
Delayed Evaluation and Runtime Code
Generation as a means to Producing High

Performance Numerical Software

Francis Russell

October 3, 2006

Francis Russell Delayed Evaluation and Runtime Code Generation as a means to Producing High Performance Numerical Software



About the Investigation

We investigated these techniques with the aim of providing:

I High performance numerical code.

I Object oriented C++ abstractions.

We have adopted a rather radical approach to doing this compared
to conventional libraries. We shift work from the application and
library’s compile time to the application’s run time.

Francis Russell Delayed Evaluation and Runtime Code Generation as a means to Producing High Performance Numerical Software



How much better can we do?

On one platform1, we managed to achieve an average 27%
speedup across a range of matrix sizes and benchmark applications.
256 iterations of BiConjugate Gradient Solver with prototype
library and MTL showing a 50% speedup:

0

5

10

15

20

25

30

35

0 1000 2000 3000 4000 5000 6000

T
im

e(
se

co
n
d
s)

Matrix Size

bicg prototype library
bicg with MTL

13.2GHz Hyperthreaded Pentium IV with 2048 KB L2 cache and 1GB RAM
Francis Russell Delayed Evaluation and Runtime Code Generation as a means to Producing High Performance Numerical Software



High Performance Maths

Scientists and engineers need high performance maths. The usual
solutions include:

Fortran

I First class arrays.
I Easy to optimise.

BLAS

I Routines for basic linear algebra operations.
I Efficient and portable.
I Improving performance well researched.

Francis Russell Delayed Evaluation and Runtime Code Generation as a means to Producing High Performance Numerical Software



Key Related Work: The ATLAS Project

ATLAS stands for Automatically Tuned Linear Algebra Software. It
was created as part of an ongoing research effort into applying
empirical techniques to provide portable performance. ATLAS:

I Supports the BLAS interface.

I Automatically adapts itself to hardware and software.

I Uses code generators to search for the best implementation of
different BLAS operations.

Francis Russell Delayed Evaluation and Runtime Code Generation as a means to Producing High Performance Numerical Software



The Problem with BLAS

The performance of BLAS/ATLAS comes with a cost:

I Greater complexity for greater performance.

I Lack of abstraction.

I Less understandable code.

What does this do?

void cblas dgemv(const enum CBLAS ORDER, const enum
CBLAS TRANSPOSE TransA, const int M, const in N, double
alpha, const double* A, const int lda, const double* X, double
beta, double* Y, const incY);

y = αAT x + βy

Francis Russell Delayed Evaluation and Runtime Code Generation as a means to Producing High Performance Numerical Software



The Problem with BLAS

The performance of BLAS/ATLAS comes with a cost:

I Greater complexity for greater performance.

I Lack of abstraction.

I Less understandable code.

What does this do?

void cblas dgemv(const enum CBLAS ORDER, const enum
CBLAS TRANSPOSE TransA, const int M, const in N, double
alpha, const double* A, const int lda, const double* X, double
beta, double* Y, const incY);

y = αAT x + βy

Francis Russell Delayed Evaluation and Runtime Code Generation as a means to Producing High Performance Numerical Software



Enter C++

Using operator overloading in C++ we could express this as:

Y = alpha * transpose(A) * X + beta * y;

The problem is, the application of each operator will create a
temporary value.

Two numerical libraries for C++, Blitz++ and the Matrix
Template library have used the C++ templates system to control
expression parsing and compilation.

MTL, the most advanced, has used these techniques to perform
optimisations such as loop unrolling and blocking.

Francis Russell Delayed Evaluation and Runtime Code Generation as a means to Producing High Performance Numerical Software



Another Approach

This project has investigated another approach to performing high
performance numerical computing. A prototype library has been
developed using the following techniques:

I Delayed Evaluation.

I Runtime Code Generation.

Francis Russell Delayed Evaluation and Runtime Code Generation as a means to Producing High Performance Numerical Software



Delayed Evaluation

I Delayed evaluation enables the library to delay the execution
of an operation until the result is required. This is called a
force point.

I Using C++’s abstraction facilities, this can be done with
minimal impact on the library’s interface.

I Using delayed evaluation, it is possible to collect runtime
context information that enables the execution performance of
the delayed operations to be improved.

I Here, the print statement is a force point. Delaying evaluation
allows us to determine that the expression a+d can be
evaluated in a single loop.

Vector a, b, c, d, e, f;
a = b + c;
d = e + f;
print(a + d);

Francis Russell Delayed Evaluation and Runtime Code Generation as a means to Producing High Performance Numerical Software



Delayed Evaluation

Delayed evaluation is implemented using a directed acyclic graph
(DAG) of delayed operations.

Francis Russell Delayed Evaluation and Runtime Code Generation as a means to Producing High Performance Numerical Software



Runtime Code Generation

I Runtime code generation involves the creation, compilation
and execution of code at runtime.

I The code can be specialised using runtime information,
improving performance.

I Optimisations can be applied to the generated code.

A loop summing the elements of a vector, could be specialised by
vector length.

for (int index=0; index<length(vec); index++)
sum += vec[index];

becomes:

for (int index=0; index<1803; index++)
sum += vec[index];

Francis Russell Delayed Evaluation and Runtime Code Generation as a means to Producing High Performance Numerical Software



The TaskGraph Library

The runtime code generation in the prototype library is done using
TaskGraph. TaskGraph enables:

I Code to be constructed using a C-like sub-language.

I Optimisations to be applied to runtime generated code such
as loop fusion.

I Compilation of the runtime generated code using GCC or ICC.

Francis Russell Delayed Evaluation and Runtime Code Generation as a means to Producing High Performance Numerical Software



Defining a TaskGraph

A TaskGraph to execute a dot product:

taskgraph(t)
{
tParameter(tArrayFromList(float,a,vecSize));
tParameter(tArrayFromList(float,b,vecSize));
tParameter(tVar(float, result);
tVar(int, n);

tFor(n, 0, vecSize[0]-1) {
result += a[n] * b[n];

}
}

The code is specialised by the length of the vectors, stored in the
array vecSize.

Francis Russell Delayed Evaluation and Runtime Code Generation as a means to Producing High Performance Numerical Software



The Framework

We now have a framework capable of:

I Delaying numerical operations.

I Generating code at runtime to execute them.

I Specialising generated code using runtime context
information.

Francis Russell Delayed Evaluation and Runtime Code Generation as a means to Producing High Performance Numerical Software



Investigated Techniques

Four techniques were investigated for improving the performance of
the runtime generated code. We investigated the performance of
the library with a benchmark suite of dense linear iterative solvers:

I Code Caching.

I Loop Fusion.

I Array Contraction.

I Runtime Liveness Analysis.

Francis Russell Delayed Evaluation and Runtime Code Generation as a means to Producing High Performance Numerical Software



Code Caching

I It was discovered that almost identical code was being
created, compiled and executed during each iteration of the
iterative solver.

I Upon evaluation, the delayed expression DAG is converted to
another DAG format containing both the high level
information about the delayed operations, and information
about the generated TaskGraph. The detection and reuse of
generated code is performed on this level.

I Detecting repeated delayed expressions is a DAG isomorphism
problem.

Francis Russell Delayed Evaluation and Runtime Code Generation as a means to Producing High Performance Numerical Software



Simplifying the Isomorphism Problem

Steps taken to simplifying isomorphism consisted of:

I Graph hashing.

I Flattened DAG matching.

For this to work correctly, the expression DAG must always be
flattened in the same order.

Francis Russell Delayed Evaluation and Runtime Code Generation as a means to Producing High Performance Numerical Software



Code Caching

256 iterations of each solver for 1806x1806 matrix.

0

50

100

150

200

250

300

350

tfqmrqmrcgsbicgstabbicg

T
im

e(
se

co
n
d
s)

Solver

Execution without caching
Compilation without caching

Execution with caching
Compilation with caching

Francis Russell Delayed Evaluation and Runtime Code Generation as a means to Producing High Performance Numerical Software



Code Caching

I Speedups for every benchmark.

I Essential for reclaiming performance when code is short
running.

I Problem of specialisation versus reuse.

I How useful will it be for other numerical applications?

Francis Russell Delayed Evaluation and Runtime Code Generation as a means to Producing High Performance Numerical Software



Loop Fusion

Loop fusion can improve the performance of a program by:

I Reducing loop overhead.

I Improving cache locality.

Before loop fusion:

for(int i=0; i<100; i++)
c[i] = a[i] + b[i];

for(int j=0; j<100; j++)
e[j] = c[j] + d[j];

After loop fusion:

for(int i=0; i<100; i++) {
c[i] = a[i] + b[i];
e[i] = c[i] + d[i];

}

Francis Russell Delayed Evaluation and Runtime Code Generation as a means to Producing High Performance Numerical Software



TaskGraph Loop Fusion

I TaskGraph loop fuser had severe limitations.

I I was able to improve the loop fuser to make it more flexible.
with regards to the locations of the loops it could fuse and the
dependencies between the code fragments involved.

I The improved loop fuser was successful in fusing together
multiple loops in all benchmark applications.

I I decided to evaluate operations using the same data together
in the hope of obtaining beneficial loop fusions.

I The TaskGraph back-end, SUIF, lacks a full dependence model
making it difficult to implement more advanced loop fusion.

I Further development of the loop fuser would allow more
flexible positioning of the loops to be fused and statement
reordering.

I Even more development would allow the loop fuser to make
loop fusion decisions based on cache locality.

Francis Russell Delayed Evaluation and Runtime Code Generation as a means to Producing High Performance Numerical Software



Loop Fusion

256 iterations of BiConjugate Gradient Solver2

0

5

10

15

20

25

30

35

40

45

0 1000 2000 3000 4000 5000 6000

T
im

e(
se

co
n
d
s)

Matrix Size

bicg without fusion
bicg with fusion

23.0GHz Hyperthreaded Pentium IV with 512 KB L2 cache and 1GB RAM
Francis Russell Delayed Evaluation and Runtime Code Generation as a means to Producing High Performance Numerical Software



Loop Fusion

I Significant speedup on BiConjugate Gradient benchmark.

I No significant performance increases on other benchmark
applications.

I Average of 16 loop fusions in commonly executed code.

I Need a good cache locality model to be certain we are
choosing useful fusions.

I Most fused operations are vector-vector. In BiConjugate
Gradient benchmark, a vector-matrix and transpose
matrix-vector multiply have been fused.

Francis Russell Delayed Evaluation and Runtime Code Generation as a means to Producing High Performance Numerical Software



Array Contraction

Array contraction allows:

I Memory usage of a program to be reduced.

I Improved cache use.

Array contraction is often facilitated by loop fusion.
Before array contraction:

for (int i=0; i<1000; i++) {
c[i] = a[i] + b[i];
e[i] = c[i] + d[i];

}

After array contraction:

for (int i=0; i<1000; i++) {
c = a[i] + b[i];
e[i] = c + d[i];

}

Francis Russell Delayed Evaluation and Runtime Code Generation as a means to Producing High Performance Numerical Software



TaskGraph Array Contraction

I We thought that the Intel C compiler might do array
contraction given favourable conditions.

I It didn’t.

I I wrote an array contraction pass for SUIF, the TaskGraph
back-end.

I It was successful in removing a number of temporary vectors
from all the iterative solvers.

Francis Russell Delayed Evaluation and Runtime Code Generation as a means to Producing High Performance Numerical Software



Array Contraction

256 iterations of Conjugate Gradient Solver3.

0

5

10

15

20

25

30

0 1000 2000 3000 4000 5000 6000

T
im

e(
se

co
n
d
s)

Matrix Size

cgs with fusion
cgs with fusion, contraction

33.2Hz Pentium Hyperthreaded IV with 2048 KB L2 cache and 1GB RAM
Francis Russell Delayed Evaluation and Runtime Code Generation as a means to Producing High Performance Numerical Software



Array Contraction

I Effect of array contraction isn’t noticeable in the benchmarks
presented.

I Inspecting transformed code showed an average of 6 array
contractions in commonly executed code.

I Array contraction is working, so most likely its effect is being
overshadowed by the cost of the matrix-vector multiply.

Francis Russell Delayed Evaluation and Runtime Code Generation as a means to Producing High Performance Numerical Software



Runtime Liveness Analysis

Consider the following function:

void printScaledDotProduct(Vector a, Vector b,
Scalar scale)

{
Vector crossProduct = a * b;
Vector scaledCrossProduct = crossProduct * scale;
print(scaledCrossProduct);

}

The value crossProduct is never used directly. When
scaledCrossProduct is evaluated, there is no need to keep the
result of the cross product. Unfortunately, as there is a handle still
pointing to it, it is impossible to reason about whether it can be
optimised away.

Francis Russell Delayed Evaluation and Runtime Code Generation as a means to Producing High Performance Numerical Software



Runtime Liveness Analysis

Francis Russell Delayed Evaluation and Runtime Code Generation as a means to Producing High Performance Numerical Software



Runtime Liveness Analysis

The prototype library’s runtime analysis:

I Builds a profiling DAG mirroring the structure of each
expression DAG evaluated.

I The profiling DAG attaches monitors to the expression DAG
to obtain liveness information.

I The next time an expression DAG is built matching a profiling
DAG, the profiling DAG is used to set flags on each expression
DAG node guessing whether that node’s values will be used
directly.

I Values believed to be dead can be allocated locally to the
runtime generated code. If they are not dead, their value
must be computed again.

Francis Russell Delayed Evaluation and Runtime Code Generation as a means to Producing High Performance Numerical Software



Runtime Liveness Analysis

256 iterations of Transpose Free Quasi-Minimal Residual4.

0

5

10

15

20

25

30

35

40

45

0 1000 2000 3000 4000 5000 6000

T
im

e(
se

co
n
d
s)

Matrix Size

tfqmr with fusion, contraction
tfqmr w. fusion, contraction, liveness

43.0GHz Hyperthreaded Pentium IV with 512 KB L2 cache and 1GB RAM
Francis Russell Delayed Evaluation and Runtime Code Generation as a means to Producing High Performance Numerical Software



Runtime Liveness Analysis

I In the benchmarks, runtime liveness analysis provides a
constant overhead rather than a gain.

I The constant overhead is due to the extra compilations
caused by the liveness analysis mechanism changing its mind
about what values are live and dead.

Solver Total compiler invocations
without liveness analysis

Total compiler invocations
with liveness analysis

bicg 9 10
bicgstab 10 12
cgs 9 11
qmr 12 16
tfqmr 9 14

Francis Russell Delayed Evaluation and Runtime Code Generation as a means to Producing High Performance Numerical Software



A Demonstration

The prototype library in action and a look at some runtime
generated code:

Francis Russell Delayed Evaluation and Runtime Code Generation as a means to Producing High Performance Numerical Software



Evaluating the Library

The library was evaluated on the following two architectures:

Rays Pentium IV processor running at 3.2GHz with
Hyperthreading. 2048 KB L2 cache and 1 GB RAM.

Vertices Pentium IV processor running at 3.0GHz with
Hyperthreading. 512 KB L2 cache and 1 GB RAM.

I The effects of loop fusion, array contraction and runtime
liveness analysis were extremely similar on both architectures.

I Architectural differences had a significant impact when
evaluating the performance of the prototype library against
the state of the art Matrix Template Library.

Francis Russell Delayed Evaluation and Runtime Code Generation as a means to Producing High Performance Numerical Software



Comparison against MTL

256 iterations of Transpose Free Quasi-Minimal Residual on
Vertices.

0

5

10

15

20

25

30

35

40

45

0 1000 2000 3000 4000 5000 6000

T
im

e(
se

co
n
d
s)

Matrix Size

tfqmr w. fusion, contractn. inc. compile
tfqmr w. fusion, contractn. exc. compile

tfqmr with MTL

Francis Russell Delayed Evaluation and Runtime Code Generation as a means to Producing High Performance Numerical Software



Comparison against MTL

256 iterations of BiConjugate Gradient Solver on Vertices.

0

5

10

15

20

25

30

35

40

45

0 1000 2000 3000 4000 5000 6000

T
im

e(
se

co
n
d
s)

Matrix Size

bicg w. fusion, contractn. inc. compile
bicg w. fusion, contractn. exc. compile

bicg with MTL

Francis Russell Delayed Evaluation and Runtime Code Generation as a means to Producing High Performance Numerical Software



Comparison against MTL

256 iterations of Transpose Free Quasi-Minimal Residual on Rays.

0

5

10

15

20

25

30

35

0 1000 2000 3000 4000 5000 6000

T
im

e(
se

co
n
d
s)

Matrix Size

tfqmr w. fusion, contractn. inc. compile
tfqmr w. fusion, contractn. exc. compile

tfqmr with MTL

Francis Russell Delayed Evaluation and Runtime Code Generation as a means to Producing High Performance Numerical Software



Comparison against MTL

256 iterations of BiConjugate Gradient Solver on Rays.

0

5

10

15

20

25

30

35

0 1000 2000 3000 4000 5000 6000

T
im

e(
se

co
n
d
s)

Matrix Size

bicg w. fusion, contractn. inc. compile
bicg w. fusion, contractn. exc. compile

bicg with MTL

Francis Russell Delayed Evaluation and Runtime Code Generation as a means to Producing High Performance Numerical Software



Comparison against MTL

256 iterations of Conjugate Gradient Solver on Rays.

0

5

10

15

20

25

30

35

0 1000 2000 3000 4000 5000 6000

T
im

e(
se

co
n
d
s)

Matrix Size

cgs w. fusion, contractn. inc. compile
cgs w. fusion, contractn. exc. compile

cgs with MTL

Francis Russell Delayed Evaluation and Runtime Code Generation as a means to Producing High Performance Numerical Software



Comparison against MTL

256 iterations of BiConjugate Gradient Stabilised Solver on Rays.

0

5

10

15

20

25

30

35

0 1000 2000 3000 4000 5000 6000

T
im

e(
se

co
n
d
s)

Matrix Size

bicgstab w. fusion, contraction inc. compile
bicgstab w. fusion, contractn. exc. compile

bicgstab with MTL

Francis Russell Delayed Evaluation and Runtime Code Generation as a means to Producing High Performance Numerical Software



Conclusions

I On Vertices (excluding compilation) we get an average 2%
speedup across all solvers and matrix sizes. Best speedup
(excluding compilation) is on BiConjugate Gradient solver,
with 38% speedup on 5005x5005 matrix.

I On Rays (excluding compilation) we get an average 27%
speedup across all solvers and matrix sizes. Best speedup
(excluding compilation) is on BiConjugate Gradient solver,
with 64% speedup on a 5005x5005 matrix.

I Delayed evaluation and runtime code generation provides
results.

I Importance of cross component optimisation.

I Limitations of conventional libraries.

I Importance of trend towards active libraries.

Francis Russell Delayed Evaluation and Runtime Code Generation as a means to Producing High Performance Numerical Software



Questions Raised and Future Work?

Questions Raised

I When do we specialise and when do we aim to reuse?

I What should be evaluated and when?

I How well will code caching work on other applications?

Future Work

I Improved loop fusion heuristics.

I Alternative methods of expression DAG evaluation (like
BLAS).

I Parallelisation.

I Sparse matrices.

I Storage format independent code generation.

I Persistent code caching.

I Ability for library user to specify algorithms for linear algebra
operations.

I Speculative evaluation.

Francis Russell Delayed Evaluation and Runtime Code Generation as a means to Producing High Performance Numerical Software


