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Computing Arguments
and Attacks 
in Assumption-Based
Argumentation
Dorian Gaertner and Francesca Toni, Imperial College London

Most computational frameworks for argumentation are based on abstract argu-

mentation, which determines an argument’s acceptability on the basis of its

ability to counterattack all arguments attacking it.1 However, this view of argumenta-

tion doesn’t address how to find arguments, identify attacks, and exploit premises

shared by different arguments.
Assumption-based argumentation addresses these

three issues.2–4 It’s a refinement of abstract argu-
mentation but remains general purpose, nonetheless.
Rather than considering arguments to be a primitive
concept, assumption-based argumentation defines
them as backward deductions (using sets of rules in
an underlying logic) supported by sets of assump-
tions. This approach reduces the notion of an attack
against an argument to that of deduction of a con-
trary of an assumption. (We describe assumptions
and contraries in more detail later.)

Computational models for assumption-based argu-
mentation3,4 let us determine the acceptability of claims
by building and exploring a dialectical structure of

• a proponent’s arguments in favor of the claims,
• an opponent’s counterarguments against these

arguments,
• the proponent’s arguments against the counter-

arguments,

and so on. In more detail, the opponent disputes the
proponent’s arguments by attacking any of the sup-
porting assumptions of an argument. In turn, the pro-

ponent defends its arguments by defeating the oppo-
nent’s counterarguments by means of further argu-
ments, possibly with the aid of defending assump-
tions. This computation style has several advantages
over other computational mechanisms for argumen-
tation, owing mostly to the low-level granularity
afforded by

• interleaving the construction of arguments and the
identification of their supporting assumptions and

• exploring the dialectical structure of arguments
and counterarguments.

In particular, it avoids recomputation by filtering out
assumptions that have already been defended or
defeated.

However, this computation style obscures the dialec-
tical structure of proponent-opponent arguments and
counterarguments. For example, a proponent and
opponent can attack one another before arguments are
fully built, by starting to build an argument for the con-
trary of any assumption identified in a partially con-
structed argument by the other player. Also, a propo-
nent’s arguments are all “mixed” within a single set,
in the sense that this set holds assumptions supporting
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all the proponent’s arguments. Moreover, the
link between assumptions and the conclusions
they support (and thus the argument they form)
is lost in the computation. Finally, an oppo-
nent’s arguments might be only partially con-
structed at the end of the computation, because
they might have been defeated (and thus dis-
carded) as soon as a “culprit” assumption was
identified in them that the proponent could
defeat.

We’ve developed and implemented an argu-
mentation system combining the virtues of
assumption-based argumentation and abstract
argumentation and avoiding the problems
mentioned earlier. As in assumption-based
argumentation, we manipulate assumptions
and employ filtering to promote efficiency.
As in abstract argumentation, we compute,
for any given claim, the dialectical structure
of arguments and counterarguments lead-
ing to the claim’s acceptability. This system
extends our earlier CaSAPI (Credulous and
Skeptical Argumentation: Prolog Imple-
mentation) system.5 The original CaSAPI
only lets us manipulate assumptions. How-
ever, it lets us compute notions of accept-
ability ranging from the credulous notion of
admissibility considered in this article
(details appear later) to “skeptical” notions,
disregarding conflicting alternatives to a
greater or lesser extent.

Assumption-based
argumentation

Assumption-based argumentation frame-
works are tuples �L, R, A, —

�, where

• (L, R) is a deductive system with a lan-
guage L and a set of rules R,

• A � L is a nonempty set of assumptions,
and

• — is a total mapping from A to the power
set �(L) � {{}}, where, for any � � A,

is the nonempty set of contraries of �.

(In the original framework, — is a total map-
ping from A into L; each assumption has a
single contrary.2,3 The extension we adopt
here is useful, for example, to support deci-
sion making in agents.5,6)

Rules can be domain specific or domain
independent.2 They can correspond to causal
information, argument schemes,7 inference
rules and axioms in a chosen logic-based lan-
guage,2 or laws and regulations.8 Assump-
tions are sentences that can be questioned
and disputed (as opposed to axioms, which
are beyond dispute)—for example, uncertain

beliefs (“it will rain”), unsupported beliefs
(“I believe X”), or decisions (“law such-and-
such applies” or “perform action A”). A con-
trary, in general, is a reason the assumption
might be undermined and thus might need to
be dropped. For example, a contrary of the
assumption “it will rain” might be “it will be
sunny” and “it will snow,” or “¬ it will rain,”
depending on the underlying L (¬ is the
negation symbol). A contrary of the assump-
tion “law such-and-such applies” might be
“law such-and-such is overruled by another
law taking precedence.” A contrary of the
assumption “perform action A” might be
“perform action B” and “perform action C,”
where A, B, and C are mutually exclusive.
Finally, a contrary of the assumption “I

believe X” might be “X is not the case” or
“there is evidence against X.”

The mapping — need not be symmetric.
For example, “X is not the case” might be
a contrary of the assumption “I believe X,”
but the latter might not be an assumption.
Moreover, an agent’s preference for action
B over action A might force the assumption
“perform action B” to be a contrary of the
assumption “perform action A,” but not the
other way around.

We assume that the rules in R have the syn-
tax c0 � c1 , …, cn with n > 0 or c0, where ci �
L for i = 0, …, n. The left part, c0, is the rule’s
head; c1, …, cn (if present) is its body. We con-
sider the body of a rule c0 to be empty; in this
case, we often refer to c0 as a fact. For brevity
of presentation, we focus here on abstract,
symbolic examples. We restrict our attention
to flat assumption-based frameworks,3,4 such
that if c � A, no rule in R has head c. These
frameworks are still quite general.2

Example 1 shows a simple assumption-
based framework:

EXAMPLE 1. L = {p, a, ¬a, b, ¬b}, R = {p �
a; ¬a � b; ¬b � a}, A = {a, b}, and =
{¬a}, = {¬b}.

The choice of all elements of an assump-
tion-based framework depends on an appli-
cation’s knowledge-representation needs. For
instance, in example 1, we could have L also
include ¬p and have A not include a. In gen-
eral, if ¬ occurs at all in L, its role will be
purely syntactic (and L might not be closed
under negation, as in the example). Another
representation of the framework in the exam-
ple without using negation might be L = {p,
a, na, b, nb}, R = {p � a; na � b; nb � a},
A = {a, b}, and = {na}, = {nb}.

An argument in favor of a sentence x in L
supported by a set of assumptions X is a
(backward) deduction from x to X, via the
backward application of rules in R (with
respect to the direction �, from the rule’s
head to its body). In example 1, we can
obtain an argument in favor of p supported
by {a} by applying p � a backwards. Also,
given q � b, p, we can obtain an argument
in favor of q supported by {b, a} by first
applying q � b, p backwards and then
applying p � a.

From now on, whenever it’s clear from the
context (and with an abuse of notation), we’ll
represent an argument in favor of x with sup-
port X as X � x, and we’ll refer to x as the con-
clusion of the argument X � x. This notation
equates an argument with the pair consisting
of its supporting assumptions and its conclu-
sion. It ignores the deduction that links the
two and, in particular, the rules used to gen-
erate the argument. It also ignores that we can
arrive at the same X � x relationship in more
than one way. However, the set of assump-
tions supporting an argument together with
the argument’s conclusion encapsulate the
argument’s essence. That is, the only way to
attack an argument is to attack one of its
assumptions by constructing an argument in
favor of a contrary of that assumption:3,4

An argument X � x attacks an argument Y � y if
and only if x is a contrary of some assumption
in Y.

In example 1, {b} � ¬a attacks {a} � p be-
cause = {¬a}.

Assumption-based argumentation lets us
determine whether a rational reasoner would
accept a given claim. The claim could be, for
example, a potential belief of the reasoner or
a goal that an agent might hold or have
acquired. We represent the claim simply as

a
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a sentence in L. To determine the claim’s
acceptability, we need to identify a set of
assumptions that’s consistent and includes a
core support (support for the initial claim) as
well as assumptions that defend that support.
Example 2 illustrates this.

EXAMPLE 2. Let L = {p, a, ¬a, b, ¬b, c, ¬c},
R = {p � a; ¬a � b; ¬b � c}, A = {a, b,
c}, and = {¬a}, = {¬b}, = {¬c}. To
prove claim p, we need an acceptable sup-
port {a, c}, with a being the core (because
{a} supports an argument in favor of p) and
c being the assumption that lets us defend
argument {a} � p against the attack {b} �
¬a. Indeed, c supports the argument {c} � ¬b
against {b} � ¬a by attacking the culprit b.

Figure 1a illustrates this example.
We can formalize this informal definition

of acceptability in many ways, using a notion
of attack among sets of assumptions whereby

a set of assumptions X attacks a set of assump-
tions Y if and only if for some y � Y and some
x � , there’s an argument in favor of x sup-
ported by (a subset of) X.

In example 2, {b} attacks {a}.
A single attack between sets of assump-

tions stands for potentially many attacks
between arguments. If X attacks Y as we
described, then some argument supported by
some subset of X attacks every argument sup-
ported by any subset of Y containing y. For
example, given the rules p � a, q � a, and
r � b and assumptions a and b, with r a con-

trary of a, {b} attacks {a}, and {b} � r
attacks both {a} � p and {a} � q.

We use the following formalization of the
notion of acceptable sets of assumptions:

A set of assumptions is admissible if and only
if it doesn’t attack itself and it counterattacks
every set of assumptions attacking it.

From that notion, we derive the notion of
acceptable sets of arguments, in the case of
admissibility:

A set of arguments is admissible if and only if
the union of all sets of assumptions supporting
the arguments is admissible.

The computational model
To compute admissible sets of assump-

tions supporting an acceptable claim, we can
use AB-dispute derivations.4 (AB stands for
admissible beliefs. AB-dispute derivations
are a slight modification of the dispute
derivations of Phan Minh Dung, Robert
Kowalski, and Francesca Toni.3 Dung and
his colleagues also propose GB- and IB-
dispute derivations, for computing skep-
tically grounded and ideal sets of assump-
tions.4 These are ignored in this article.)
AB-dispute derivations take a claim as input
and then output an admissible set of assump-
tions. These derivations represent a kind of
game, in the form of a dispute between two
fictional players: a claim’s proponent and an
opponent trying to undermine the claim.

The derivations are finite sequences of
tuples �Pi, Oi, Ai, Ci�. Pi and Oi represent the
set of sentences held by the proponent and
opponent at step i in the dispute. Ai is the set
of assumptions the proponent generates to
support the initial claim and to defend itself
against the opponent. Ci is the set of assump-
tions in the opponent’s counterarguments that
the proponent has chosen as culprits to coun-
terattack. The tuple at the start of a deriva-
tion for claim x is

�{x}, {}, A 	 {x}, {}�

Table 1 shows an AB-dispute derivation
computing an admissible support {a, c} for
p, for example 2.

Using a selection function, AB-dispute
derivations pick a sentence from the support
of a potential argument to expand further (if
it isn’t an assumption) or to identify a possi-
ble point of attack (if it is). Such selection
can be based on random choice, on whether
the sentence is an assumption, or on more
complex criteria.

Here, we define structured AB-dispute
derivations, an extension of AB-dispute
derivations that computes

• an admissible set of assumptions in sup-
port of an initial claim or sentence,

• the set of underlying arguments, implic-
itly built by the proponent and opponent,
and

• the attack relationship among those
arguments.

For example, this amounts to computing the
derivation in table 1 and the structure in fig-
ure 1a. This computation relies on a patient
selection function (which we explain later).
The set of computed arguments is guaran-
teed to be admissible, because the underlying
set of assumptions is admissible. (This is due
to AB-dispute derivations being correct6,7

and to the fact that structured AB-dispute
derivations compute the same set of assump-
tions as ordinary AB-dispute derivations.)

Structured AB-dispute derivations are also
sequences of tuples, but of this form:

�Pi, Oi, Ai, Ci, Argi, Reli�

Ai and Ci, the defense set and the set of cul-
prits, are exactly as in the original AB-dispute
derivations. Again, Pi and Oi, represent the

y

cba

A r g u m e n t a t i o n  T e c h n o l o g y

26 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

{a } � p

{b} � ¬a

{c} � ¬b

(a)

{a } � p

{b,  c ,  d } � q

(b)

Figure 1. Dialectical structures for 
(a) example 2 (“core” and defending
assumptions) and (b) example 3 
(a potential argument and attack).

Table 1. An AB-dispute derivation for example 2. (AB stands for admissible beliefs.)

i Pi Oi Ai Ci Comment

0 {p} {} {} {} Start

1 {a} {} {a} {} By using rule p � a

2 {} {{¬a}} {a} {} Because = {¬a}

3 {} {{b}} {a} {} By using rule ¬a � b

4 {¬b} {} {a} {b} Because = {¬b}

5 {c} {} {a, c} {b} By using rule ¬b � c

6 {} {{¬c}} {a, c} {b} Because = {¬c}

7 {} {} {a, c} {b} Because there is no rule with head ¬c

c

b

a
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proponent’s and opponent’s state, but they’re
no longer sets of sentences and sets of sets of
sentences, respectively. Instead, they consist
of potential arguments and information about
which arguments they potentially attack.
Potential arguments are deductions whose
support contains nonassumptions—namely,
elements of L � A. There might be no deduc-
tions for these nonassumptions in the support
of potential arguments. Actual arguments have
sets of assumptions as their support. Potential
attacks are attacks by potential arguments.

The two new elements, Argi and Reli,
hold, respectively, the currently computed
actual arguments and a binary attack rela-
tion between these arguments. With these
new elements, the argumentation system’s
user can explicitly see why a certain argu-
ment was made and which other arguments
it attacks and defends.

Example 3 illustrates the notions of actual
and potential arguments and attacks:

EXAMPLE 3. Consider a simple assumption-
based framework �L, R, A, —

� where A =
{a, b, c, d}; R contains two rules, p � a and
q � r, b, c; and the contrary of assumption a
is q. The actual argument {a} � p supports
claim p. The opponent can attack this argu-
ment only by supporting the contrary of some
sentence in its premise. So, the opponent must
find an argument supporting q, the contrary
of a. Using the second rule, we can build the
potential argument {r, b, c} � q. Any actual
argument obtained by a backward deduction
from the nonassumptions in the support of this
potential argument is an actual argument
attacking {a} � p. Indeed, imagine that we
add a third rule, r � d, to R. We can use this
rule to turn the potential argument {r, b, c} �
q into the actual argument {b, c, d} � q attack-
ing {a} � p. Figure 1b shows the attack rela-
tionship between these two arguments. How-
ever, if the third rule had the form r � s, the
potential argument would have evolved to
another potential argument {s, b, c} � q.
Because no rule in R can expand the sen-
tence s and, furthermore, s 
 A, the argu-
ment cannot be completed. So, we can find no
actual attack against {a} � p.

Concretely, in a structured AB-dispute
derivation, Argi consists of expressions of the
form

id : (X � x)

representing an actual argument labeled id and

supported by X with conclusion x. The argu-
ment labels are needed to express the interre-
lationships between arguments. Indeed, Reli
is a set of expressions of the form

id � id*

standing for “the actual argument labeled
by id actually attacks the actual argument
labeled by id*.” For example, we can rep-
resent the arguments and attack relationship
in figure 1b as id1 : {a} � p, id2 : {b, c, d} �
q (in Argi ) and id2 � id1 (in Reli ).

Finally, Pi and Oi are sets of expressions
of the form

(X � x) � id

indicating a potential or actual argument 
X � x potentially or actually attacking
another argument labeled id. In example 3,
at some stage in the derivation, Oi might
contain ({r, b, c} � q) � id1 to represent
the potential argument ({r, b, c} � q) poten-
tially attacking the argument labeled by id1

(in this case, {a} � p).

The algorithm
To guarantee the construction of actual

arguments, structured AB-dispute deriva-
tions assume that the selection function is
patient,3 in that it selects nonassumptions
whenever it can. We use this formal defini-
tion of a patient selection function:

DEFINITION 1. A selection function f is patient
if and only if for any X � L, if X � A � {},
then f (X) � X � A.

To label arguments, we assume a function
newLabel() that returns new identifiers every
time it’s called. In line with the original AB-

dispute derivations, our derivations aim to
find an admissible support for a given sen-
tence (claim) �. We represent this here start-
ing with P0 consisting of ({�}� �) � �,
which states that to search for an argument
supporting the initial claim �, we should try
to prove �. This argument won’t attack any
other argument, which we indicate by �.

Figure 2 shows the formal definition of
the structured AB-dispute derivation algo-
rithm; figure 3 provides a high-level proce-
dural view of one pass through the algo-
rithm. In figure 3, each rectangle represents
some action or actions, and each oval is a
choice point. The algorithm makes some of
these choices. Others are implicit parame-
ters of the algorithm that any implementa-
tion needs to specify, as we discuss later. We
use the passive voice in figure 2 for all the
choices of this second type. In figure 3, the
first choice is which player should act next
and which of its potential arguments to deal
with. The left subtree covers the proponent;
the right subtree covers the opponent. The
branches are labeled with the outcomes of
the respective choice and the number of the
corresponding case in the algorithm (in
square brackets). The leaves focus on the
Argi element. The tree represents only the
transition from the ith to the (i + 1)th tuple.

Informally, when the implementation of
the algorithm chooses a proponent’s poten-
tial argument and that argument’s premises
contain no more nonassumptions (case 1(i)),
the argument is an actual one and can be
added to Argi. Otherwise (case 1(ii)), the
algorithm selects a nonassumption and ap-
plies a step of backward deduction to it with
some rule in R. (Backward deduction here
aims to turn the potential argument into an
actual one.) In this case, if the resulting argu-
ment is an actual one with empty support, the
algorithm adds this to Argi. (This would
occur, for example, if the argument was {p}
� q and the algorithm chose a fact p � R, thus
giving {} � q.)

If, instead, the implementation of the
algorithm chooses one of the opponent’s
potential arguments (case 2), the algorithm
selects a premise in the argument. If this
premise isn’t an assumption (case 2(ii)), the
algorithm replaces the argument with all
potential arguments obtained by the appli-
cation of all applicable rules in R (that is,
those with the premise as their head). This
action aims to turn the potential argument
into all possible actual ones. If the selected
premise is an assumption (case 2(i)), the
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implementation of the algorithm can choose
to ignore it (case 2(i)a) or not. In the latter
case, the assumption shouldn’t already
have been chosen as a defense (that is, it
shouldn’t already be in Ai) so that it can be
chosen as a culprit. If that assumption has
already been chosen as a culprit (case 2(i)b),
the algorithm can use an existing argument
in Argi to counterattack it. Otherwise (case
2(i)c), the proponent adds a potential argu-
ment attacking the culprit to its arguments to
be defended.

To support the ignoring step (2(i)a), we
assume the following marking strategy. As-
sumptions supporting potential arguments in
Oi are marked after the selection function has
chosen them. All assumptions that support a
newly created potential argument in Oi are
unmarked. Then, the selection function always
operates on those unmarked assumptions.
When a potential argument in Oi becomes an
actual argument and is added to Argi, the
marking is dropped. The marking is implicit in
the algorithm definition in figure 2.

Table 2 shows structured AB-dispute deri-
vations for example 2. The construction of
such derivations involves five types of choices
that need to be made in any implementation
of the algorithm (we’ll describe later the con-
crete choices we made for CaSAPI 3.0):

• Choice of player. The proponent and op-
ponent take turns, not necessarily alter-
nating. During the proponent’s turn, case
1 of the algorithm executes; during the
opponent’s turn, case 2 runs.

DEFINITION 2. Let �L, R, A, —� be an assumption-based argumentation framework. Given a patient selection function, a structured AB-dispute
derivation of a defense set A and of a dialectical structure (Arg, Rel) for a sentence � is a finite sequence of tuples

�P0, O0, A0, C0, Arg0, Rel0��
���
�Pi, Oi, Ai, Ci, Argi, Reli��
���
�Pn, On, An, Cn, Argn, Reln�

Initially,

P0 = {({� } � �) � � }
A0 = A 	 {� }
O0 = C0 = Arg0 = Rel0 = {}

Upon termination,

Pn = On = {}
A = An
Arg = Argn
Rel = Reln

For every 0  i < n, only one potential argument (S � c) � id in Pi or in Oi is chosen, and

1. If (S � c) � id is chosen from Pi, then
(i) If the selection function picks an assumption in S (this means that S � A, because the selection function is patient), then

Pi+1 = Pi � {(S � c ) � id}
Oi+1 = Oi � {({x} � x) � new � x � and � � S � Ai and new = newLabel()}
Ai+1 = Ai  � S
Ci+1 = Ci
Argi+1 = Argi � {new : (S � c )}
Reli+1 = Reli � {new � id �({x} � x ) � new � Oi+1 � Oi } � {old � new �old : (Z � z ) � Argi and z � and � � S 	 Ai }

(ii) If the selection function picks nonassumption � from S and there exists some rule of the form � � R � R such that Ci 	 R = {}, then

Pi+1 = Pi � {(S � c) � id } � {((S � {� }) � R � c) � id }
Oi+1 = Oi
Ai+1 = Ai
Ci+1 = Ci

Arg
Arg new c if S R ne

i
i

+ =
∪ − ∪ ={ }( ){ } { }( ) { }

1

: � σ and ww newLabel

Argi

i
i

=

=

⎧
⎨
⎪

⎩⎪

+

( )

otherwise

Rel
Rel

1

∪∪ − ∪ ={ } { }( ) { }⎧
⎨
⎪

⎩⎪

new id S R

i

� if

otherwise

σ

Rel

σ

σ
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Figure 2. The formal definition of structured AB-dispute derivations.



• Choice of argument. Once the implemen-
tation has decided which player will take
the next turn, that player picks one poten-
tial argument that it currently holds.

• Selection function. Once a player has cho-
sen a potential argument, the selection
function picks a sentence from that argu-
ment’s premises. Depending on whether
this sentence is an assumption, different
parts of the algorithm execute.

• Choice of rule. If the proponent is se-
lected and the selection function returns

an element that isn’t an assumption, the
proponent expands the element by apply-
ing an appropriate rule in R. If multiple
rules are applicable, the proponent se-
lects one of them. The choice of rule ap-
plies only to the proponent. If the oppo-
nent is expanding a nonassumption
element, the opponent uses all applica-
ble rules to create as many potential at-
tacks as possible.

• Choice to ignore. If the opponent is se-
lected and the selection function returns

an element that’s an assumption, the pro-
ponent can either counterattack this ele-
ment (choosing it as the culprit in the argu-
ment) or ignore it to select another element
during the proponent’s next turn.

Ordinary AB-dispute derivations require
all these choices except the choice of argu-
ment, because arguments aren’t explicit in
AB-dispute derivations. The choice to ignore
is necessary for completeness only as in the
case of ordinary AB-dispute derivations.3
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2. If (S � c ) � id is chosen in Oi and the selection function picks � in S, then
(i) If � is an assumption (this means that S � A, because the selection function is patient), then

(a) Either � is ignored; that is,

Pi+1 = Pi
Oi+1 = Oi (The selected � will be marked here and not selected again.)
Ai+1 = Ai
Ci+1 = Ci
Argi+1 = Argi
Reli+1 = Reli

(b) Or � � Ai and � � Ci. In this case, let counter : (S	 � 
 ) � Argi such that 
 � . (This argument is guaranteed to exist because
� � Ci.) Then, given new = newLabel():

Pi+1 = Pi
Oi+1 = Oi – {(S � c ) � id }
Ai+1 = Ai
Ci+1 = Ci
Argi+1 = Argi  � {new : (S � c)}
Reli+1 = Reli � {new � id } � {counter � new}

(c) Or � � Ai and � � Ci and, choosing some x � and new = newLabel():

Pi+1 = Pi � {({x } � x) � new}
Oi+1 = Oi – {(S � c) � id }
Ai+1 = Ai
Ci+1 = Ci � {�}
Argi+1 = Argi � {new : (S � c)}
Reli+1 = Reli  � {new � id }

(ii) If � isn’t an assumption, then

Pi+1 = Pi
Oi+1 = Oi – {(S � c) � id } � {((S – {�}) � R � c) � id �� � R �R and R 	 Ci = {}}
Ai+1 = Ai
Ci+1 = Ci

Reli+1 = Reli � {old (R) � id �� � R �R and R 	 Ci � {}} � X where, for each R, old(R) is (old(R) : (Z � z)) � Argi, 
with z � and � � R 	 Ci and

X
new id S R

=
− ∪ ={ } { }( ) { }

{ }
⎧
⎨
⎪

⎩⎪

� if

otherwise

σ

δ

Arg
Arg new c S R ne

i
i

+ =
∪ − ∪ ={ }( ){ } { }( ) { }

1

: � if andσ ww newLabel

Argi

=⎧
⎨
⎪

⎩⎪

( )

otherwise

σ

σ



CaSAPI 3.0
We developed CaSAPI 3.0 to implement

structured AB-dispute derivations.

How to use CaSAPI
After invoking a Prolog process and load-

ing the CaSAPI program, users must load the
input assumption-based framework and the
claim to be proved. These are best specified
in a separate file, before invoking Prolog. For
instance, we can express example 1, using
not( ) to represent ¬, as

myRule(p,[a]).
myRule(not(a),[b]).
myRule(not(b),[a]).
myAsm([a,b]).
contrary(a,not(a)).
contrary(b,not(b)).
toBeProved([p]).

The users can then control the amount of
output to the screen: either silent (s), display-
ing only the output of derivations, or noisy (n),
displaying the full derivations. They can also
control the number of supports computed:
either one (1) or all that can be computed (all).
Users specify these choices as arguments to
the command run/3, upon which CaSAPI will
begin the argumentation process in a manner
dictated by the users’ choices. The first argu-
ment is always ab but is expressed as a para-
meter to allow the future integration of other
forms of dispute derivations.

For example, to run structured AB-dispute
derivations in silent mode for only one com-
puted support, the user specifies run(ab,s,1).
Figure 4 compares the CaSAPI 3.0 output
with the CaSAPI 2.0 output for example 1,
for a noisy run for one computed support

Figure 3. A high-level decision tree representation of one pass through the structured
AB-dispute derivation algorithm (see figure 2). A premise here is an element of the
support of the chosen argument. The numbers in square brackets indicate the
corresponding case in the algorithm.

Choose player
Choose argument

Only assumptions
in the premises?

Select one premise 

Add actual
argument

Select premise
Expand argument (one rule)

Add trivial argument
  (possibly)

Is premise an 
assumption ?

Expand argument (all rules)
Use existing counterarguments

Ignore this
premise?

Was proponent
chosen?

Yes
[1]

Yes
[2(i)a]

Yes
[2(i)]

Yes
[1(i)]

No

No
[2(ii)]

No
[1(ii)]

No
[2]

Do nothing

Use an existing
counterargument

Allow proponent to
  counterattack culprit

Yes
[2(i)b]

No
[2(i)c]

Ensure premise isn’t
  a known defense

Is this premise a
known culprit ?

Table 2. A structured AB-dispute derivation for example 2.

i Pi Oi Ai Ci Argi Reli Case

0 {({p} � p) � �} {} {} {} {} {} Start

1 {({a} � p) � �} —* — — — — 1(ii)

2 {} {({¬a} � ¬a) � id1} {a} — {id1 : {a} � p} {id1 � �} 1(i)

3 — {({b} � ¬a) � id1} — — — — 2(ii)

4 {({¬b} � ¬b) � id2} {} — {b} {id1 : {a} � p, {id1 � �, 2(i)c
id2 : {b} � ¬a} id2 � id1}

5 {({c} � ¬b) � id2} — — — — — 1(ii)

6 {} {({¬c} � ¬c) � id3} {a, c} — {id1 : {a} � p, {id1 � �, 1(i)
id2 : {b} � ¬a, id2 � id1,
id3 : {c} � ¬b} id3 � id2}

7 — {} — — — — 2(ii)

* “—” means unchanged from the previous step.
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(run(ab,n,1)). (CaSAPI 2.0 implements ordinary
AB-dispute derivations, as well as GB- and
IB-dispute derivations.) Clearly, the two sys-
tems mirror one another as far as their com-
mon components are concerned. Both sys-
tems, when run in noisy mode, indicate
explicitly the appropriate cases of the algo-
rithm being applied, for debugging purposes.
Step i corresponds to the ith tuple in the
derivations being computed.

CaSAPI 3.0 uses a concrete represen-
tation of the potential and actual arguments
and attacks. For example, at step 0,
infoTerm(p,localGoal(p),attacking(nothing)) represents
({p} � p) � �. This representation stands for
“we are trying to show p to find an argument
supporting the local goal p. If we succeed,
this argument will attack the argument
labeled with nothing.” At step 2, argument(1,[a],p)
represents the actual argument id1 : {a} � p.
At step 4, attacks(2,1) represents that argument
2 is actually attacking argument 1.

Design choices
We picked Sicstus Prolog as the imple-

mentation language because we intend to
employ some of its constraint-solving features
in future versions of CaSAPI. Version 3.0
doesn’t use any Sicstus-specific code, so it
runs on most standard Prolog engines, subject
to minor modifications. A further design deci-
sion, which we hope will allow for interesting
experimental research, is that most concrete
choices for the choice points we described ear-
lier aren’t hardwired into CaSAPI. Instead,
we’ve implemented them through modular,
easily replaceable pieces of code.

For example, for the choice of player, the
default behavior favors the proponent in that
it selects the proponent whenever the propo-
nent has a potential argument to make. We
could easily adjust this function to favor the
opponent or to alternate between players.

For the choice of rule, the default behav-
ior chooses the rules in the order in which
they appear in the input file. However, we
can modify the Prolog predicate that han-
dles rule choice to, for instance, prefer the
rule with the fewest elements or assump-
tions in the support. The final result re-
mains unchanged, but intelligent rule se-
lection might speed up the derivation in
some cases.

The choice of argument can pick one argu-
ment randomly or treat all the arguments
sequentially. The behavior we’ve imple-
mented is the preference for arguments that
still have nonassumptions. We do this in the

spirit of the patient selection function, which
also favors nonassumptions.

Applying a real-world example
We provide here a simple but realistic

example of our system’s functionalities,
demonstrating its real-world applicability
while showing the link to the algorithm’s for-
mal description in figure 2. The example sim-
ulates the reasoning of an impartial referee
(our system) who must resolve a disagree-
ment between a software house and a cus-
tomer refusing to pay for a product that the
software house developed for her. The referee
uses information that both parties agree about
and tries to find support for the software

house’s claim that the customer should pay it.
So, within the dispute derivation conducted
by the referee, the software house is the pro-
ponent and the customer, who is trying to dis-
pute the claim for payment, is the opponent.

Both parties agree on the following gen-
eral information: An incomplete or untimely
job doesn’t constitute a good job, and a deliv-
ered product that doesn’t conform to the
specification (consisting of requirements A
and B) constitutes an incomplete job. The
client and the software house are also both
aware of an indisputable fact: the product
was indeed delivered. Figure 5 shows this
information as input to CaSAPI.

After feeding the input program into
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Implementation) 3.0 output to the (b) CaSAPI 2.0 output, for example 1.



CaSAPI, the user must choose the execu-
tion options. Assume the user chooses
run(ab,n,1). In the first step, case 1(ii) applies
and the choice of rule selects the only viable
rule, with the head payment. So, the software
house now must show goodJob to show the local
goal payment. But goodJob is an assumption, so
the algorithm adds it to the defense set.

Now, the choice of player selects the cus-
tomer, who must show badJob to disprove the
software house’s assumption in the defense
set. The customer can do this in two ways
(via the second or third rule): by proving the
job was either too late or incomplete. The
customer places both these potential argu-

ments on her agenda, even though just one
would be enough for the software house’s
argument to fail. Figure 6 shows the execu-
tion’s state at step 3.

This first attempt to prove badJob fails
because the sentence tooLateJob can neither be
proved nor assumed; it isn’t one of the possi-
ble assumptions. The second attempt expands
incompleteJob using the fourth rule, to leave the
customer with two things to prove: delivered
and not(accordingToSpec). The former holds be-
cause both players share this belief, and the
latter is an assumption.

So, if the customer can assume not(accord-
ingToSpec), she can prove badJob, which attacks

the software house’s argument for payment
because it attacks the software house’s
assumption goodJob. Now, it’s the software
house’s turn to defend itself. The software
house can counterattack the customer’s vital
assumption not(accordingToSpec) by proving the
opposite—that is, accordingToSpec. To do this, it
needs to show that both requirements A and
B are fulfilled. Because both are in the set of
assumptions, the software house simply
assumes them.

Finally, the customer fails to dispute that
requirement A has been achieved, because
no information that it has not been achieved
exists (she cannot provide any). Furthermore,
she cannot prove to the software house that
requirement B hasn’t been completed. So,
the customer cannot dispute the software
house’s argument that it made the product
according to specifications.

After both sides argue their point, the ref-
eree finds that the claim payment is supported
by the assumptions goodJob,reqA,reqB. The cus-
tomer failed on both occasions to prove that
the software house made a bad job and in the
process failed to disprove the assumptions
that both requirements were fulfilled. So, the
software house’s claim for payment prevails.
Figure 7 shows the arguments and attacks
that CaSAPI 3.0 computed.

CaSAPI correctly finds a support for the
given input, and the final dialectical struc-
ture shows that argument 2 attacks the soft-
ware house’s claim for payment. This argu-
ment is counterattacked by argument 3,
which cannot be attacked. So, argument 3
remains undefeated; because it attacks argu-
ment 2, we can deduce that argument 2’s
attack on argument 1 fails. Arguments 1 and
3 are hence admissible. In this simple appli-
cation, the dialectical structure that CaSAPI
3.0 computes provides great support; the
defense set alone (computed by CaSAPI 2.0)
doesn’t provide enough information to
resolve the dispute.

This system is still a prototype; more
experimentation is needed to address

issues such as scalability. However, its
applicability is promising. For example,
Maxime Morge and Paolo Mancarella have
developed a decision-support system for
agents that employs CaSAPI to make deci-
sions abductively, while taking preferences
into account.6 Furthermore, we have shown
CaSAPI’s applicability for agent reason-

Figure 6. The execution’s state at step 3.

Step 3:
- PropNodes: []
- OppoNodes: [infoTerm(tooLateJob,localGoal(badJob),attacking(1)),

infoTerm(incompleteJob,localGoal(badJob),attacking(1))]
- DefnceAss: [goodJob]
- Culprits : []
- Arguments: [argument(1,[goodJob],payment)]
- Relations: []

Figure 7. The arguments and attacks that CaSAPI 3.0 computed for a software house’s
claim for payment from a customer.

Arguments: [argument(1,[goodJob],payment),
argument(2,[not(accordingToSpec)],badJob),
argument(3,[reqA,reqB],accordingToSpec)]

Relations: [attacks(2,1),attacks(3,2)]

FINISHED, the defense set is: [goodJob,reqA,reqB]

Figure 5. Input to CaSAPI indicating general information on which the proponent 
(a software house) and opponent (a customer) agree.

myRule(payment,[goodJob]).
myRule(badJob,[tooLateJob]).
myRule(badJob,[incompleteJob]).
myRule(incompleteJob,[delivered,not(accordingToSpec)]).
myRule(accordingToSpec,[reqA,reqB]).
myRule(delivered,[]).

myAsm([goodJob,not(accordingToSpec),reqA,reqB]).

contrary(goodJob,badJob).
contrary(not(accordingToSpec),accordingToSpec).
contrary(reqA,not(reqA)).
contrary(reqB,not(reqB)).

toBeProved([payment]).
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ing and particularly for normative conflict
resolution.9

We believe that assumption-based argu-
mentation—and particularly a tool such as the
one we presented here—will be important for
developers of many different kinds of intelli-
gent systems. One way to aid the system’s
applicability would be to render it dynamic—
for example, by allowing real proponents and
opponents to exchange information and argu-
ments during a dispute. This would be useful
for the real-world example we described in
the article. Moreover, a user-friendly interface
will aid the system’s adoption.

The research we’ve presented here opens
several lines of future research:

• extend CaSAPI 3.0 to compute the accept-
ability of claims under other, skeptical
semantics (as CaSAPI 2.0 already does),

• research the system’s efficiency,
• study the treatment of variables and the

selection function’s safety, and
• consider nonpatient selection functions.

Other argumentation systems exist. For ex-
ample, Gorgias handles credulous argu-
mentation in frameworks with preferences
among defeasible rules.10 The ASPIC (Argu-
ment Service Platform with Integrated
Components) system deals with quantita-
tive uncertainty.11 The DeLP system handles
defeasible-logic programming.12 Daniel Bry-
ant and Paul Krause have developed a sys-
tem for agent implementations.13 These sys-
tems are defined for different argumentation
frameworks from ours and cannot be directly
compared. It would be interesting to provide
a mapping from their frameworks onto (pos-
sibly extended) assumption-based argumen-
tation to fully compare them.
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