_11;

}

Francis Russell (ICL DoC) Exploring Symbolic Manipulation. . . 5/11/2011 19 / 29

Results (FLOP count from hardware performance counters)

We evaluated the operation count of quadrature, tensor and our generated local
assembly implementations for various premultiplied mass matrices in 2D. e.g.

a(u, v) =
∫

Ω
f (x)g(x)h(x)(u(x) · v(x)) dx

nf = 1 nf = 2 nf = 3 nf = 4
Q T E B/E Q T E B/E Q T E B/E Q T E B/E

p = 1, q = 1 127 27 28 0.96 157 80 68 1.18 214 267 115 1.86 607 751 209 2.90
p = 1, q = 2 609 76 91 0.84 1123 193 163 1.18 1607 651 284 2.29 2682 1949 507 3.84
p = 1, q = 3 4935 126 161 0.78 7882 490 420 1.17 8057 1559 930 1.68 118513123 1211 2.58
p = 1, q = 4 17082435 485 0.90 248471111 1060 1.05 250992542 2046 1.24 345034159 2794 1.49
p = 2, q = 1 151 49 55 0.89 583 315 219 1.44 1532 1970 926 1.65 2671 106372420 1.10
p = 2, q = 2 1111 117 131 0.89 2632 998 578 1.73 4255 5899 2346 1.81 - - - -
p = 2, q = 3 7857 318 350 0.91 117791966 1425 1.38 166677860 4701 1.67 - - - -
p = 2, q = 4 24811853 978 0.87 344054306 3507 1.23 - - - - - - - -

p = 3, q = 1 213 106 90 1.18 1607 1023 503 2.03 - - - - - - - -
p = 3, q = 2 1607 223 217 1.03 4363 2743 1464 1.87 - - - - - - - -
p = 3, q = 3 8057 756 853 0.89 168145684 4553 1.25 - - - - - - - -
p = 3, q = 4 250991661 2015 0.82 459599856 9746 1.01 - - - - - - - -

nf is the number of premultiplying functions.
p is the degree of the premultiplying functions (e.g. f,g,h).
q is the degree of the basis functions (e.g. u,v).
FFC 0.9.10 with quadrature & tensor optimisations, GCC 4.6.1, with ‘-03’ optimisation,
Intel Core2 Duo.

Francis Russell (ICL DoC) Exploring Symbolic Manipulation. . . 5/11/2011 20 / 29

Results (GNU C++ Compiler Timings, nano-seconds)

Timings don’t include the cost of data movement or sparse matrix insertion.

a(u, v) =
∫

Ω
f (x)g(x)h(x)(u(x) · v(x)) dx

nf = 1 nf = 2 nf = 3 nf = 4
Q T E B/E Q T E B/E Q T E B/E Q T E B/E

p = 1, q = 1 69 19 19 1.02 86 46 26 1.73 109 129 40 2.76 387 734 112 3.46
p = 1, q = 2 627 67 69 0.97 1062 126 107 1.18 1500 551 193 2.85 2364 1851 361 5.13
p = 1, q = 3 2714 143 161 0.89 4221 379 267 1.42 4280 1149 729 1.58 6368 6273 935 6.71
p = 1, q = 4 8935 378 458 0.83 128581086 728 1.49 129572171 1712 1.27 178158719 6645 1.31
p = 2, q = 1 138 39 33 1.16 386 245 146 1.68 825 2029 651 1.27 1402 221841846 0.76
p = 2, q = 2 1076 83 82 1.02 2300 868 466 1.86 3445 124291896 1.82 - - - -
p = 2, q = 3 4227 289 265 1.09 6344 1825 1147 1.59 8768 15883101240.87 - - - -
p = 2, q = 4 12930709 763 0.93 177478843 8629 1.02 - - - - - - - -

p = 3, q = 1 186 69 63 1.10 888 986 405 2.19 - - - - - - - -
p = 3, q = 2 1518 148 143 1.03 3427 2811 1209 2.33 - - - - - - - -
p = 3, q = 3 4312 695 664 1.05 8668 117099890 0.88 - - - - - - - -
p = 3, q = 4 132131336 1829 0.73 2365922051226170.98 - - - - - - - -

nf is the number of premultiplying functions.
p is the degree of the premultiplying functions (e.g. f,g,h).
q is the degree of the basis functions (e.g. u,v).
FFC 0.9.10 with quadrature & tensor optimisations, GCC 4.6.1, with ‘-03’ optimisation,
Intel Core2 Duo P8600 @ 2.4GHz.

Francis Russell (ICL DoC) Exploring Symbolic Manipulation. . . 5/11/2011 21 / 29

Results (FLOP count from hardware performance counters)

The Intel C++ compiler is capable of optimising FFC generated local assembly
implementations significantly more effectively than GCC.

nf = 1 nf = 2 nf = 3 nf = 4
Q T E B/E Q T E B/E Q T E B/E Q T E B/E

p = 1, q = 1 175 27 31 0.87 211 71 71 1.00 287 185 118 1.57 559 498 212 2.35
p = 1, q = 2 476 77 94 0.82 883 165 166 0.99 1271 425 286 1.49 2132 1066 510 2.09
p = 1, q = 3 2370 113 163 0.69 3849 340 417 0.82 3994 689 939 0.73 5947 1430 1213 1.18
p = 1, q = 4 7858 379 484 0.78 11538661 1041 0.63 118791119 2060 0.54 163021667 2812 0.59

p = 2, q = 1 211 51 58 0.88 463 257 223 1.15 1157 1312 935 1.24 1951 7153 2507 0.78
p = 2, q = 2 667 125 134 0.93 1482 669 597 1.12 2422 3670 2434 1.00 - - - -
p = 2, q = 3 3835 284 357 0.80 5659 1182 1452 0.81 8138 3901 4766 0.82 - - - -
p = 2, q = 4 11536639 978 0.65 158892067 3540 0.58 - - - - - - - -

p = 3, q = 1 266 100 93 1.08 1157 761 524 1.45 - - - - - - - -
p = 3, q = 2 1223 219 224 0.98 3123 1842 1511 1.22 - - - - - - - -
p = 3, q = 3 3909 612 864 0.71 8101 2978 4613 0.65 - - - - - - - -
p = 3, q = 4 116691223 2021 0.61 213255664 9819 0.58 - - - - - - - -

nf is the number of premultiplying functions.
p is the degree of the premultiplying functions (e.g. f,g,h).
q is the degree of the basis functions (e.g. u,v).
FFC 0.9.10 with tensor & quadrature optimisations, Intel C++ Compiler 11.1, with ‘-03’
optimisation, Intel Core2 Duo.

Francis Russell (ICL DoC) Exploring Symbolic Manipulation. . . 5/11/2011 22 / 29

Results (Intel C++ Compiler Timings, nano-seconds)

Timings don’t include the cost of data movement or sparse matrix insertion.

nf = 1 nf = 2 nf = 3 nf = 4
Q T E B/E Q T E B/E Q T E B/E Q T E B/E

p = 1, q = 1 110 19 23 0.81 126 35 26 1.33 172 79 40 1.99 323 233 72 3.23
p = 1, q = 2 591 49 55 0.88 1359 98 101 0.97 1902 250 151 1.66 3214 727 324 2.25
p = 1, q = 3 3536 139 170 0.82 5747 225 270 0.83 6025 443 599 0.74 8055 998 794 1.26
p = 1, q = 4 10543342 479 0.71 15243481 699 0.69 16045754 1403 0.54 228671177 2888 0.41

p = 2, q = 1 208 38 38 1.00 469 161 125 1.29 1105 929 489 1.90 1927 160981341 1.44
p = 2, q = 2 868 85 91 0.93 1645 414 325 1.27 2706 7950 1402 1.93 - - - -
p = 2, q = 3 5517 200 270 0.74 7900 742 873 0.85 118559052 9767 0.93 - - - -
p = 2, q = 4 15350462 740 0.62 210121480 7431 0.20 - - - - - - - -

p = 3, q = 1 291 62 59 1.05 1140 587 327 1.80 - - - - - - - -
p = 3, q = 2 1978 122 142 0.86 4867 1401 1035 1.35 - - - - - - - -
p = 3, q = 3 5634 394 604 0.65 112417298 9593 0.76 - - - - - - - -
p = 3, q = 4 15919795 1567 0.51 2841513605202290.67 - - - - - - - -

nf is the number of premultiplying functions.
p is the degree of the premultiplying functions (e.g. f,g,h).
q is the degree of the basis functions (e.g. u,v).
FFC 0.9.10 with tensor & quadrature optimisations, Intel C++ Compiler 11.1, with ‘-03’
optimisation, Intel Core2 Duo P8600 @ 2.4GHz.

Francis Russell (ICL DoC) Exploring Symbolic Manipulation. . . 5/11/2011 23 / 29

Floating Point Inaccuracies

To validate the correctness of our generated, we decided to compare
against the FEniCS generated local assembly implementations.

We noticed that for some forms, the results of the tensor contraction
code deviated quite significantly from both the quadrature and our
generated local assembly implementations.

These deviations only occurred when the tensor contraction
topological optimisations were enabled (co-linearity and Hamming
distance analyses).

Francis Russell (ICL DoC) Exploring Symbolic Manipulation. . . 5/11/2011 24 / 29

Comparison of error in local assembly implementations

nf = 1 nf = 2 nf = 3 nf = 4
Excafé Tensor Excafé Tensor Excafé Tensor Excafé Tensor

p = 1, q = 1 6.89e-17 1.40e-15 5.53e-17 9.90e-16 2.01e-17 8.53e-16 1.42e-17 4.43e-5
p = 1, q = 2 1.38e-16 9.68e-15 1.36e-16 1.60e-15 2.71e-17 2.07e-15 3.14e-17 7.11e-5
p = 1, q = 3 2.33e-16 3.86e-15 2.22e-16 6.09e-5 9.20e-17 5.30e-4 1.10e-16 2.62e-4
p = 1, q = 4 9.53e-16 2.00e-4 9.14e-16 4.60e-4 3.33e-16 7.20e-4 4.83e-16 3.70e-4

p = 2, q = 1 2.45e-16 8.34e-16 1.50e-16 1.41e-15 7.43e-17 1.30e-4 1.30e-16 2.03e-4
p = 2, q = 2 5.98e-16 1.82e-15 1.46e-16 7.04e-5 4.18e-16 3.08e-4 - -
p = 2, q = 3 5.18e-16 1.65e-4 9.03e-16 6.37e-4 1.84e-15 1.41e-3 - -
p = 2, q = 4 2.71e-15 1.01e-3 3.90e-15 1.71e-3 - - - -

p = 3, q = 1 1.49e-16 1.60e-15 2.40e-16 6.24e-5 - - - -
p = 3, q = 2 2.05e-16 2.99e-15 1.08e-15 6.31e-4 - - - -
p = 3, q = 3 5.85e-16 3.26e-4 5.71e-15 1.24e-3 - - - -
p = 3, q = 4 3.11e-15 1.11e-3 1.61e-14 2.48e-3 - - - -

Basis function coefficients were chosen as random values between -1 and 1. Cell vertices
were placed randomly on the unit circle.

Francis Russell (ICL DoC) Exploring Symbolic Manipulation. . . 5/11/2011 25 / 29

Recap of FFC topological optimisations

Co-linearity:

The co-linearity optimisation computes local assembly matrix entries
from each other using a scaling factor.

Hamming distance:

The Hamming distance algorithm involves building a total graph
whose nodes are the elements of the local assembly matrix.

Each edge has a weight which represents the cost of computing one
local assembly matrix entry from the other.

The generated code corresponds to the computation described by the
minimal spanning tree over this graph.

Francis Russell (ICL DoC) Exploring Symbolic Manipulation. . . 5/11/2011 26 / 29

Complexity reducing relations

Dashed blue lines are Hamming distance optimisations.
Continuous blue lines are reuse of identical values.
Dashed red lines are colinearity optimisations.

a44 = (8,8,8)

a45 = -(8,8,0)a46 = -(0,8,8)

a56 = (0,8,0) a12 = (1,1,0)

a55 = (8,8,8) a66 = (8,8,8)

a16 = -(4,4,0)

a23 = -(0,1,0) a26 = -(4,4,0)a24 = (0,4,0)

0

0 0

11

111

11

Francis Russell (ICL DoC) Exploring Symbolic Manipulation. . . 5/11/2011 27 / 29

What causes the error?

Error appears to be caused by the Hamming distance optimisations
rather than the colinearity ones.

We note that for larger local assembly matrices, the minimal spanning
tree will become larger.

The larger the minimal spanning tree, the greater the accumulated
numerical error as the inner products are updated.

The accumulated error appears inherent to a system that cannot
introduce new subexpressions.

Francis Russell (ICL DoC) Exploring Symbolic Manipulation. . . 5/11/2011 28 / 29

Conclusion

We have shown that for certain classes of variational forms, it’s
possible to reduce operation count over both tensor contraction and
quadrature implementations by a factor of over 3.5 (GCC) or 2 (ICC).

Actual performance improvements are dependent on architectural
factors, form complexity and the amount of time spent performing
local assembly.

When we don’t win, we still do better than the other lesser
performing implementation.

Tensor contraction topological optimisations can sometimes cause
performance issues.

For some forms, we have a significant reduction in operation count
without any associated numerical precision issues.

The Intel C++ Compiler can optimise both FFC-generated
quadrature code and tensor contraction code significantly more
effectively than GCC.

Francis Russell (ICL DoC) Exploring Symbolic Manipulation. . . 5/11/2011 29 / 29

