
An Active Linear Algebra Library Using Delayed Evaluation
and Runtime Code Generation

[Extended Abstract]

Francis P Russell, Michael R Mellor, Paul H J Kelly and Olav Beckmann

Department of Computing
Imperial College London

180 Queen’s Gate, London SW7 2AZ, UK

ABSTRACT
Active libraries can be defined as libraries which play an ac-
tive part in the compilation (in particular, the optimisation)
of their client code. This paper explores the idea of delay-
ing evaluation of expressions built using library calls, then
generating code at runtime for the particular compositions
that occur. We explore this idea with a dense linear algebra
library for C++. The key optimisations in this context are
loop fusion and array contraction.

Our library automatically fuses loops, identifies unnecessary
intermediate temporaries, and contracts temporary arrays
to scalars. Performance is evaluated using a benchmark
suite of linear solvers from ITL (the Iterative Template Li-
brary), and is compared with MTL (the Matrix Template Li-
brary). Excluding runtime compilation overheads (caching
means they occur only on the first iteration), for larger ma-
trix sizes, performance matches or exceeds MTL – and in
some cases is more than 60% faster.

1. INTRODUCTION
The idea of an “active library” is that, just as the library
extends the language available to the programmer for prob-
lem solving, so the library should also extend the compiler.
The term was coined by Czarnecki et al [5], who observed
that active libraries break the abstractions common in con-
ventional compilers. Active libraries are described in detail
by Veldhuizen and Gannon [8].

This paper presents a prototype linear algebra library which
we have developed in order to explore one interesting ap-
proach to building active libraries. The idea is to use a
combination of delayed evaluation and runtime code gener-
ation to:

Delay library call execution Calls made to the library
are used to build a “recipe” for the delayed computa-
tion. When execution is finally forced by the need for
a result, the recipe will commonly represent a complex
composition of primitive calls.

Generate optimised code at runtime Code is generated
at runtime to perform the operations present in the de-
layed recipe. In order to obtain improved performance
over a conventional library, it is important that the
generated code should on average, execute faster than
a statically generated counterpart in a conventional li-
brary. To achieve this, we apply optimisations that
exploit the structure, semantics and context of each
library call.

This approach has the advantages that:

• There is no need to analyse the client source code.

• The library user is not tied to a particular compiler.

• The interface of the library is not over complicated by
the concerns of achieving high performance.

• We can perform optimisations across both statement
and procedural bounds.

• The code generated for a recipe is isolated from client-
side code - it is not interwoven with non-library code.

This last point is particularly important, as we shall see:
because the structure of the code for a recipe is restricted in
form, we can introduce compilation passes specially targeted
to achieve particular effects.

The disadvantage of this approach is the overhead of run-
time compilation and the infrastructure to delay evaluation.
In order to minimise the first factor, we maintain a cache of
previously generated code along with the recipe used to gen-
erate it. This enables us to reuse previously optimised and
compiled code when the same recipe is encountered again.

There are also more subtle disadvantages. In contrast to
a compile-time solution, we are forced to make online de-
cisions about what to evaluate, and when. Living without



static analysis of the client code means we don’t know, for
example, which variables involved in a recipe are actually
live when the recipe is forced. We return to these issues
later in the paper.

Our exploration covers the following ground:

1. We present an implementation of a C++ library for
dense linear algebra which provides functionality suf-
ficient to operate with the majority of methods avail-
able in the Iterative Template Library [6] (ITL), a set
of templated linear iterative solvers for C++.

2. This implementation delays execution, generates code
for delayed recipes at runtime, and then invokes a ven-
dor C compiler at runtime - entirely transparently to
the library user.

3. To avoid repeated compilation of recurring recipes, we
cache compiled code fragments (see Section 4).

4. We implemented two optimisation passes which trans-
form the code prior to compilation: loop fusion, and
array contraction (see Section 5).

5. We introduce a scheme to predict, statistically, which
intermediate variables are likely to be used after recipe
execution; this is used to increase opportunities for
array contraction (see Section 6).

6. We evaluate the effectiveness of the approach using a
suite of iterative linear system solvers, taken from the
Iterative Template Library (see Section 7).

Although the exploration of these techniques has used only
dense linear algebra, we believe these techniques are more
widely applicable. Dense linear algebra provides a simple
domain in which to investigate, understand and demon-
strate these ideas. Other domains we believe may benefit
from these techniques include sparse linear algebra and im-
age processing operations.

The contributions we make with this work are as follows:

• Compared to the widely used Matrix Template Li-
brary [7], we demonstrate performance improvements
of up to 64% across our benchmark suite of dense linear
iterative solvers from the Iterative Template Library.
Performance depends on platform, but on a 3.2GHz
Pentium 4 (with 2MB cache) using the Intel C Com-
piler, average improvement across the suite was 27%,
once cached complied code was available.

• We present a cache architecture that finds applicable
pre-compiled code quickly, and which supports anno-
tations for adaptive re-optimisation.

• Using our experience with this library, we discuss some
of the design issues involved in using the delayed-evaluation,
runtime code generation technique.

We discuss related work in Section 8.

Figure 1: An example DAG. The rectangular node
denotes a handle held by the library client. The
expresssion represents the matrix-vector multiply
function from Level 2 BLAS, y = αAx + βy.

2. DELAYING EVALUATION
Delayed evaluation provides the mechanism whereby we col-
lect the sequences of operations we wish to optimise. We call
the runtime information we obtain about these operations
runtime context information.

This information may consist of values such as matrix or
vector sizes, or the various relationships between successive
library calls. Knowledge of dynamic values such as matrix
and vector sizes allows us to improve the performance of
the implementation of operations using these objects. For
example, the runtime code generation system (see 3) can
use this information to specialise the generated code. One
specialisation we do is with loop bounds. We incorporate dy-
namically known sizes of vectors and matrices as constants
in the runtime generated code.

Delayed evaluation in the library we developed works as fol-
lows:

• Delayed expressions built using library calls are repre-
sented as Directed Acyclic Graphs (DAGs).

• Nodes in the DAG represent either data values (liter-
als) or operations to be performed on them.

• Arcs in the DAG point to the values required before a
node can be evaluated.

• Handles held by the library client may also hold refer-
ences to nodes in the expression DAG.

• Evaluation of the DAG involves replacing non-literal
nodes with literals.

• When a node no longer has any nodes or handles de-
pending on it, it deletes itself.



An example DAG is illustrated in Figure 1. The leaves of
the DAG are literal values. The red node represents a han-
dle held by the library client, and the other nodes represent
delayed expressions. The three multiplication nodes do not
have a handle referencing them. This makes them in ef-
fect, unnamed. When the expression DAG is evaluated, it is
possible to optimise away these values entirely (their values
are not required outside the runtime generated code). For
expression DAGs involving matrix and vector operations,
this enables us to reduce memory usage and improve cache
utilisation.

Delayed evaluation also gives us the ability to optimise across
successive library calls. This Cross Component Optimisa-
tion offers the possibility of greater performance than can
be achieved by using separate hand-coded library functions.

Work by Ashby[1] has shown the effectiveness of cross com-
ponent optimisation when applied to Level 1 Basic Linear
Algebra Subprograms (BLAS) routines implemented in the
language Aldor.

Unfortunately, with each successive level of BLAS, the im-
proved performance available has been accompanied by an
increase in complexity. BLAS level 3 functions typically take
large a number of operands and perform a large number of
more primitive operations simultaneously.

The burden then falls on the the library client programmer
to structure their algorithms to make the most effective use
of the BLAS interface. Code using this interface becomes
more complex both to read and understand, than that using
a simpler interface more oriented to the domain.

Delayed evaluation allows the library we developed to per-
form cross component optimisation at runtime, and also
equip it with a simple interface, such as the one required
by the ITL set of iterative solvers.

3. RUNTIME CODE GENERATION
Runtime code generation is performed using the TaskGraph[3]
system. The TaskGraph library is a C++ library for dy-
namic code generation. A TaskGraph represents a fragment
of code which can be constructed and manipulated at run-
time, compiled, dynamically linked back into the host appli-
cation and executed. TaskGraph enables optimisation with
respect to:

Runtime Parameters This enables code to be specialised
to its parameters and other runtime contextual infor-
mation.

Platform SUIF-1, the Stanford University Intermediate For-
mat is used as an internal representation in TaskGraph,
making a large set of dependence analysis and restruc-
turing passes available for code optimisation.

Characteristics of the TaskGraph approach include:

Simple Language Design TaskGraph is implemented in
C++ enabling it to be compiled with a number of
widely available compilers.

Explicit Specification of Dynamic Code TaskGraph re-
quires the application programmer to construct the
code explicitly as a data structure, as opposed to an-
notation of code or automated analysis.

Simplified C-like Sub-language Dynamic code is spec-
ified with the TaskGraph library via a sub-language
similar to C. This language is implemented though ex-
tensive use of macros and C++ operator overloading.
The language has first-class arrays, which facilitates
dependence analysis.

An example function in C++ for generating a matrix mul-
tiply in the TaskGraph sub-language resembles a C imple-
mentation:

void TG_mm_ijk(unsigned int sz[2], TaskGraph &t)

{

taskgraph(t) {

tParameter(tArrayFromList(float, A, 2, sz));

tParameter(tArrayFromList(float, B, 2, sz));

tParameter(tArrayFromList(float, C, 2, sz));

tVar(int, i); tVar(int, j); tVar(int, k);

tFor(i, 0, sz[0]-1)

tFor(j, 0, sz[1]-1)

tFor(k, 0, sz[0] -1)

C[i][j] += A[i][k] * B[k][j];

}

}

The generated code is specialised to the matrix dimensions
stored in the array sz. The matrix parameters A, B, and C
are supplied when the code is executed.

Code generated by the library we developed is specialised
in the same way. The constant loop bounds and array sizes
make the code more amenable to the optimisations we apply
later. These are described in Section 5.

4. CODE CACHING
As the cost of compiling the runtime generated code is ex-
tremely high (compiler execution time in the order of tenths
of a second) it was important that this overhead be min-
imised.

Related work by Beckmann[4] on the efficient placement of
data in a parallel linear algebra library cached execution
plans in order to improve performance. We adopt a similar
strategy in order to reuse previously compiled code. We
maintain a cache of previously encountered recipes along
with the compiled code required to execute them. As any
caching system would be invoked at every force point within
a program using the library, it was essential that checking
for cache hits would be as computationally inexpensive as
possible.

As previously described, delayed recipes are represented in
the form of directed acyclic graphs. In order to allow the
fast resolution of possible cache hits, all previously cached



recipes are associated with a hash value. If recipes already
exist in the cache with the same hash value, a full check is
then be performed to see if the recipes match.

Time and space constraints were of paramount importance
in the development of the caching strategy and certain con-
cessions were made in order that it could be performed
quickly. The primary concession was that both hash cal-
culation and isomorphism checking occur on flattened forms
of the delayed expression DAG ordered using a topological
sort.

This causes two limitations:

• It is impossible to detect the situation where the pres-
ence of commutative operations allow two differently
structured delayed expression DAGs to be used in place
of each other.

• As there can be more than one valid topological sort of
a DAG, it is possible for multiple identically structured
expression DAGs to exist in the code cache.

As we will see later, neither of these limitations significantly
affects the usefulness of the cache, but first we will briefly
describe the hashing and isomorphism algorithms.

Hashing occurs as follows:

• Each DAG node in the sorted list is assigned a value
corresponding to its position in the list.

• A hash value is calculated for each node corresponding
to its type and the other nodes in the DAG it depends
on. References to other nodes are hashed using the
numerical values previously assigned to each node.

• The hash values of all the nodes in the list are com-
bined together in list order using a non-commutative
function.

Isomorphism checking works similarly:

• Nodes in the sorted lists for each graph are assigned a
value corresponding to their location in their list.

• Both lists are checked to be the same size.

• The corresponding nodes from both lists are checked
to be the same type, and any nodes they reference are
checked to see if they have been assigned the same
numerical value.

Isomorphism checking in this manner does not require that a
mapping be found between nodes in the two DAGs involved
(this is already implied by each node’s location in the sorted
list for each graph). It only requires determining whether
the mapping is valid.

If the maximum number of nodes a node can refer to is
bounded (maximum of two for a library with only unary

and binary operators) then both hashing and isomorphism
checking between delayed expression DAGs can be performed
in linear time with respect to the number of nodes in the
DAG.

We previously stated that the limitations imposed by using
a flattened representation of an expression DAG does not
significantly effect the usefulness of the code cache. We ex-
pect the code cache to be at its most useful when the same
sequence of library calls are repeatedly encountered (as in
a loop). In this case, the generated DAGs will have identi-
cal structures, and the ability to detect non-identical DAGs
that compute the same operation provides no benefit.

The second limitation, the need for identical DAGs matched
by the caching mechanism to also have the same topological
sort is more important. To ensure this, we store the depen-
dency information held at each DAG node using lists rather
than sets. By using lists, we can guarantee that two DAGs
constructed in an identical order, will also be traversed in
the same order. Thus, when we come to perform our topo-
logical sort, the nodes from both DAGs will be sorted in the
same order.

The code caching mechanism discussed, whilst it cannot
recognise all opportunities for reuse, is well suited for de-
tecting repeatedly generated recipes from client code. For
the ITL set of iterative solvers, compilation time becomes
a constant overhead, regardless of the number of iterations
executed.

5. LOOP FUSION AND ARRAY CONTRAC-
TION

We implemented two optimisations using the TaskGraph
back-end, SUIF. A brief description of these transformations
follow.

Loop fusion[2] can lead to an improvement in performance
when the fused loops use the same data. As the data is only
loaded into the cache once, the fused loops take less time to
execute than the sequential loops. Alternatively, if the fused
loops use different data, it can lead to poorer performance,
as the data used by the fused loop displace each each other
in the cache.

A brief example involving two vector additions. Before loop
fusion:

for (int i=0; i<100; ++i)

a[i] = b[i] + c[i];

for(int i=0; i<100; ++i)

e[i] = a[i] + d[i];

After loop fusion:

for (int i=0; i<100; ++i) {

a[i] = b[i] + c[i];

e[i] = a[i] + d[i];

}



In this example, after fusion, the value stored in vector a
can be reused for the calculation of e.

The loop fusion pass implemented in our library requires
that the loop bounds be constant. We can afford this limi-
tation because our runtime generated code has already been
specialised with loop bound information. Our loop fuser
does not possess a model of cache locality to determine
which loop fusions are likely to lead to improved perfor-
mance. Despite this, visual inspection of the code gener-
ated during execution of the iterative solvers indicates that
the fused loops commonly use the same data. This is most
likely due to the structure of the dependencies involved in
the operations required for the iterative solvers.

Array contraction[2] is one of a number of memory access
transformations designed to optimise the memory access of
a program. It allows the dimensionality of arrays to be re-
duced, decreasing the memory taken up by compiler gener-
ated temporaries, and the number of cache lines referenced.
It is often facilitated by loop fusion.

Another example. Before array contraction:

for (int i=0; i<100; ++i) {

a[i] = b[i] + c[i];

e[i] = a[i] + d[i];

}

After array contraction:

for (int i=0; i<100; ++i) {

a = b[i] + c[i];

e[i] = a + d[i];

}

Here, the array a can be reduced to a scalar value as long as
it is not required by any code following the two fused loops.

We use this to technique to optimise away temporary ma-
trices or vectors in the runtime generated code. This is
important because the DAG representation of the delayed
operations does not hold information on what memory can
be reused. However, we can determine whether or not each
node in the DAG is referenced by the client code, and if it
is not, it can be allocated locally to the runtime generated
code and possibly be optimised away. For details of other
memory access transformations, consult Bacon et al.[2].

6. LIVENESS ANALYSIS
When analysing the runtime generated code produced by the
iterative solvers, it became apparent that a large number of
vectors were being passed in as parameters. We realised
that by designing a system to recover runtime information,
we had lost the ability to use static information.

Consider the following code that takes two vectors, finds
their cross product, scales the result and prints it:

void printScaledCrossProduct(Vector<float> a,

Vector<float> b,

Scalar<float> scale)

{

Vector<float> product = cross(a, b);

Vector<float> scaled = mul(product, scale);

print(scaled);

}

This operation can be represented with the following DAG:

The value pointed to by the handle product is never re-
quired by the library client. From the client’s perspective
the value is dead, but the library must assume that any
value which has a handle may be required later on. Values
required by the library client cannot be allocated locally to
the runtime generated code, and therefore cannot be opti-
mised away through techniques such as array contraction.
Runtime liveness analysis permits the library to make es-
timates about the liveness of nodes in repeatedly executed
DAGs, and allow them to be allocated locally to runtime
generated code if it is believed they are dead, regardless of
whether they have a handle.

Having already developed a system for recognising repeat-
edly executed delayed expression DAGs, we developed a sim-
ilar mechanism for associating collected liveness information
with expression DAGs.

Nodes in each generated expression DAG are instrumented
and information collected on whether the values are live or
dead. The next time the same DAG is encountered, the
previously collected information is used to annotate each
node in the DAG with an estimate with regards to whether it
is live or dead. As the same DAG is repeatedly encountered,
statistical information about the liveness of each node is
built up.

If an expression DAG node is estimated to be dead, then
it can be allocated locally to the runtime generated code
and possibly optimised away. This could lead to a possible
performance improvement. Alternatively, it is also possible
that the expression DAG node is not dead, and its value is
required by the library client at a later time. As the value
was not saved the first time it was computed, the value



Option Description
-O3 Enables the most aggressive level of opti-

misation including loop and memory access
transformations, and prefetching.

-restrict Enables the use of the restrict keyword for
qualifying pointers. The compiler will as-
sume that data pointed to by a restrict qual-
ified pointer will only be accessed though
that pointer in that scope. As the restrict
keyword is not used anywhere in the runtime
generated code, this should have no effect.

-ansi-alias Allows icc to perform more aggressive opti-
misations if the program adheres to the ISO
C aliasing rules.

-xW Generate code specialised for Intel Pentium
4 and compatible processors.

Table 1: The options supplied to Intel C/C++ com-
pilers and their meanings.

must be computed again. This could result in a performance
decrease of the client application if such a situation occurs
repeatedly.

7. PERFORMANCE EVALUATION
We evaluated the performance of the library we developed
using solvers from the ITL set of templated iterative solvers
running on dense matrices of different sizes. The ITL pro-
vides templated classes and methods for the iterative so-
lution of linear systems, but not an implementation of the
linear algebra operations themselves. ITL is capable of util-
ising a number of numerical libraries, requiring only the use
of an appropriate header file to map the templated types and
methods ITL uses to those specific to a particular library.
ITL was modified to use our library through the addition of
a header file and other minor modifications.

We compare the performance of our library against the Ma-
trix Template Library[7]. ITL already provides support for
using MTL as its numerical library. We used version 9.0 of
the Intel C compiler for runtime code generation, and ver-
sion 9.0 of the Intel C++ compiler for compiling the MTL
benchmarks. The options passed to the Intel C and C++
compilers are described in Table 1.

We will discuss the observed effects of the different optimi-
sation methods we implemented, and we conclude with a
comparison against the same benchmarks using MTL.

We evaluated the performance of the solvers on two archi-
tectures, both running Mandrake Linux version 10.2:

1. Pentium IV processor running at 3.0GHz with Hyper-
threading, 512 KB L2 cache and 1 GB RAM.

2. Pentium IV processor running at 3.2GHz with Hyper-
threading, 2048 KB L2 cache and 1 GB RAM.

The first optimisation implemented was loop fusion. The
majority of benchmarks did not show any noticeable im-
provement with this optimisation. Visual inspection of the

0

5

10

15

20

25

30

35

40

45

0 1000 2000 3000 4000 5000 6000

T
im

e(
se

co
n
d
s)

Matrix Size

bicg without fusion
bicg with fusion

Figure 2: 256 iterations of the BiConjugate Gra-
dient (BiCG) solver running on architecture 1 with
and without loop fusion, including compilation over-
head.

runtime generated code showed multiple loop fusions had
occurred between vector-vector operations but not between
matrix-vector operations. As we were working with dense
matrices, we believe the lack of improvement was due to the
fact that the vector-vector operations were O(n) and the
matrix-vector multiplies present in each solver were O(n2).

The exception to this occurred with the BiConjugate Gra-
dient solver. In this case the loop fuser was able to fuse a
matrix-vector multiply and a transpose matrix-vector mul-
tiply with the result that the matrix involved was only iter-
ated over once for both operations. A graph of the speedup
obtained across matrix sizes is shown in Figure 2.

The second optimisation implemented was array contrac-
tion. We only evaluated this in the presence of loop fusion
as the former is often facilitated by the latter. The array
contraction pass did not show any noticeable improvement
on any of the benchmarks applications. On visual inspection
of the runtime generated code we found that the array con-
tractions had occurred on vectors, and these only affected
the vector-vector operations. This is not surprising seeing
that only one matrix was used during the execution of the
linear solvers and as it was required for all iterations, could
not be optimised away in any way. We believe that were we
to extend the library to handle sparse matrices, we would
be able to see greater benefits from both the loop fusion and
array contraction passes.

The last technique we implemented was runtime liveness
analysis. This was used to try to recognise which expression
DAG nodes were dead to allow them to be allocated locally
to runtime generated code.

The runtime liveness analysis mechanism was able to find
vectors in three of the five iterative solvers that could be
allocated locally to the runtime generated code. The three
solvers had an average of two vectors that could be opti-
mised away, located in repeatedly executed code. Unfortu-
nately, usage of the liveness analysis mechanism resulted in
an overall decrease in performance. We discovered this to be
because the liveness mechanism resulted in extra constant



0

5

10

15

20

25

30

35

40

45

0 1000 2000 3000 4000 5000 6000

T
im

e(
se

co
n
d
s)

Matrix Size

tfqmr with fusion, contraction
tfqmr w. fusion, contraction, liveness

Figure 3: 256 iterations of the Transpose Free Quasi-
Minimal Residual (TFQMR) solver running on ar-
chitecture 1 with and without the liveness analysis
enabled, including compilation overhead.

overhead due to more compiler invocations at the start of
the iterative solver. This was due to the statistical nature
of the liveness prediction, and the fact that as it changed its
estimates with regard to whether a value was live or dead, a
greater number of runtime generated code fragments had to
be produced. Figure 3 shows the constant overhead of the
runtime liveness mechanism running on the Transpose Free
Quasi-Minimal Residual solver.

We also compared the library we developed against the Ma-
trix Template Library, running the same benchmarks. We
enabled the loop fusion and array contraction optimisations,
but did not enable the runtime liveness analysis mechanism
because of the overhead already discussed. We found the
performance increase we obtained to be architecture spe-
cific.

On architecture 1 (excluding compilation overhead) we only
obtained an average of 2% speedup across the solver and
matrix sizes we tested. The best speedup we obtained on
this architecture (excluding compilation) was on the Bi-
Conjugate Gradient solver, which had a 38% speedup on a
5005x5005 matrix. It should be noted that the BiConjugate
Gradient solver was the one for which loop fusion provided
a significant benefit.

On architecture 2 (excluding compilation overhead) we ob-
tained an average 27% speedup across all iterative solvers
and matrix sizes. The best speedup we obtained was again
on the BiConjugate Gradient solver, which obtained a 64%
speedup on a 5005x5005 matrix. A comparison of the Bi-
Conjugate Gradient solver against MTL running on archi-
tecture 2 is shown in Figure 4.

In the figures just quoted, we excluded the runtime com-
pilation overhead, leaving just the performance increase in
the numerical operations. As the iterative solvers use code
caching, the runtime compilation overhead is independent of
the number of iterations executed. Depending on the num-
ber of iterations executed, the performance results including
compilation overhead would vary. Furthermore, mechanisms
such as a persistent code cache could allow the compilation

0

5

10

15

20

25

30

35

0 1000 2000 3000 4000 5000 6000

T
im

e(
se

co
n
d
s)

Matrix Size

bicg w. fusion, contractn. inc. compile
bicg w. fusion, contractn. exc. compile

bicg with MTL

Figure 4: 256 iterations of the BiConjugate Gradi-
ent (BiCG) solver using our library and MTL, run-
ning on architecture 2. Execution time for our li-
brary is shown with and without runtime compila-
tion overhead.

0

5

10

15

20

25

30

35

40

45

0 1000 2000 3000 4000 5000 6000

T
im

e(
se

co
n
d
s)

Matrix Size

tfqmr w. fusion, contractn. inc. compile
tfqmr w. fusion, contractn. exc. compile

tfqmr with MTL

Figure 5: 256 iterations of the Transpose Free Quasi-
Minimal Residual (TFQMR) solver using our library
and MTL, running on architecture 1. Execution
time for our library is shown with and without run-
time compilation overhead.

overheads to be significantly reduced. These overheads will
be discussed in Section 9.

Figure 5 shows the execution time of Transpose Free Quasi-
Minimal Residual solver running on architecture 1 with MTL
and the library we developed. Figure 6 shows the execution
time of the same benchmark running on architecture 2. For
our library, we show the execution time including and ex-
cluding the runtime compilation overhead.

Our results appear to show that cache size is extremely im-
portant with respect to the performance we can obtain from
our runtime code generation technique. On our first archi-
tecture, we were unable to achieve any significant perfor-
mance increase over MTL but on architecture 2, which had
a 4x larger L2 cache, the increases were much greater. We
believe this is due to the Intel C Compiler being better able
to utilise the larger cache sizes, although we have not yet
managed to determine what characteristics of the runtime



0

5

10

15

20

25

30

35

0 1000 2000 3000 4000 5000 6000

T
im

e(
se

co
n
d
s)

Matrix Size

tfqmr w. fusion, contractn. inc. compile
tfqmr w. fusion, contractn. exc. compile

tfqmr with MTL

Figure 6: 256 iterations of the Transpose Free Quasi-
Minimal Residual (TFQMR) solver using our library
and MTL, running on architecture 2. Execution
time for our library is shown with and without run-
time compilation overhead.

generated code allowed it to be optimised more effectively
than the same benchmark using MTL.

8. RELATED WORK
Delayed evaluation has been used previously to assist in
improving the performance of numerical operations. Work
done by Beckmann[4] has used delayed evaluation to opti-
mise data placement in a numerical library for a distributed
memory multicomputer. The developed library also has a
mechanism for recognising repeated computation and reusing
previously generated execution plans. Our library works
similarly, except both our optimisations and searches for
reusable execution plans target the runtime generated code.

Other work by Beckmann uses the TaskGraph library[3] to
demonstrate the effectiveness of specialisation and runtime
code generation as a mechanism for improving the perfor-
mance of various applications. The TaskGraph library is
used to generate specialised code for the application of a
convolution filter to an image. As the size and the values of
the convolution matrix are known at the runtime code gen-
eration stage, the two inner loops of the convolution can be
unrolled and specialised with the values of the matrix ele-
ments. Another example shows how a runtime search can be
performed to find an optimal tile size for a matrix multiply.
TaskGraph is also used as the code generation mechanism
for our library.

Work by Ashby[1] investigates the effectiveness of cross com-
ponent optimisation when applied to Level 1 BLAS routines.
BLAS routines written in Aldor are compiled to an interme-
diate representation called FOAM. During the linking stage,
the compiler is able to perform extensive levels of cross com-
ponent optimisation. It is these form of optimisations that
we attempt to exploit to allow us to develop a technique for
generating high performance code without sacrificing inter-
face simplicity.

9. CONCLUSIONS AND FURTHER WORK

One conclusion that can be made from this work is the im-
portance of cross component optimisation. Numerical li-
braries such as BLAS have had to adopt a complex interface
to obtain the performance they provide. Libraries such as
MTL have used unconventional techniques to work around
the limitations of conventional libraries to provide both sim-
plicity and performance. The library we developed also uses
unconventional techniques, namely delayed evaluation and
runtime code generation, to work around these limitations.
The effectiveness of this approach provides more compelling
evidence towards the benefits of Active Libraries[5].

We have shown how a framework based on delayed evalua-
tion and runtime code generation can achieve high perfor-
mance on certain sets of applications. We have also shown
that this framework permits optimisations such as loop fu-
sion and array contraction to be performed on numerical
code where it would not be possible otherwise, due to ei-
ther compiler limitations (we do not believe GCC or ICC
will perform array contraction or loop fusion) or the diffi-
culty of performing these optimisations across interprocedu-
ral bounds.

Whilst we have concentrated on the benefits such a frame-
work can provide, we have paid less attention to the situa-
tions in which it can perform poorly. The overhead of the
delayed evaluation framework, expression DAG caching and
matching and runtime compiler invocation will be particu-
larly significant for programs which have a large number of
force points, and/or use small sized matrices and vectors.
A number of these overheads can be minimised. Two tech-
niques to reduce these overheads are:

Persistent code caching This would allow cached code
fragments to persist across multiple executions of the
same program and avoid compilation overheads on fu-
ture runs.

Evaluation using BLAS or static code Evaluation of the
delayed expression DAG using BLAS or statically com-
piled code would allow the overhead of runtime code
generation to be avoided when it is believed that run-
time code generation would provide no benefit.

Investigation of other applications using numerical linear al-
gebra would be required before the effectiveness of these
techniques can be evaluated.

Other future work for this research includes:

Sparse Matrices Linear iterative solvers using sparse ma-
trices have many more applications than those using
dense ones, and would allow the benefits of loop fusion
and array contraction to be further investigated.

Client Level Algorithms Currently, all delayed operations
correspond to nodes of specific types in the delayed ex-
pression DAG. Any library client needing to perform
an operation not present in the library would either
need to extend it (difficult), or implement it using el-
ement level access to the matrices or vectors involved
(poor performance). The ability of the client to specify



algorithms to be delayed would significantly improve
the usefulness of this approach.

Improved Optimisations We implemented limited meth-
ods of loop fusion and array contraction. Other optimi-
sations could improve the code’s performance further,
and/or reduce the effect the quality of the vendor com-
piler used to compile the runtime generated code has
on the performance of the resulting runtime generated
object code.

10. REFERENCES
[1] T. J. Ashby, A. D. Kennedy, and M. F. P. O’Boyle.

Cross component optimisation in a high level
category-based language. In Euro-Par, pages 654–661,
2004.

[2] D. F. Bacon, S. L. Graham, and O. J. Sharp. Compiler
transformations for high-performance computing. ACM
Computing Surveys, 26(4):345–420, 1994.

[3] O. Beckmann, A. Houghton, M. Mellor, and P. H. J.
Kelly. Runtime code generation in C++ as a foundation
for domain-specific optimisation. In Domain-Specific
Program Generation, pages 291–306, 2003.

[4] O. Beckmann and P. H. J. Kelly. Efficient
interprocedural data placement optimisation in a
parallel library. In LCR98: Languages, Compilers and
Run-time Systems for Scalable Computers, number 1511
in LNCS, pages 123–138. Springer-Verlag, May 1998.

[5] K. Czarnecki, U. Eisenecker, R. Glück, D. Vandevoorde,
and T. Veldhuizen. Generative programming and active
libraries. In Generic Programming. Proceedings,
number 1766 in LNCS, pages 25–39, 2000.

[6] L.-Q. Lee, A. Lumsdaine, and J. Siek. Iterative
Template Library. http://www.osl.iu.edu/download/
research/itl/slides.ps.

[7] J. G. Siek and A. Lumsdaine. The matrix template
library: A generic programming approach to high
performance numerical linear algebra. In ISCOPE,
pages 59–70, 1998.

[8] T. L. Veldhuizen and D. Gannon. Active libraries:
Rethinking the roles of compilers and libraries. In
Proceedings of the SIAM Workshop on Object Oriented
Methods for Inter-operable Scientific and Engineering
Computing (OO’98). SIAM Press, 1998.

http://www.osl.iu.edu/download/research/itl/slides.ps
http://www.osl.iu.edu/download/research/itl/slides.ps

	Introduction
	Delaying Evaluation
	Runtime Code Generation
	Code Caching
	Loop Fusion and Array Contraction
	Liveness Analysis
	Performance Evaluation
	Related Work
	Conclusions and Further Work
	References 

