CaSAPI: a system for credulous and sceptical
argumentation

Dorian Gaertner and Francesca Toni

Department of Computing
Imperial College London

Email: {dg00,ft}@doc.ic.ac.uk

Abstract. We present the CaSAPI system, implementing (a generalisa-
tion of) three existing computational mechanisms [8-10] for determining
argumentatively whether potential beliefs can be deemed to be accept-
able and, if so, for computing supports for them. These mechanisms are
defined in terms of dialectical disputes amongst two fictional agents: a
proponent agent, eager to determine the acceptability of the beliefs, and
an opponent agent, trying to undermine the existence of an acceptable
support for the beliefs, by finding attacks against it that the propo-
nent needs to counter-attack in turn. The three mechanisms differ in
the level of scepticism of the proponent agent and are defined for (flat)
assumption-based argumentation frameworks [3]. Thus, they can serve
as decision-making mechanisms for all instances of these frameworks. In
this paper we show how they can be used for logic programming, legal
reasoning, practical reasoning, and agent reasoning.

1 Introduction

Assumption-based argumentation [3] has been proven to be a powerful mecha-
nism to understand commonalities and differences amongst many existing frame-
works for non-monotonic reasoning, including logic programming [3]. It has also
been studied in the context of legal reasoning [14]. Furthermore, the computa-
tional complexity of several instances of assumption-based argumentation frame-
works for non-monotonic reasoning has been studied in [7].

Assumption-based argumentation frameworks can be coupled with a number
of different semantics, all defined in dialectical terms, some credulous and some
sceptical, of various degrees. Different computational mechanisms can be defined
to match these semantics. In this paper, we consider three existing such mech-
anisms: GB-dispute derivations for computing the sceptical grounded semantics
[9], AB-dispute derivations for computing the credulous admissible semantics [8,
9] and IB-dispute derivations for computing the sceptical ideal semantics [9, 10].

All mechanisms are defined as “dialogues” between two fictional agents: the
proponent and the opponent, trying to establish the acceptability of given beliefs
with respect to the chosen semantics. The three mechanisms (and corresponding
semantics) differ in the level of scepticism of the proponent agent: in GB-dispute
derivations the agent is not prepared to take any chances and is completely

sceptical in the presence of seemingly equivalent alternatives; in AB-dispute
derivations the agent would adopt any alternative that is capable of counter-
attacking all attacks without attacking itself; in IB-dispute derivations, the agent
is wary of alternatives, but is prepared to accept common ground between them.

In this paper we describe the CaSAPI ! system implementating these mech-
anisms and we illustrate the system and its potential for application in the con-
text of some application scenarios. The system relies upon a generalisation of the
original assumption-based argumentation framework and of the computational
mechanisms, whereby multiple contraries are allowed. This generalisation is use-
ful to widen the applicability of assumption-based argumentation (e.g. for rea-
soning about decisions). We provide this generalisation explicitly for AB-dispute
derivations. The application scenarios we consider are non-monotonic reasoning
(using logic programming), legal reasoning (where different regulations need to
be applied, taking into account dynamic preferences amongst them), practical
reasoning (where decisions need to be made as to which is the appropriate course
of action for a given agent), and reasoning to support autonomous agents (about
their individual beliefs, desires and intentions, as well as relationships amongst
them). Most of these application scenarios require a mapping from appropriate
frameworks into assumption-based argumentation.

The paper is structured as follows: in the next section, we will briefly in-
troduce the concept of assumption-based argumentation and describe the three
dispute derivations upon which our system is based. Section 3 presents the gener-
alised assumption-based framework and the generalised AB-dispute derivations
that our system implements. Section 4 provides a brief description of the CaSAPI
system. Applications of this system to the areas of non-monotonic reasoning and
legal, practical and agent reasoning are given in Section 5. Finally, we conclude
and discuss future work.

2 Background

The definitions and notions in this section are adapted from [3, 8,10, 9].

Definition 1. An assumption-based argumentation framework is a tuple

(L, R, A,) where

— (L,R) is a deductive system, with a language £ and a set R of inference
rules,

— A C L is a (non-empty) set, whose elements are referred to as assumptions,

— 7 is a (total) mapping from A into L, where @ is the contrary of .

We will assume that the inference rules in R have the syntax
Co < C1y...,Cp

with n > 0 or
Co

! CaSAPI stands for Credulous and Sceptical Argumentation: Prolog Implementation.

where each ¢; € L. ¢y is referred to as the head and cy,...,c, as the body of a

rule ¢y < ¢1,...,¢,. The body of a rule ¢j is considered to be empty.
As in [8], we will restrict attention to flat assumption-based frameworks, such
that if ¢ € A, then there exists no inference rule of the form ¢ < ¢q,...,c, € R.

Ezample 1. L = {p,a,—a,b,—b}, R = {p + a;-a < b;-b + a}, A= {a,b} and
a = —a, b= -b.

An argument in favour of a sentence or belief z in £ supported by a set of
assumptions X C A is a backward (or tight) deduction [8] from = to X, via the
backward application of rules in R. For the simple assumption-based framework
in example 1, an argument in favour of p supported by {a} may be obtained by
applying p < a backwards.

In order to determine whether a belief is to be held, a set of assumptions
needs to be identified that would provide an “acceptable” support for the belief,
namely a “consistent” set of assumptions including a “core” support as well
as assumptions that defend it. This informal definition of “acceptable” support
can be formalised in many ways, using a notion of “attack” amongst sets of
assumptions:

Definition 2. X attacks Y iff there is an argument in favour of some y sup-
ported by (a subset of) X, where y is in' Y.

In Example 1 above, {b} attacks {a}. In this paper we are concerned with the
following formalisations of the notion of “acceptability”:

— a set of assumptions is admissible, iff it does not attack itself and it counter-
attacks every set of assumptions attacking it;

— complete, iff it is admissible and it contains all assumptions it can defend,
by counter-attacking all attacks against them;

— grounded, iff it is minimally complete;

— ideal, iff it is admissible and contained in all maximally admissible sets.

In the remainder of this section we will illustrate, by means of examples, the
three forms of dispute derivations presented in [8, 10, 9], for computing grounded,
admissible and ideal sets of assumptions (respectively) in support of given beliefs.
For any formal details and results see [8, 10, 9].

2.1 GB-dispute derivations

GB-dispute derivations compute grounded sets of assumptions supporting a
given input belief. They are finite sequences of tuples

(Pi, 0;, A, Cy)

where P; and O; represent (the set of sentences held by) the proponent and op-
ponent in a dispute, A; holds the set of assumptions generated by the proponent
in support of its belief and to defend itself against the opponent, and C; holds

the set of assumptions in attacks generated by the opponent that the proponent
has chosen as “culprits” to be counter-attacked. Each derivation starts with a
tuple

(Po ={x},00 ={}, 4o = AN{z},Co ={})

where x is the belief whose acceptability the derivation aims at establishing.
Then, for every 0 < i < n, only one ¢ in P; or one S in O; is selected, and 2:

1. If o € P; is selected then

(i) if o is an assumption, then
Piy1=Pi—{o}
Oit1 = 0; U{{7}}
(ii) if o is not an assumption, then there exists some inference rule o - R €
R such that C; N R = {} and
Pi+1 =P; — {O’}UR
Aiy1 = A, U(ANR).
2. If S is selected in O; and o is selected in S then
(i) if o is an assumption, then
(a) either o is ignored, i.e.
Oit1 = 0; —{S}U{S —{o}}
(b) or o & A; and
Oip1 = 0; — {5}
Pig1 =P; U {5}
A=A, U{Tln A
Ci—i—l - Cl U {0’}
(ii) if o is not an assumption, then
Oi+1 :Oi—{S}U{S—{U}UR|U(—RER}.

In Example 1, no GB-dispute derivation for p exists (and, indeed, p is not
an acceptable belief according to the grounded semantics) as the search for any
such derivation loops and hence no finite sequence of tuples can be found:

(Po={p},00 = {}, 40 = {},Co = {}),

(Py = {a}, 01 ={}, A1 = {a},C; = {}), by using rule p « a,
<P2 = {}702 = {{_'a‘}}7A2 = {G},CQ = {}>7 since a = —a,

(P = {},03 = {{b}}, A3 = {a},C3 = {}), by using rule -a < b,
(Py = {=b},04 = {}, Ay = {a},Cy = {b}), since b = —b,

(Ps = {a},05 = {}, A5 = {a}, C5 = {b}), by using rule =b < a,

Note that P; = P5 and O; = O3, so both proponent and opponent are repeating
their arguments.

2 For brevity, we indicate here and in all the dispute derivations in the paper only the
items of the i + 1-th tuple that are different from the corresponding items in the i-th
tuple: all other items are as in the i-th tuple. For full details, see [9].

2.2 AB-dispute derivations

AB-dispute derivations® are modifications of GB-dispute derivation to determine
whether beliefs can be held according to the admissible semantics, as follows:

— at step 1.(ii): Pip1 =P; — {0} U (R — 4)
— step 2.(i)(b) becomes: 0 € 4; and 0 € C; and O;11 = O; — {S}
— anew step 2.(i)(c) is added: o ¢ A; and o ¢ C; and
(c.1) if 7 is not an assumption, then
Oit1 = 0; — {S}
Pit1=P; U {E}
Ci+1 =C;U {U}
(c.2) if 7 is an assumption, then
Oit1 = 0; = {S}
Ai—‘,—l = Az U {E}
Ci-‘rl = C, U {0’}
— at step 2. (ii): O = O; —{S}U{S—{0}UR |0 < R € R,andRNC; = {}}.

For Example 1, an AB-dispute derivation exists, following up from the earlier
GB-derivation with a terminating step

<7D5 = {}705 = {}7A5 = {(I},Cg, = {b}>

computing an admissible support {a} for p ({a} is indeed admissible since it
does not attack itself and it counter-attacks {b}, the only attack against it).

2.3 IB-dispute derivations

IB-dispute derivations are extensions of AB-dispute derivations, in that they are
finite sequences of tuples

(Pi, OiaAia Clafl>

where the new component F; holds the set of all (potential) attacks against P;.
IB-dispute derivations deploy Fail-dispute derivations to check that no admissible
extensions of any element in any F; exists. For lack of space we simply exemplify
IB-dispute derivations here (see [10, 9] for details).

Ezample 2. L = {a,—a,b,—b,c,—c,d,~d}, R = {-a < a;—a + b; b + q;
—c+ d;—d<+c}, A={ab,cd}and T =z, for all z € A.

Given the framework in Example 2, an IB-derivation for —a is:

<P0 = {_'a’}a Oo = {},Ao = {},Co = {}7]:0 = {}>
(Pr=A{b}, 01 ={}, &1 = {0}, C1 = {}, L = {}),

3 AB-dispute derivations are a slight modification of the dispute derivations of [8],
presented in [9].

(P ={},02 = {{=b}}, A2 = {b},C2 = {}, Fo = {}),
(Ps ={},03 = {{a}}, A3 = {b},C3 = {}, F3 = {}),
<P4 = {_'a’}a Oy = {}7A4 = {b}7c4 = {a}7f4 = {{a}}>7
(Ps ={},05 = {}, 45 = {b},Cs = {a}, F5 = {{a}}),
(Ps = {},06 = {}, 46 = {b},Cs = {a}, F6 = {})-

The transition between the penultimate and the last tuple in the sequence above
requires the existence of a Fail-dispute derivation confirming that no admissible
extension of {a} € F; exists.

The derivation succeeds in computing support {b} for —a. The set {b} is
ideal as it is admissible and contained in every maximally admissible set of
assumptions (there are two such sets: {b,c} and {b,d}).

Note that there is no GB-dispute derivation for —a (which indeed is not
supported by any grounded set of assumptions). Also, note that there exists
an AB-dispute derivation for —a, as well as for —¢ and —d, but no GB- or IB-
dispute derivation exists for the latter two beliefs. Thus, the proponent agent
in GB-derivations is the most sceptical, followed by the proponent agent in
IB-derivations. The proponent agent in AB-derivations on the other hand is
completely credulous.

3 Generalisation of assumption-based argumentation
frameworks

In order to widen their applicability (e.g. for practical reasoning), assumption-
based argumentation frameworks need to be generalised as follows:

Definition 3. A generalised assumption-based framework is a tuple
(L, R, A, Con) where L, R, A are as in conventional assumption-based
frameworks, and Con is a (total) mapping from assumptions in A into sets of
sentences in L.

Intuitively, in this generalised framework, assumptions admit multiple con-
traries. Given a generalised assumption-based argumentation framework, the
notion of attack between sets of assumptions becomes:

Definition 4. X attacks Y iff there is an argument in favour of some x sup-
ported by (a subset of) X where x € Con(y) and y is inY.

All dispute derivations defined in previous works [8, 10, 9] can thus be modi-
fied for generalised assumption-based frameworks. In what follows, we show how
this can be done for AB-dispute derivations (the modifications are typeset in
bold font), as this is the “core” form of dispute derivation (GB-dispute deriva-
tions are a simplification and IB-dispute derivation an extension of AB-dispute
derivations):

Definition 5. Let (£, R, A, Con) be a generalised assumption-based argumen-
tation framework. Given a selection function, a generalised AB-dispute deriva-
tion of a defence set A for a sentence « is a finite sequence of quadruples

<P07 001 A07 C0>7 L) <P17 OiaAia Cl>7 R <Pn> On: Ana Cn>

where Py = {a} Ay = An{a} Op =Co ={}
Pn =0, = {} A= A”

and for every 0 < i < n, only one o in P; or one S in O; is selected, and:

1. If 0 € P; is selected then

(i) if o is an assumption, then
Piy1=Pi—{o}
Oit1 = 0;U{{z} | z € Con(0o)}
(In the original AB-dispute derivation, O,1; = O; U{{7}}.)

(ii) if o is not an assumption, then there exists some inference rule o < R €
R such that C;N R = {} and
732'_:,_1 =P; — {O’} U (R — Al)

2. If S is selected in O; and o is selected in S then

(i) if o is an assumption, then
(a) either o is ignored, i.e.
Oip1 = 0;i —{S5}U{S —{co}}
(b) oro & A; and o € C; and
Oit1 = 0; — {S}
(¢) or o & A; and o ¢ C; and chosen some z € Con(o) (in the
original AB-dispute derivations, z =7)
(c.1) if x is not an assumption, then
Oiy1 = 0; — {S}
Piv1 =P; U {:U}
Ci+1 = Cz U {0’}
(c.2) if x is an assumption and it does not belong to C;, then
Oit1 =0; —{S}
Ai—i—l = Az U {11?}
Ci+1 =C;U {U}

(ii) if o is not an assumption, then

Oit1=0; —{S}U{S—{oc}UR|oc < RER, and RN C; = {}}.

Note that in step 2(i)(c) the choice of counter-attack is based upon the choice
of contrary of the selected culprit. This choice is made randomly, but can be
customised if necessary.

The definitions of GB- and IB-dispute derivations can be modified in a similar
fashion, by considering all contraries (of a given assumption) when extending O
(to find attacks against the assumption) and by choosing one contrary (of a given
“culprit” assumption) when extending P (to counter-attack the assumption).

4 System Description

In this section, we will describe the CaSAPI system, a Prolog implemen-
tation for credulous and sceptical argumentation based upon the computa-
tion of dispute derivations for grounded beliefs (GB-dispute derivations), ad-
missible beliefs (AB-dispute derivations) and ideal beliefs (IB-dispute deriva-
tions) for the generalised assumption-based frameworks described in the
previous section. The latest version of CaSAPI can be downloaded from
www.doc.ic.ac.uk/~dg00/casapi.html. The system is developed in Sicstus
Prolog but runs on most variants of Prolog?.

4.1 How to use CaSAPI

After invoking a Prolog process and loading the CaSAPI program, users need
to load the input assumption-based framework® and the beliefs to be proved.
These are best specified in a separate file, prior to invoking Prolog.

Rules in R are represented as facts of a binary relation myRule/2 consist-
ing of a left- and right-hand side. The first argument holds the head of the
rule and the second argument a list containing the body of the rule. Assump-
tions in A and beliefs to be proved are represented as unary predicates myAsm/1
and toBeProved/1 (respectively) using a list notation for their respective ar-
gument. The latter predicate allows queries about more than one belief to be
expressed. The notion of contrary can also be customised using an binary rela-
tion contrary/2. In order to illustrate the representation of assumption-based
frameworks, Example 1 from Section 2 is represented as follows:

myRule(p, [a]).
myRule (not (a), [b]).
myRule (not (b), [a]).
myAsm([a,b]).

toBeProved([p]).

4 CaSAPI has been successfully tested using SWI Prolog, for example.
% The language £ does not need to be specified explicitly.

contrary(a,not(a)).
contrary(b,not(b)).

The users can then control the kind of dispute derivation they want to employ
(GB, AB or IB), the amount of output to the screen (silent, compact or noisy)
and the number of supports computed (one or all). They specify their choices
as arguments to the command run/3 and CaSAPI will begin the argumentation
process in a manner dictated by the users’ choices. For example, in order to
run AB-dispute derivations in silent mode and asking for only one answer, one
needs to specify: run(ab,s, 1) . Furthermore, for running GB-dispute derivations
in noisy mode asking for all answers, one needs to execute: run(gb,n,a). Note
that all answers here refers to all answers that can be computed using the dispute
derivation in question.

4.2 Design Choices

We have picked Sicstus Prolog as the implementation language of choice since
we intend to employ some of its constraint solving features in future versions of
CaSAPL In the current version 2.0 we do not make use of any Sicstus specific
code and hence it should run on most standard Prolog engines

One of the interesting properties of Prolog is its handling of variables. Instan-
tiation takes place when a binding can be made, but backtracking allows new
instantiations to override old ones where possible. We made use of this feature in
that we allow variables in the definition of rules, assumptions and contraries in
CaSAPI. This can be seen as a shortcut to writing out all the ground instances
of the predicate in question.

A further design choice, that paves the way to interesting experimental re-
search, is the fact that the selection strategies of the agent are not hard-wired
into CaSAPI. Different selection strategies do not affect the result of the ar-
gumentation process, but have a significant impact on efficiency. Indeed, these
strategies control how the dispute trees are generated and hence can lead to
early pruning for certain trees. One simple example for a selection strategy is:

selFunc([HeadProponent|_],_,HeadProponent, []).
selFunc([], [[OppHead |OppTaill | _],0ppHead, [OppHead |OppTaill) .
selFunc([]1,[1,_,_). % Finished.

The first two arguments are the beliefs held by the proponent and oppo-
nent, respectively. The third argument is used to return the chosen element and
the fourth one returns the set of beliefs of the opponent that this element was
chosen from — if applicable. If both the proponent and the opponent have no
further beliefs to investigate, the argumentation process terminates. In this sim-
ple example, all beliefs of the proponent are handled before the opponent gets
to reply. More sophisticated selection strategies can easily be imagined and have
been used as defaults in the CaSAPI system.

As we have hinted to before, CaSAPI allows queries to involve sets of beliefs to
be proved, rather than individual beliefs as in the original formulation of dispute
derivations. But the biggest innovation is the extension of the argumentation
framework to allow multiple contraries. The theoretical aspects of this extension
have been discussed in the previous section. An example where this extension is
employed will be given in Section 5.3 on practical reasoning.

4.3 Worked Example

We illustrate an exemplary execution trace of the CaSAPI system in the case of
Example 2 from Section 2. Here and in the remainder of the paper, we represent
negative literals —p as not (p). In this example, basically a, b and ¢, d are (pair-
wise) mutually exclusive. Intending to prove the belief not (a), after feeding the
following input program:

myRule (not (a), [a]).
myRule (not (a), [b]).
myRule (not (b), [a]).
myRule (not (c), [d]).
myRule (not (d), [c]).

myAsm([a,b,c,d]).
toBeProved([not(a)]).
contrary(X,not(X)) :- myAsm(L), member(X,L).

into CaSAPI, one needs to choose the execution options. Deciding to use ad-
missible belief semantics, demanding verbose output and requesting only one
solution, the following will happen: not(a) can only be proved by either the
first or second of the rules given above.

Step O:

- Content of this quadruple:
- PropNods: [not(a)]
OppoNods: []

- DfnceAss: []

- Culprits: []

CASE 1ii

Step 1:

- Content of this quadruple:
- PropNods: [a]

OppoNods: []

- DfnceAss: [a]

Culprits: []

10

CASE 1i

Step 2:

- Content of this quadruple:
- PropNods: []

- OppoNods: [[not(a)]]

- DfnceAss: [a]

- Culprits: []

After some backtracking, the output ends with the final answer:

Step 5:

- Content of this quadruple:
- PropNods: []

- OppoNods: []

- DfnceAss: [b,b]

- Culprits: [a]

FINISHED, the defence set is: [b,Db]
Without duplicates it is: [b]

yes

The defence set [b] indicates which assumption(s) need to be made and are
sufficient to defend the belief not (a) against all possible attacks.

5 Applications

In this section we give examples of how assumption-based argumentation in
general and CaSAPI in particular can be applied. First we consider logic pro-
gramming as an instance of non-monotonic reasoning, and then look at legal,
practical and agent reasoning. Note that non-monotonic reasoning using default
logic could also be modelled, following [3].

5.1 Non-monotonic reasoning: Logic programming.

A logic program P can be seen as an assumption-based framework (£, R, A,)
where R=P, L is the Herbrand base of P together with the set of all negations of
atoms in such Herbrand base, A is the set of all negative literals in £, and not p =
p for all negative literals notp in A. Logic programming queries correspond to
sets (conjunctions) of beliefs for which we want to compute dispute derivations.

In this instance of assumption-based frameworks, the admissible, grounded,
and ideal semantics correspond (see [3] and [9]) to partial stable models [17],
well-founded model [13], and ideal semantics [1], respectively. Although the the-
oretical framework is propositional, our Prolog implementation allows us to deal
with variables, both in the rules of the deductive system and in the beliefs to be
proved, as shown below.

11

Ezample 3. P = {p(X) + notp(X);
p(X) + not q(X);
q(X) « not p(X);
r(X) < not t(X);
t(X) < notr(X)}

Given the logic program from Example 3 and queries Q1 = p(a), Q2 = ¢(a),
Qs =7r(a), Q4 = t(a), the system computes the following answers, respectively:
GB-dispute derivations: loops, no, loops, loops
AB-dispute derivations: {not q(a)}, no, {nott(a)}, {notr(a)}
IB-dispute derivations: {not ¢(a)}, no, no, no

Ezample 4. P = {p < notg;
q < notr;
T < not s;
s < notq}

Given the logic program from Example 4 — with an odd-loop via negation —
and query (); = p, the system computes no for all three kinds of derivations.

5.2 Legal reasoning.

This kind of reasoning often requires dealing with defeasible rules and facts
(possibly under dispute), strict rules and facts (beyond dispute) and preferences
amongst defeasible rules and facts (possibly under dispute). We show here how
a concrete example of legal reasoning from [15] can be dealt with by means of
our CaSAPI system, following the formalisation of the problem given in [14].

Example 5. Consider the following set of defeasible rules, including rules defining
preferences between rules®:

r1(X): X’s exterior may not be modified if X is a protected building.
ro(X): X ’s exterior may be modified if X needs restructuring.
r3(X,Y): Ri(X) > Ro(Y) if R1(X) concerns artistic buildings and

Ry (Y') concerns town planning.
tH(X,Y): Ri(X) > Ra(Y) if Ri(X) is later than Ra(Y').

and the following six facts/strict rules:

) concerns artistic buildings.
) concerns town planning.

) is later than 1 (X).
r3(X,Y) is later than t(X,Y).
villa is a protected building.

r1 (X
T2 (X
T2 (X

5 For all kinds of rules, we adopt a representation in pseudo-natural language, with
variables implicitly universally quantified with scope the rules.

12

villa needs restructuring.

Intuitively, the conclusion that the exterior of the villa may not be modified
should be drawn. Both rules r; and r» apply and the meta-rules r; and ¢ deciding
the priorities between 7y and 75 also apply both, but according to meta-rule ¢, the
importance of r3 is higher than its own importance. Hence, r3 should be applied
which gives ry priority over r». Following [14], this problem can be represented
as a logic program (and thus as an assumption-based framework, as explained
above):

villa’s exterior may not be modified < not defeated(ry (villa))
villa’s exterior may be modified < not de feated(rs(villa))
defeated(rq (villa)) < not defeated(t(villa,villa)), not defeated(rs(villa))
defeated(rs(villa)) < not defeated(rs(villa,villa)), not defeated(r; (villa))
de feated(t(villa,villa)) + not defeated(t((villa,villa), (villa, villa))),

not de feated(rs(villa,villa))

GB-, AB- and IB-dispute derivations for the belief villa’s exterior not mod-
ified all give the following defence set as an answer: {not defeated(ry(villa)),
not de feated(rs(villa,villa)), not de feated(t((villa,villa), (villa,villa)))}.

This can be understood as follows: the villa’s exterior should not be modified
since rule 77 is not defeated (stating that artistic buildings should not be modi-
fied) and rule r3 is not defeated (stating that rules concerning artistic buildings
override rules concerning town planning) and the temporal ordering rule ¢ is not
defeated either.

5.3 Practical reasoning.

This form of reasoning requires making decisions in order to achieve certain
properties/objectives, having only partial information. We show how to deal
with the concrete example in [2], requiring multiple contraries.

Ezxample 6. A judge needs to decide how best to punish a criminal found guilty,
while deterring the general public, rehabilitating the offender, and protecting
society from further crime. The judge can choose amongst three forms of pun-
ishment: (i) imprisonment, (ii) a fine, or (iii) community service. The judge
believes that: (i) promotes deterrence and protection to society, but it demotes
rehabilitation; (ii) promotes deterrence but has no effect on rehabilitation and
protection of society; (iii) promotes rehabilitation but demotes deterrence.

We can represent the problem as a generalised assumption-based framework:

— A = {prison, fine, service,a, 8,7,0},

— Con(prison) = { fine, service}, Con(fine) = {prison, service},
Con(service) = {prison, fine}, Con(a) = {—deter}, Con(B) = {deter},
Con(y) = {—rehabilitate}, Con(d) = {rehabilitate},

13

— R consists of nine rules:

punish < prison deter < prison,« rehabilitate < service,y
punish < fine deter < fine,« —rehabilitate < prison, ¢
punish < service —deter « service, 3 protect < prison

Then, given the goal (belief) punish, AB dispute derivations compute the defence
set {prison}, for example. Given also goal rehab the defence set {service} is
computed. One cannot have all goals punish, deter, rehabilitate and protect
provable (AB dispute derivations return no) and it would be interesting to give
preferences amongst these, as suggested in [2]. We leave this for future research.

5.4 Agent reasoning

Finally, we will give an example involving a traditional BDI agent [16] that
reasons about its beliefs, desires and intentions. We chose the ballroom scenario
from [11] and the following setup: picture a traditional ballroom with several
male and female dancers; the rules of etiquette state among other things that
two dancers agreeing to dance together should be of opposite sex and that female
dancers should wait to be approached by a male dancer (with the exception of
ladies’ choice night).

Imagine a female dancer called anna, who considers both bob and charlie
to be pretty and who generally intends whatever she desires. This information
can be expressed with the following rules in an assumption-based argumentation
framework”:

intend(X) < desire(X)

desire(danceWith(X)) < belief(pretty(X)), S(X)
—desire(danceWith(X)) < belief(sameSex(self, X)), a(X)
intend(danceWith(X)) < belief(approachedBy(X))

belief (pretty(bob))
belief (pretty(charlie))

Note that the first rule is domain-independent, whereas the other rules are
domain-dependent.

Let A be the set of (all ground instances of) —belief(X) together
with «@(X) and B(X). The latter two assumptions are needed to relate
desire(danceWith(X)) and —desire(danceWith(X)) as opposite notions. One
cannot directly make them contraries of one another, since neither of them is an
assumption.

The Con relation defines the contrary of any —belief(X) as belief(X) and
the contrary of a(X) as desire(danceWith(X)) and finally, the contrary of 5(X)
as —desire(danceWith(X)).

Then, asking CaSAPI whether anna should intend to dance with charlie, the
system returns that yes, she should intend to dance with that person, provided

" We ignore here nested beliefs, desires and intentions for simplicity’s sake.

14

that anna believes that charlie is not of the same gender. Thus CaSAPI replies
with the following defence set: beta(charlie). This is the assumption needed to
defend the belief in question and it ensures that —desire(danceWith(charlie))
does not hold.

The reasoning goes roughly as follows: using the fourth rule, anna should
intend to dance with charlie if she beliefs to have been approached by charlie.
However, this is not the case. Using the first rule, anna should intend to dance
with charlie if she desires it. She does desire it, since she believes charlie is
pretty. Now, the fictional opponent who plays devil’s advocate in anna’s mind
may argue that she should not desire (and hence not intend) to dance with
charlie because charlie may be female, too. Therefore, the fictional proponent
who defends the query needs to make the additional assumption that anna and
charlie are of opposite gender in order to render the third rule inapplicable.

Note that this is just one simple example of agent reasoning, and more com-
plex and sophisticated forms of reasoning may be afforded by CaSAPI. For ex-
ample, in case conflicts may arise, e.g. due to intending and not intending the
same action, the use of preferences, as modelled in legal reasoning, can provide
an effective means of conflict resolution. We leave this for future work.

6 Conclusions

In this paper, we have presented a generalisation of computational mechanisms
for assumption-based argumentation that allows multiple contraries of assump-
tions to be expressed. This generalisation enables this kind of argumentation
to handle a broader class of applications. Furthermore, we have described the
CaSAPI system which implements credulous and (two forms of) sceptical argu-
mentation for this generalisation of assumption-based argumentation and shown
how to use the system in some application areas.

Two of these application areas (legal and practical reasoning) assumed a
translation (by-hand) from a given formalism into assumption-based argumen-
tation [18]. Future work includes providing appropriate front-ends to our system
in order to automate this translation.

We have implemented a number of extensions to theoretical assumption-
based argumentation (e.g. variables in rules) that would also be worthwhile to
formalise in the future.

A number of other argumentation systems exist, for example GORGIAS
[6], for credulous argumentation in argumentation frameworks with preferences
amongst defeasible rules, the ASPIC system (http://aspic.acl.icnet.uk/) [5]
dealing with quantitative uncertainty, DeLP [12] for defeasible logic program-
ming, and the system by Krause et al. [4]. These systems are defined for different
frameworks for argumentation than ours. It would be interesting to provide a
mapping from these various frameworks onto assumption-based argumentation
(possibly extended) in order to carry out a full comparison.

15

Acknowledgements

This research was partially funded by the EC-funded ARGUGRID project. The
second author has also been supported by a UK Royal Academy of Engineer-
ing/Leverhulme Trust senior fellowship.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. José Jilio Alferes, Phan Minh Dung, and Luis Moniz Pereira. Scenario semantics

of extended logic programs. In LPNMR, 1993.

. T. Bench-Capon and H. Prakken. Justifying actions by accruing arguments. In

COMMA, 2006.

A. Bondarenko, P.M. Dung, R.A. Kowalski, and F. Toni. = An abstract,
argumentation-theoretic framework for default reasoning. Artificial Intelligence,
93(1-2), 1997.

. D. Bryant and P. Krause. An implementation of a lightweight argumentation

engine for agent applications. In JELIA, 2006.

M. Caminada, S. Doutre, S. Modgil, H. Prakken, and G.A.W. Vreeswijk. Imple-
mentations of argument-based inference. In Review of Argumentation Tech., 2004.
N. Demetriou and A. C. Kakas. Argumentation with abduction. In Proceedings of
the fourth Panhellenic Symposium on Logic, 2003.

Y. Dimopoulos, B. Nebel, and F. Toni. On the computational complexity of
assumption-based argumentation for default reasoning. Artificial Intelligence, 141,
2002.

P.M. Dung, R.A. Kowalski, and F. Toni. Dialectic proof procedures for assumption-
based, admissible argumentation. Artificial Intelligence, 170, 2006.

P.M. Dung, P. Mancarella, and F. Toni. Computing ideal sceptical argumentation.
Technical report, Imperial College London, 2006.

P.M. Dung, P. Mancarella, and F. Toni. A dialectic procedure for sceptical,
assumption-based argumentation. In COMMA, 2006.

Dorian Gaertner, Keith Clark, and Marek Sergot. Ballroom etiquette: a case study
for norm-governed multi-agent systems. In Proceedings of the 1st International
Workshop on Coordination, Organisation, Institutions and Norms, 2006.

A. Garcia and G. Simari. Defeasible logic programming: An argumentative ap-
proach. Theory and Practice of Logic Programming, 4(1-2), 2004.

A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for
general logic programs. Journal of the ACM, 38(3), 1991.

R. A. Kowalski and F. Toni. Abstract argumentation. Journal of AI and Law,
Special Issue on Logical Models of Argumentation, 4(3-4), 1996.

H. Prakken and G. Sartor. On the relation between legal language and legal
argument: assumptions, applicability and dynamic priorities. In ICAIL, 1995.

A. S. Rao and M. P. Georgeff. BDI-agents: from theory to practice. In Proceedings
of the First Intl. Conference on Multiagent Systems, San Francisco, 1995.
Domenico Sacca and Carlo Zaniolo. Partial models and three-valued models in
logic programs with negation. In LPNMR, 1991.

F. Toni. Assumption-based argumentation for epistemic and practical reasoning.
Technical report, Imperial College London, 2007.

16

