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Abstract. We extend a logic-based agent and production system language, 

LPS, from the single agent to the multi-agent case in which agents coordi-

nate their behaviour through the medium of a shared state, which is viewed 

as a model-theoretic structure. In the extended language MALPS, each 

agent can be viewed as a collection of reactive rules: conditions  conclu-

sions, which have both a procedural and a declarative reading.       

In the operational semantics of the extended language, the shared state 

is maintained only in its current state. Agents query the current state to de-

termine whether the conditions of any reactive rules are true in the state; 

and, if they are, the agents perform actions to make the conclusions true in 

the future. Atomic events, including the agents’ own actions and any ex-

ternal events, destructively update the state, adding facts initiated by events 

and deleting facts terminated by events.  

 The language also has a model-theoretic semantics, in which the 

agents’ actions are performed with the intention of generating a model that 

makes all of the reactive rules true. The language is non-modal, and the 

model consists of the entire sequence of states and state-transforming 

events, treated as a single Herbrand model, with the standard semantics of 

classical first-order logic. 
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1 Introduction 

Historically, the logic-based agent and production system language LPS [8,9] was 
conceived as an application of abductive logic programming [7] to represent and 
reason about an agent’s interaction with a destructively changing state. In LPS, 
the environment is represented by means of atomic facts expressed in terms of 
extensional predicates, and logic programs are used to define intensional predi-
cates, which are like views in relational databases. Abduction is used to generate 
atomic actions, which destructively transform one state into another. Logic pro-
grams are also used to define macro-actions, which generate sequences of queries 
and actions. Macro-actions are like transactions in Transaction Logic [3]. 



 2 

              The logic programming component of LPS is responsible for its model-
theoretic semantics: Given an initial state of the extensional database and an ini-
tial goal (to be achieved in future states), the task is to generate a sequence of 
atomic actions and resulting states such that the initial goal is true in the minimal 
model of a logic program associated with the sequence of actions and states, to-
gether with the definitions of the intensional predicates and macro-actions. 

In addition to logic programs and the destructively updated state, LPS in-
cludes reactive rules, which are like integrity constraints in relational databases, 
condition-action rules in production systems, event-condition-action rules in ac-
tive databases [14], and plans in BDI agents [13]. These reactive rules have the 
logical form conditions   conclusions, with the informal meaning that whenever 
the conditions are true, then the conclusions will be true in the future.  

In the operational semantics, an LPS agent queries the current state to deter-
mine whether the conditions of any reactive rules are true in the state; and, if they 
are, the agent performs actions that update the extensional predicates, to make the 
conclusions true in the future. In the model theoretic semantics the intentions of 
the agent’s actions are to generate a model in which the initial goal and the reac-
tive rules are all true.  

In this paper, we show how LPS can both be simplified and be extended to a 
framework for multi-agents and their coordination. LPS is simplified by remov-
ing the logic programming component, and it is extended by distributing the reac-
tive rules among a collection of agents, with the current state serving as a coordi-
nation medium. We call the resulting framework MALPS (for Multi-Agent LPS), 
The extension inherits its model-theoretic semantics from LPS: The task is to 
generate a model in which the initial goals of all the agents and reactive rules of 
all the agents are true. However, in the operational semantics, different agents can 
update the state concurrently. LPS and MALPS have prototype implementations.  

Sections 2, 3 and 4 introduce MALPS by means of examples. The first exam-
ple of a mining operation shows that the shared state can simply be the current 
state of the world. The second example is a translation into MALPS of the solu-
tion of the dining philosophers problem presented in [1]. The third example is a 
MALPS version of an airline information and reservation example used to illus-
trate the coordination language Shared Prolog [4]. 

Sections 5 presents the model-theoretic semantics of MALPS, and section 6 
presents its operational semantics. Finally, section 7 compares MALPS with re-
lated work, and section 8 concludes. 

2 Example: Mine Operation  

In LPS/MALPS, a state can be a “slice” of the real world, a mental representa-
tion of the world, a database, or some combination of all three. In all of these 
cases, the state can be viewed as a model-theoretic structure represented by the 
set of atomic sentences that are true in that state.  
 The following example, from [6,10], is a multi-agent version of a teleo-
reactive program [10], which monitors and controls some of the operations of a 
mine. The state records the current levels of methane and water in the mine, as 
well as whether the water pump is active, represented respectively by the atomic 
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predicates methane-level(M, T), water-level (W, T), and pump-active(T). The state 
also records any actions alarm(T) and pump(T) that occur at time T.  
 Here, for consistency with other applications of MALPS, we assume that 
states are updated discretely. The state is updated by sensors that record the meth-
ane and water levels in the mine, and by an alarm agent, which sounds the alarm 
when the methane level exceeds critical, and by a pump agent, which pumps the 
water when the water level exceeds high. Once the water pump is activated, it 
continues until it reaches the level low or the methane level exceeds critical. The 
pumping action is not performed if the methane level exceeds critical, because 
any electrical spark could cause an explosion. 
 Let  be a small number. The reactive rules of the two agents are: 
 
alarm agent:   methane-level(M, T)  critical   M  alarm(T’)  T < T’ T +  

 
pump agent:   methane-level(M, T)  critical > M   water-level(W, T)   
    high < W  pump(T’)  T <  T’ T +  
 

methane-level (M, T)  critical  > M   water-level(W, T)    
low < W   pump-active(T)  pump(T’)  T <  T’ T +  

 
Here methane-level and water-level are external events that represent readings of 

the methane and water level, respectively.  

 In general, variables in a reactive rule that are in the conclusions but not in the 

conditions are implicitly existentially quantified with scope the conclusion. All 

other variables are implicitly universally quantified with scope the entire rule.
1
  

 Agents’ actions and external events cause the current state to be updated at the 

time of their occurrence. So in the rules above, the external events methane-

level(M, T) and water-level(W, T) and the actions alarm(T’) and pump(T’) cause 

state transitions at times T and T’, respectively. In this example and in teleo-

reactive programs more generally, actions are durative, in the sense that they 

continue as long as their conditions hold, and they are terminated when their con-

ditions no longer hold. The effects of the actions are sensed in future states. 

 The operational semantics is illustrated by the following example, in which 

critical, high and low are 100, 20 and 10, respectively.  

 

 methane-level 
(Level,    Time)      

water-level 
(Level,  Time) 

pump-active 
(Time) 

action(Time) 

state1 66              0 18           0   

state2 77             0.1 20           0.1   

state3 88              0.2 20.1        0.2  pump(0.22) 

state4 99             0.3 20.1        0.3 0.3 pump(0.35) 

state5 99               0.4 15           0.4 0.4 pump(0.46) 

state6 100           0.5 12           0.5 0.5  alarm(0.53) 

                                                           
1 Conditions and conclusions can also contain first-order queries with explicit quantifiers. 
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state7 110           0.6 18            0.6  alarm(0.61) 

state8 104           0.7 19           0.7  alarm(0.73)   

state9 98             0.8 19            0.8   

state10 98             0.9 15           0.9   

 

Assuming that the mine starts operating at time 0 in state1 and ceases in state10 at 

time 0.9, the set of all these atomic sentences, together with atomic facts corre-

sponding to the inequalities in the activated rules, constitute a model in which all 

of the reactive rules are true. This model is a Herbrand model, in which an atomic 

sentence is true if and only if the sentence belongs to this set. This definition of 

truth can be extended from atomic sentences to arbitrary sentences of first-order 

logic (FOL) in the standard way. Moreover, the number of states can be infinite. 

 The operational semantics of LPS is sound with respect to the model theoretic 

semantics, but is incomplete, because as we have shown in [9] it cannot generate 

models in which a reactive rule can be made true by performing actions that make 

its conditions false. Nor can it proactively perform actions to make its conclu-

sions true before its conditions become true. 

3 Example: The Dining Philosophers Problem  

The mining example is a set of distributed reactive rules interacting through a 

shared state, which can be viewed as a relational database or a Herbrand model. It 

contains no logic program, other than those used to define the relations  and <. 

In general in LPS/MALPS, as in the coordination languages Gamma [2] and 

Shared Prolog [4], the reactive rules are the driving force; and, as in Shared 

Prolog, logic programs play only a secondary, supporting role.  

           The dining philosophers problem is a classic problem of concurrent compu-

ting, which illustrates the simplicity and power of the coordination model [5]. The 

representation presented below follows the solution presented in [1].  

          The initial state of the problem consists of five philosophers sitting around a 

circular table with a bowl of spaghetti in the middle of the table and five forks, 

one to the left and one to the right of each philosopher. There are also four meal 

tickets. Each philosopher alternates between thinking and eating. In order to eat, a 

philosopher needs a meal ticket and two forks. A philosopher can pick up a fork 

from the table if the adjacent philosopher is not using it. 

          In this example, the state can be viewed as a relational database, logically rep-

resented by a set of ground (variable-free) atomic sentences (also called facts).  In 

[1], the initial state is a set of forks and a multiset of tickets, generated by a main 

program, which also generates the five philosophers as active tuples. In contrast, 

in the MALPS solution, the five philosophers are agents represented by reactive 

rules, and the initial state is represented by a set of facts without an explicit repre-

sentation of time:  

 

ticket(0), ticket(1), ticket(2), ticket(3),  

available(fork0), available(fork1), available(fork2), available(fork3),  



 5 

available(fork4), adjacent(fork0, philosopher0, fork1),  

adjacent(fork1, philosopher1, fork2), adjacent(fork2, philosopher2, fork3), 

adjacent(fork3, philosopher3, fork4), adjacent(fork4, philosopher4, fork0). 

 

 The C-Linda program in [1] for the i-th philosopher is extremely simple: 

 

 
 

Here (i+1)%5 represents addition modulo five, and converts (4+1) into 0. 

LPS distinguishes between facts that persist in the database (also called flu-

ents) and events, including both external events in the environment and agents’ 

actions, which add and delete persistent facts. Events transform one state into 

another, and can be regarded as taking place instantaneously. In the case of states 

represented as databases, an event can be represented simply as a set (or logical 

conjunction) of atomic sentences of the form add(fact, T) and delete(fact, T) for 

every fact added or deleted by the event at time T. 

              LPS/MALPS does not have a direct analogue of in, which simultaneously 

reads and deletes a tuple in Linda. However, it is possible to define in as a macro-

action by means of a logic program, for example: 

 

in(Fact, T, T’)  holds(Fact, T)  delete(Fact, T’)  T < T’ T +  
 

This definition of in is not strictly necessary, because all atoms of the form 

in(Fact, T) in the conclusion of a reactive rule can simply be replaced by the three 

subgoals holds(Fact, T)  delete(Fact, T)  T < T’ T + . 
          Here holds(Fact, T) means that Fact is in the state/database at time T. As we 

will see later, in the operational semantics, to facilitate destructive updates, facts 

are represented in the database/state without time or state parameters. However, 

the time or state parameter is necessary for the model-theoretic semantics. The 

representation holds(Fact, T)  is interchangeable with the representation in which 

predicates have an extra time parameter Fact( T). 

Using this definition of in, we can write a program that is similar to that of 

[1]. However, to avoid problems with the semantics, we add a condition 

add(hungry(philosopheri), T), which specifies more precisely when and for how 

long the philosophers engage in dining:  

 

philosopheri:   

add(hungry(philosopheri), T)   think(T1, T2)  in(ticket(N), T3, T4)   
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          adjacent(Fork, philosopheri, Fork’)  in(available(Fork), T5, T6)   

  in(available(Fork’), T7, T8)  eat(T9, T10)  add(ticket(N),T11)  

add(available(Fork), T12)  add(available (Fork’), T13)    

T < T1 < T2  < T3 < T4 < T5 < T6       T4  < T7 < T8        T’ = max(T6, T8)        

T’ < T9 < T10  < T11 < T12 < T13  

  

adjacent is a stateless predicate, i.e. one whose extension does not change from 

one state to another. Note that the temporal constraints T4 < T5  T4  < T7  T’ = 

max(T6, T8) mean that the philosopher can pick up the adjacent forks as they be-

come available, in any order. Note also that thinking and eating take time, deter-

mined perhaps by procedures encapsulated within the philosopher. Notice too that 

is possible to impose temporal constraints on the duration of actions, for example 

philosophers might be constrained to think or eat for no more than 5 time units. In 

the operational semantics, the simplification and solution of such temporal con-

straints can be dealt with by means of a specialised constraint solver.  

 Philosophically speaking, in this example, the event of becoming hungry can be 

understood as an update of the shared state. However, the fact that a state is 

shared does not mean that all agents have equal access to all data in the state. In 

particular, only the philosopher who becomes hungry would have access to the 

fact that the philosopher is hungry. 

 The explicit representation of time in LPS/MALPS clarifies the logical mean-

ing of reactive rules, but its syntax is clumsy, and it distracts attention from the 

operational behaviour. We have defined a state and time free external syntax for 

LPS, which is closer to conventional imperative syntax, and which is more sug-

gestive of the operational semantics. In this syntax, the reactive rules would be 

written using “;” for <. Here we introduce an additional notation, with P || Q 

denoting the conjunction of P and Q in any temporal order. Also P : Q means 

holds(P, T)  Q(T’)  T < T’ T +  when P is a query and Q is an action, and 

means P(T)  Q(T) when both P and Q are actions. The operators : and ; can also 

be given suitable definitions when one of their operands is an atom with a state-

less predicate, but we will ignore these details for lack of space. 

Using this external syntax, the reactive rule can be written in the form: 

 

add(hungry(philosopheri))   think;  in(ticket(N)) ;   adjacent(Fork, philosopheri, 

Fork’) : (in(available(Fork)) ||  in(available(Fork’))) ; eat ; add(ticket(N)) ; 

add(available(Fork)) ; add(available (Fork’))   

4 Airline Flight Reservation  

The following example is an MALPS version of a Shared Prolog program [4] for 

coordinating an airline company’s flight reservations.  In this example, the data-

base records the number of seats available on flights by means of the atomic 

predicate available(Flight, Seats).  

  In the flight reservation example, clients can access the flight reservation sys-

tem only through travel agencies, which simply submit requests to the airline 

company on their clients’ behalf. In the spirit of Linda, we represent such client 
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requests and their corresponding responses by events that update the database, 

rather than as “read” and “write” in Shared Prolog. 

 Because agencies and the airline company have limited resources, there can be 

delays in responding to requests. Here, in MALPS external syntax, is one of many 

possible ways of representing the reactive rules that govern the agencies’ behav-

iour: 

 
travel agent agencyi  : 

 add(customer-request(Customer, Request, agencyi)  )  
 add(agency-request(agencyi, Request)) 
 
add(company-reply(agencyi, Request, Answer))  
customer-request(Customer, Request)   
delete(customer-request(Customer, Request, agencyi)) || 
 delete(company-reply(agencyi, Request, Answer))   || 
add(agency-reply(Customer, agencyi, Request, Answer)) 

                                            
The company agent can be defined by a reactive rule and an auxiliary logic pro-
gram defining the macro-action verify-and-update: 
 
airline company agent:         

 agency-request(Agency, info(Flight))     
 available(Flight, Seats) :  
add(company-reply(Agency, info(Flight), Seats)) :  
 delete(agency-request(Agency, info(Flight))) 
 
agency-request(Agency, reserve(Flight, N))          
 available(Flight, Seats) : 
 verify-and-update(Flight, N, Seats, Answer) : 
 add(company-reply(Agency, reserve(Flight, N), Answer)) : 
delete(agency-request(Agency, reserve(Flight, N))) 
 
verify-and-update(Flight, N, Seats, reserve(Flight, N))  
N   Seats : NewSeats is Seats – N :  
delete(available(Flight, Seats)) :  
add(available(Flight, NewSeats)) 

 
verify-and-update(Flight, N, Seats, false)   N  > Seats  

 
The logic program defining the macro-action verify-and-update can be eliminated 
by replacing the subgoal verify-and-update(Flight, N, Seats, Answer) in the sec-
ond reactive rule by the disjunction of the two alternative cases of the definition. 
The disjunction then needs to be distributed over the conjunction in the conclu-
sion of the rule. This results in a reactive rule whose conclusion is a disjunction of 
conjunctions. 

In MALPS, macro-actions are eliminated at the expense of introducing dis-
junctions into conclusions of reactive rules. This kind of elimination of macro-
action definitions is not possible in the general case for logic programs containing 
recursion, because it can result in infinitely large disjunctions. 
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5  MALPS  Language and Model-theoretic Semantics 

5.1 The Language 

The core language of MALPS consists of reactive rules of the form  

 

   conditions(X, Time)  conclusions(X, Y, Time, OtherTimes) 

 

The conditions and conclusions have explicit temporal parameters, but these can 

be hidden in the external syntax, as exemplified in Sections 3 and 4. The condi-

tions contain exactly one temporal variable Time, and the conclusions contain 

temporal variables OtherTimes that are all constrained in the conclusions to be 

later than the temporal variable in the conditions.  

The conditions of a rule are a single query to the facts in the current state and 

to the events that caused the transition to the current state. Events include both 

events that are external to an agent and actions that the agent can perform. Time 

and all variables X that are not explicitly quantified in the conditions are univer-

sally quantified with scope the entire rule. 

Queries are arbitrary formulas of FOL, possibly containing non-temporal 

quantified variables. These queries may contain stateless, auxiliary predicates 

such as inequality (and adjacent in the dining philosophers). For simplicity, these 

predicates are treated as defined extensionally by means of possibly infinitely 

many facts in every. In full LPS, these predicates, as well as intentional predicates 

and macro-actions are defined by means of finite logic programs. The extensions 

of the predicates are the ground facts that are true in an appropriate minimal mod-

el of the logic program defining them.  

The conclusions of reactive rules are a disjunction of conjunctions, where 

each disjunct can be put in the form: 

 
 query(Y, Time’)  actions(Y, Time’’)   rest(Y, Time’, Time’’, OtherTimes’). 

 
query(Y, Time’) is an FOL query (possibly empty, i.e. logically equivalent to 
true) only to the facts in the state at time Time’. 

These disjuncts can be regarded as alternative conditional plans of actions to 

be made true at OtherTimes whenever the conditions become true at time Time. 

All variables Y and OtherTimes in the conclusions but not in the conditions that 

are not explicitly quantified in queries are existentially quantified with scope the 

conclusions. 
 
actions(Y, Time’’)  is a possibly empty conjunction of atomic actions all with the 
same time parameter Time’’, which  is constrained in rest(Y, Time’, Time’’, 
OtherTimes’) to be after Time’. 
 
rest(Y, Time’, Time’’, OtherTimes’) is a possibly empty conjunction of queries, 
atomic actions, and temporal constraints, where none of the times OtherTimes’ 
are constrained to be earlier than Time’ or Time’’. 
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An agent may have initial goals, which are just like the conclusions of reac-

tive rules. Therefore, all variables in an initial goal (not explicitly quantified in a 

query in the goal) are existentially quantified, and all time variables are con-

strained to be after the time of the initial state.  

The reactive rules can be distributed among different agents, and the agents 

can perform actions in the attempt to generate a model in which all of their initial 

goals and their reactive rules are true. An action performed by one agent becomes 

an external event for other agents.  

In most coordination languages, coordination among agents or processes is 

achieved by means of a shared data space. In MALPS, coordination is achieved 

by means of a shared state of the environment. The operational semantics treats 

individual states as sets of atomic sentences P, without explicit time or state pa-

rameters. However, the semantics of reactive rules treats such predicates as 

holds(P, T), add(P, T), delete(P, T) as meaning that P is true in the state at time T, 

and P is added/deleted in the transition to the state at time T. 

Historically, the notion of state in LPS was influenced by knowledge represen-

tations in AI, in which a state is a symbolic representation of a time slice of the 

real or artificial world. LPS draws upon such formalisms as the situation calculus 

and event calculus, in which individual states (or situations) are identified with 

sets of atomic sentences, also called fluents or facts. In LPS/MALPS, we also 

view such states both as states of a relational database and as a Herbrand model. 

5.2 The Model-theoretic Semantics  

Viewing a state Si (without explicit time) as a Herbrand model, an atomic sen-
tence A is true in Si if and only if A belongs to Si. The definition of truth can be 
extended from atomic sentences to arbitrary sentences of FOL in the standard 
way. However, in the case of universally quantified sentences, we use the substi-
tution interpretation, which means that X p(X) is true if and only if p(x) is true 
for all ground terms x from a suitably chosen “Herbrand universe”. The defini-
tion of truth for negative sentences (P is true if and only if P is not true) can be 
regarded as a simple case of negation as failure  
         Viewing a state Si as a relational database, a query can be any formula of 
FOL, A ground instance q(x) of a query q(X) with free variables X is an answer 
to the query if and only if q(x) is true in Si.   
          A state transition from Si to Si+1 takes place when one or more events take 
place. These events cause some new facts to hold in Si+1 and some old facts in Si 
not to hold in Si+1. We say that the new facts are initiated and the old facts are 
terminated. All facts that were in Si and not terminated continue to hold in Si+1.  
         Many, if not all, formalisms for reasoning about actions and change in AI, 
such as the situation calculus and event calculus, employ frame axioms, which 
state that a fact that held in Si continues to hold in Si+1 if it is not terminated by 
the events that caused the state transition. Reasoning with frame axioms is com-
binatorially explosive. This combinatorial explosion is one aspect of the notori-
ous frame problem in AI 
           Although the model-theoretic semantics of LPS/MALPS is based on the no-
tion of states as models, the operational semantics does not use the frame axioms 
to perform state transitions. Instead, the operational semantics adds facts that are 
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initiated by events and destructively deletes facts that are terminated by events. 
Facts that are not affected by events simply persist without needing to reason 
explicitly that they persist.  
        In the model-theoretic semantics, the sequence of states S0, S1,…, Si,…. and 
sets of state transforming events e1,…, ei,…., augmented with an extensional 
definition Aux of any auxiliary predicates such as inequality, is also viewed as a 
single model-theoretic structure S = Aux  S0*  e1*  S1*   e2*    …     ei* 
 Si*  ei+1* ….. Here the facts in S0*, S1*,…, Si*,…. are time stamped versions 
of the facts in S0, S1,…, Si,…, and similarly the events in the sets e1*,…, ei*,…. 
are time stamped versions of the events in e1,…, ei,…., i.e.  
 
               p(ti), or alternatively holds(p, ti), is in Si*  if and only if p is in Si. 
               add(p, ti), or delete(p, ti), is in ei*  if and only if add(p), or  delete(p), is in ei. 
 
In S, the event ei occurs at time ti and the state Si starts at time ti. The event ei+1 
occurs at time ti+1 and the state Si ends at time ti+1. Therefore, all the facts in Si 
are true in S from time ti to time ti+1.  

 Given an initial state S0, an initial goal G0, and a sequence of sets of external 
events ex1,…, exi,….the task for an individual agent is to generate an associated 
sequence of sets of actions a1,…, ai,…. such that G0 and all of the agent’s reac-
tive rules are true in the resulting model S = Aux   S0*   e1*   S1*     e2*     
…     ei*  Si*  ei+1* …., where ei = exi  ai  and Si+1 is obtained from Si by 
performing the events/actions in ei+1. 

6 MALPS Operational Semantics  

The advantage of a model-theoretic semantics is that it provides a high-level 

specification that can be implemented in many different ways. FOL is a good 

example. Its semantics can be implemented by means of such diverse proof theo-

ries as Hilbert systems, natural deduction, sequent calculus and resolution. 

MALPS also has a relatively simple model-theoretic semantics, which admits a 

great variety of operational semantics. In this section, we illustrate an operational 

semantics for MALPS that is similar to that of some conventional coordination 

languages. However, many other operational semantics are also possible. 

 For the MALPS operational semantics sketched in this section, the shared 

state is a set of possibly infinite ground atomic sentences. All events are gener-

ated by the external environment or by the actions of agents.  

The agents interact with one another and with the external environment by 

means of an observe-think-decide-act agent cycle. For simplicity, we assume that 

the agent cycles are all synchronised, so that each cycle begins and ends at the 

same time. We assume that the duration of each cycle is some fixed duration , 
which is short enough so that actions can be executed in a timely manner, and 

long enough so that all the necessary queries can be evaluated within a single 

cycle. Therefore, if time is the time at the beginning of a cycle, then time + is the 

time at the end of the cycle, and the state remains unchanged throughout the pe-

riod from time to time +. 
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The attempted actions generated by different agents at the end of a cycle can 

interfere with one another. To deal with such cases, we assume the existence of 

an arbiter that decides which actions succeed and which actions fail.  

Each agent maintains its own private goal state, which logically is a conjunc-

tion of goals, each of which is a disjunction. Each disjunct is an existentially 

quantified conjunction of temporally constrained queries and actions.  Operation-

ally, each goal in the goal state can be regarded as a separate thread, independent 

from other threads in the goal state. In particular different threads do not share 

any variables. Each such goal/thread is a set of alternative conditional plans. Ini-

tially, each agent has at most only one goal in its goal state, which is logically an 

existentially quantified disjunction, and operationally a single thread. 

 To simplify the description of the operational semantics, it is useful to elimi-

nate temporal constraints of the form T  T’ from the conclusions of conditional 

plans, replacing them by disjunctions T = T’  T < T’, distributing the disjunction 

over conjunction, generating two alternatives instead of one. To simplify the al-

ternative containing T = T’, we replace every occurrence of T’ in the alternative 

by T. To avoid over-constraining the times at which queries need to be evaluated 

and actions need to be executed, we do not allow concrete times t to occur in the 

form holds(P, t) or action(t). Instead they need to be written in the form holds(P, 

T) or action(T), where the time variable is constrained, in some such manner as t 

  T  t +  for some suitable .  

 With these simplifying assumptions, it suffices to define the cycle for individ-

ual agents only. This cycle is similar to that of LPS: 
    

Step 1. Let time be the time of the transition from the previous state Si-1 to the 
state Si, at the beginning of a cycle. The agent reasons forwards, evaluating the 
conditions of each one of its reactive rules:  
 

conditions(X, Time)  conclusions(X, Y, Time, OtherTimes)    

  

to determine every instance conditions(x, time)  of the conditions that is true in 

the current state ei* Si* viewed as a Herbrand model. For every such instance, it 

generates the corresponding instance conclusions(x, Y, time, OtherTimes) of the 

conclusion of the rule as a goal to be made true for some individuals Y at some 

OtherTimes in the future. Temporal constraints are simplified, and every such 

simplified conclusion is added to the agent’s goal state as a separate thread. 

 

Step 2. The agent chooses a thread and chooses an alternative plan in the thread 

for possible execution. It is the responsibility of the decision strategy to decide 

when to work on a thread and when to try which alternatives. Ideally, the decision 

strategy should be fair, so that each goal/thread has an opportunity to be solved. 

For this purpose, it is useful to view the threads as a collection of parallel proc-

esses that access and update the shared current state.  
In theory, the decision strategy can employ any fair strategy for choosing al-

ternatives in a thread. It can even try all alternatives in parallel. However, for 
many applications, it is often more efficient to prioritise the alternatives, and to 
try them one at a time. In a practical programming language, this would probably 
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be the default strategy, with the programmer using the order in which the alterna-
tives are written to determine the order in which they are attempted.  

Suppose the chosen plan has the form:  
 
                   query(Y, Time’)  actions(Y, Time’’)   rest(Y, Time’, Time’’, OtherTimes’) 
 
Notice that the chosen plan can be either a new plan added in this cycle, or an old 
(possibly partially executed) plan left over from previous cycles.  
 
Step 3. If query(Y, Time’) is not empty, then the agent evaluates the query in the 
current state ei*  Si*. If the query is empty, then the agent proceeds to step 4.  

 
Case 3a. If the query fails, then the cycle terminates with the empty action at 

time time +. However, the chosen plan is retained, because the query can be 

tried again in the future, for as long as the time variable Time’ is not constrained 

to be in the past.
2
  

 
Case 3b. If the query succeeds, with n answers Y = y1, y2,… yn. Then, for every 

such answer, a new plan of the form:  

 
actions(yi, Time’’)   rest(yi, time, Time’’, OtherTimes’) 

 

is generated,  temporal constraints involving time are simplified, and the resulting 

simplified plan is added as a new alternative to the chosen thread.  One such 

newly added alternative is selected to continue in step 4.   

 

Step 4. The agent attempts to execute the actions: If the actions are empty, the 

cycle terminates with the empty action at time time +. If the actions are not 

empty, then suppose the selected alternative plan now has the form: 

 
actions(yi, Time’’)   simplified-rest(yi, Time’’, OtherTimes’) 
 

The agent submits all the actions actions(yi, Time’’) to the arbiter at time time +.  
For simplicity, assume that either all the actions succeed, or if one of them 

fails then they all fail. If they fail, then the cycle terminates in effect with an 

empty action at time time +. However, the chosen plan is retained, if the con-

straints on Time’’ allow the actions to be tried again in the future. 

If the actions all succeed, then Time’’ is instantiated to time +. A new plan is 

generated: 

 

                                                           
2 Simplification of temporal constraints can recognise that a plan is logically false and 

operationally unachievable, if the plan contains a subgoal of the form holds(P, T) or ac-

tion(T) and a constraint of the form T < time, where time is the current time. The plan can 

then be deleted from the thread, because it can never be executed and made true in the 

future. If there are no alternatives left in a thread, because all of the alternatives are false, 

then the thread itself is logically false, the goal state is false, and the agent is a failure. 
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  simplified-rest(yi, time +, OtherTimes’) 
 

Temporal constraints involving time + are simplified, and the resulting simpli-

fied plan is added as a new alternative to the chosen thread
3
. The cycle terminates 

at time time +. 
 However, if the resulting simplified plan is empty, and therefore logically 

equivalent to true, then, because the thread in which the plan occurs is logically 
the disjunction of all its alternatives, the thread itself is also logically equivalent 
to true. Because the goal state is logically the conjunction of all its threads, the 
thread can also be deleted from the goal state, whose truth value now depends 
only on the remaining threads.  

Note that whether an action succeeds or fails in step 4, once an agent attempts 

to perform an action at a given time, there is no possibility of backtracking on the 

action and trying other alternatives at the same time or in the past. However, in 

theory, if there is sufficient time available within the cycle, other alternative plans 

could be chosen for evaluation, as in step 2. For simplicity, we ignore this possi-

bility for now.  

7 Related work 

To the best of our knowledge, MALPS is the first attempt to provide a logic-

based semantics for coordination languages. However, there are many other com-

puting paradigms that use a similar notion of reactive rule as their core language 

construct. These include production systems, event-condition-action rules in ac-

tive databases, BDI agent languages, and related agent languages, such as 

Metatem. LPS itself was motivated, in particular, by the goal of providing a logi-

cal semantics to condition-action rules in production systems. 

Reactive rules are also the basic language construct of several coordination 

languages, including Gamma and Shared Prolog. It is interesting that Shared 

Prolog, along with several other logic programming based coordination lan-

guages, such as tao [12], were motivated by the Linda model of coordination, but 

do not have a logical semantics. 

The model theoretic semantics of MALPS is similar to the possible world se-

mantics of modal logic and of Metatem in particular. However, in Concurrent 

Metatem, agents communicate by message passing rather than by interacting 

through a shared data space. 

In the possible world semantics of modal logics such as Metatem, possible 

worlds Si* are linked by accessibility relations, which are like state transitions in 

MALPS. However in MALPS, all of the possible worlds, as well as the state tran-

sitions ei*, are included in a single, classical, model theoretic structure S. This 

                                                           
3 The successful execution of the actions may instantiate some variables in the actions, not 

represented explicitly in the notation actions(yi, Time’’)   simplified-rest(yi, Time’’, 

OtherTimes’). This instantiation is a kind of feedback produced by the execution of the 

action, and is applied to the new plan.  
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simplifies the semantics and increases the expressive power of the language by 

making events first class objects. 

The model theoretic semantics of MALPS is also similar to the possible world 

semantics of the non-modal language, Transaction Logic [], where transactions, 

which are like conditional plans, are given semantics in terms of paths in a possi-

ble worlds structure. As in LPS/MALPS, transactions are performed on a destruc-

tively updated database. The notion of FOL query in LPS/MALPS was partly 

inspired by queries in transaction logic. 

States in LPS/MALPS are similar, not only to databases, but also to states in 

such AI knowledge representations languages as the situation calculus and event 

calculus. However, the frame problem is avoided by using destructive assignment 

to maintain only the current state. The situation calculus and similar AI ap-

proaches have also been used to give semantics to event-condition-action rules in 

active database systems [14]. However, these systems seem to inherit the frame 

problem of these AI approaches.  

8 Conclusions 

In this paper we presented a simplification and extension of the single agent lan-

guage LPS to the mulit-agent language MALPS, in which agents interact among 

themselves and with the external environment through a shared state.  

           The simplification was to eliminate the logic programming component of LPS, 

highlighting the primary role of reactive rules. The extension included the use of 

the shared state as a coordination mechanism, and the distribution of the initial 

goals and reactive rules among different agents. The operational and model theo-

retic semantics were adapted from LPS, whose own model theoretic semantics 

was adapted in turn from the minimal model semantics of logic programming and 

its extension to abductive logic programming. 

In MALPS, as a substitute for logic programs, we have assumed that auxiliary 

predicates are defined by possibly infinitely many facts. We also ignored the use 

of logic programs to define macro-actions. We believe that logic programs are a 

natural way to define both auxiliary predicates and macro-actions, but other for-

malisms are compatible with LPS/MALPS, provided they can be reduced to the 

case presented in this paper. 

The MALPS operational and model-theoretic semantics allow the program-

ming of open systems, in which agents can easily enter leave the system. To do so 

while respecting the model-theoretic semantics, it is necessary to ensure that the 

time variables in the conditions of reactive rules are restricted to the times that the 

agent is in to the system.  

It is interesting to note that Carriero and Gelerneter [5] proposed the Linda 

model as a more natural model of parallelism and concurrency than the concur-

rent logic programming languages, which were adopted as the kernel language for 

the Japanese Fifth Generation Project. Arguably, the choice of concurrent logic 

programming, with its committed choice and lack of a true logical semantics, was 

one of the biggest problems of the Fifth Generation Project. Ironically perhaps, 

the logical semantics of MALPS presented in this paper suggests that a Linda-like 
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coordination model might have been a better choice.  

In [5], Carriero and Gelernter argued that Linda is a “simpler, more powerful 

and more elegant” model of parallel programming than message-passing, concur-

rent object oriented programming, concurrent logic programming, and functional 

programming. Our experience with the development of MALPS leads us to share 

this view.  
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