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DSLs for Quantum Chemistry

I have been looking as domain specific languages (DSLs) for quantum
chemistry, specifically in context of the linear scaling code ONETEP.

In my previous presentation, I concluded that the domain of variability
in the input to a domain-specific language for ONETEP was quite
small.

The domain of variability in the code we can generate is a far more
interesting target - primarily from the perspective of increasing
performance.

We decided to look at the potential for optimisation in ONETEP’s
more computationally intensive routines to determine if they
optimisations we’d like to generate even exist.
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FFT-Boxes

Within a simulation cell, ONETEP performs many Discrete Fourier
transforms within regions called FFT-boxes.

The most computationally intensive involve the interpolation of values
in these boxes.
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Fourier Interpolation of FFT-boxes

The interpolation process in ONETEP involves transforming a 3-dimensional
block of data to block 8x the original size. The resolution has been doubled in
each dimension.
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ONETEP’s Approach to Interpolation

ONETEP performs transforms in each dimension so each FFT only operates on
50% zeroes instead of the 87.5% of the näıve strategy.
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Phase-Shift Approach to Interpolation

We have a signal discretely sampled at the blue points, but we want to
know the value at both the blue and red points. We can find these if we
shift the signal by half a sample.

F. Russell (ICL & Soton) PSL Meeting 25/02/2013 6 / 16



Phase-Shift Interpolation in 1D

We use a 1D FFT to compute the frequency representation, apply a phase
shift, then trasform back to compute the values of the midpoints.

We interleave the original data and midpoints to produce the interpolated
values.

We never operate on zeros (except those in the original input).
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Phase-Shift Interpolation in 3D

Interpolation is done by dimension, with the most cache inefficient
done first.

We interleave the original data and the 7 interpolated blocks as a
final step.
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Performance Results with FFTW1

Results are difficult to interpret because of FFTW’s performance at different problem
sizes due to the factorisations it chooses.
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1Intel Core i7-2600, 3.4GHz, 8MB L2 cache, FFTW 3.3
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Performance Results with FFTW2

Filtering the results to those which FFTW likes best (products of small primes).
Specifically, sizes of the form 2a3b5c7d11e13f where e + f < 2.
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2Intel Core i7-2600, 3.4GHz, 8MB L2 cache, FFTW 3.3
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Performance within ONETEP

In our standalone benchmarks, our results give around a 35%
reduction in execution time over ONETEP’s approach for FFTW’s
preferred sizes.

In practice, we found the actual reduction to be a lot less and overall
reduction in execution time to usually be less than 5%.

When doing Fourier interpolation, ONETEP spends a lot of time in
its modifying data layouts before calling FFTW.

Specifically, converting from a split to interleaved representation of
complex numbers. Sometimes this is due to two sets of real operands
being merged so interpolation can be done on both simultaneously.
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Making the new interpolation work better with ONETEP

I discovered that FFTW provides a “guru” interface that makes it
possible to pass in data in data in the split format.

I wrote a new implementation of the interpolation routines that could
accept and return data in this format without remarshalling.

Also wrote a routine that returned the product of the real and
complex parts as part of the re-interleave step, avoiding the need for
the calling routine in ONETEP to have to iterative over the data
again.
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ONETEP Interpolation Routine Timings3

Test Original (s) Modified (s) Reduction
test01 49.47 35.27 28.70%
test02 61.51 44.56 27.56%
test03 40.67 29.66 27.07%
test04 90.99 61.51 32.40%
test05 47.78 34.46 27.88%
test06 3.73 2.73 26.81%
test07 8.72 6.46 25.92%
test08 93.33 66.83 28.39%
test09 3.47 2.35 32.28%
test10 361.81 265.67 26.57%
test11 33.27 23.04 30.75%
test12 57.65 40.19 30.29%
test13 17.37 12.30 29.19%
test14 40.55 29.74 26.66%
test15 26.05 18.55 28.79%
test16 33.93 25.67 24.34%
test18 107.61 77.48 28.00%
test19 73.72 52.60 28.65%
test20 95.72 62.37 34.84%
test21 2.68 2.13 20.52%
test22 53.47 39.34 26.43%
test23 22.55 15.40 31.71%
test24 22.81 15.42 32.40%

3ONETEP 3.3.9.5, Intel Core i7-2600, 3.4GHz, 8MB L2 cache, FFTW 3.3
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ONETEP Total Execution Time Timings4

Test Original (s) Modified (s) Reduction
test01 131.43 111.06 15.49%
test02 136.79 118.22 13.58%
test03 619.04 606.73 1.99%
test04 169.56 139.72 17.60%
test05 107.47 93.61 12.90%
test06 27.02 26.35 2.49%
test07 49.99 45.57 8.85%
test08 296.68 247.57 16.55%
test09 15.82 14.49 8.44%
test10 1126.06 955.09 15.18%
test11 90.85 77.61 14.57%
test12 154.00 131.92 14.34%
test13 231.26 223.75 3.25%
test14 272.05 255.62 6.04%
test15 97.64 83.10 14.90%
test16 98.63 87.28 11.51%
test18 343.04 294.95 14.02%
test19 180.72 156.56 13.37%
test20 260.15 221.94 14.69%
test21 11.45 10.95 4.35%
test22 125.30 109.90 12.29%
test23 46.18 38.92 15.72%
test24 46.46 38.85 16.39%

4ONETEP 3.3.9.5, Intel Core i7-2600, 3.4GHz, 8MB L2 cache, FFTW 3.3
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Running on CX1

We benchmarked on CX1 cluster at Imperial using the Intel Math
Kernel Libraries instead of FFTW.

Performance was terrible, significantly worse than vanilla ONETEP
(≈ 20% slowdowns).

It looks like MKL really dislikes working with split layout data.

If so, this means that ONETEP’s data marshalling that we worked to
remove actually helps with IMKL.

I updated the interpolate library to support staging data so that the
FFT routines could work on entirely contiguous, interleaved data.

The other implementation would gather and scatter directly from and
to the input and output arrays using the FFT routines.

When planning the interpolate, we benchmark and select the best
technique. When using IMKL, we almost always do the
scatter/gather ourselves.
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Running on CX1

We don’t have performance results for this new implementation. . . yet.
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