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Abstract. We present a variant of AB-dispute derivations for assumption-based ar-
gumentation (ABA), that can be used for determining the admissibility of claims.
ABA reduces the problem of computing arguments to the problem of computing
assumptions supporting these arguments. Whereas the original AB-dispute deriva-
tions only manipulate sets of assumptions, our variant also renders explicit the un-
derlying dialectical structure of arguments (by a proponent) and counter-arguments
(by an opponent), and thus supports a hybrid of ABA and abstract argumentation
beneficial to developing applications of argumentation where explicit justifications
of claims in terms of full dialectical structures are required. We prove that the pro-
posed variant of AB-dispute derivations is correct.
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1. Introduction

Argumentation has proved to be a useful abstraction mechanism for understanding sev-
eral problems, and a number of computational frameworks for argumentation have been
proposed in order to provide tools to address these problems. These frameworks are
mostly based upon abstract argumentation [6], that focuses on determining the admissi-
bility of arguments based upon their capability to counter-attack all arguments attacking
them, while being conflict-free. In abstract argumentation the arguments and the attack
relation between arguments are seen as primitive notions. The abstract view of argumen-
tation is equipped with intuitive and simple computational models (e.g. [4,14]), but does
not allow to address the problems of (i) how to find arguments, (ii) how to determine
attacks and (iii) how to exploit the fact that different arguments may share premises.
Assumption-based argumentation [1,7,9] is a general-purpose framework for argumen-
tation, where arguments, rather than being a primitive concept, are defined as backward
deductions (using sets of rules in an underlying logic) supported by sets of assumptions,
and the notion of attack amongst arguments is reduced to that of contrary of assumptions.
Intuitively, assumptions are sentences that can be assumed to hold but can be questioned
and disputed (as opposed to axioms that are instead beyond dispute), and the contrary of
an assumption stands for the reason why that assumption may be undermined and thus
may need to be dropped.

Existing computational models for assumption-based argumentation [7,9] allow to
determine the “acceptability” of claims under the semantics of credulous, admissible ex-
tensions as well as under two sceptical semantics (of grounded and ideal extensions).
In this paper, we focus on the computational model for admissibility, called AB-dispute
derivations [7,9]. These derivations can be seen as a game between two (fictional) players



– a proponent and an opponent – with rules roughly as follows: the opponent can dispute
the proponent’s arguments by attacking one of the arguments’ supporting assumptions;
the proponent can in turn defend its arguments by counter-attacking the opponent’s at-
tacks with other arguments, possibly with the aid of other defending assumptions; the
proponent does not need to counter-attack any assumption it has already attacked previ-
ously or defend any assumption is has already defended previously; the proponent can-
not attack any of its own assumptions. While conducting this game, the players explore
implicitly a dialectical structure of arguments by the proponent, counter-arguments by
the opponent, arguments by the proponent attacking the counter-arguments and so on.
However, while doing so, AB-dispute derivations only keep track of the assumptions
underlying these arguments, and the dialectical structure is lost.

In this paper, we define generalised structured AB-dispute derivations, a variant
of AB-dispute derivations computing explicitly the dialectical structure hidden in AB-
dispute derivations and thus providing a hybrid ABA-abstract argumentation mecha-
nisms. Our structured AB-dispute derivations are defined for a generalisation of ABA
allowing for multiple contraries. Also, they are a (non-trivial) generalisation of the struc-
tured AB-dispute derivations defined in [11]: whereas those relied upon a special patient
selection function for exploring and building arguments, we do not commit to any se-
lection function (or other design choice). Moreover, whereas in [11] we were concerned
with the implementation of structured AB-dispute derivations, here we are concerned
with formal proofs of correctness (missing in [11]).

The paper is organised as follows: in Section 2 we present the background on ABA
and existing notions of AB-dispute derivations. In Section 3 we detail our novel gener-
alised structured AB-dispute derivations. We prove correctness results in Section 4 and
conclude in Section 5.

2. Assumption-based argumentation

This section provides the basic background on assumption-based argumentation (ABA),
see [1,7,9] for details. An ABA framework is a tuple 〈L, R, A, 〉 where

• (L,R) is a deductive system, consisting of a language L and a setR of inference
rules,

• A ⊆ L, referred to as the set of assumptions,
• is a (total) mapping from A into L, where x is referred to as the contrary of x.

We will assume that the inference rules in R have the syntax l0 ← l1, . . . ln (for n ≥ 0)
where li ∈ L. We will refer to l0 and l1, . . . ln as the head and the body of the rule, re-
spectively. We will represent the rule l← simply as l. As in [7], we will restrict attention
to flat ABA frameworks, such that if l ∈ A, then there exists no inference rule of the
form l← l1, . . . , ln ∈ R, for any n ≥ 0.

We will adopt a generalisation of ABA frameworks, first given in [10], whereby
assumptions allow multiple contraries (i.e. is a (total) mapping from A into ℘(L)).
As argued in [10], multiple contraries are a useful generalisation to ease representation
and comprehension of ABA frameworks. However, they do not really extend the expres-
sive power of ABA frameworks. Indeed, there is a one-to-one correspondence between
original ABA frameworks and ABA frameworks with multiple contraries. For example,
consider the framework with multiple contraries 〈Lg, Rg, Ag, 〉 where:



Lg = {p, a, c1, b, c3, c4}, Rg = {p← a; c1 ← b; c3}, Ag = {a, b},
a = {c1, c2, c3} and b = {c4}

This can be turned into a corresponding original framework 〈Lo, Ro, Ao, 〉 where:

Lo = Lg ∪ {aux}, Ro = Rg ∪ {aux← c1; aux← c2; aux← c3}, Ao = Ag,
a = aux and b = c4

We will use this correspondence to simplify some of the proofs in Section 4.
Given an ABA framework, an argument in favour of a sentence x ∈ L supported

by a set of assumptions X , denoted X ` x, is a (backward) deduction from x to X ,
obtained by applying backwards the rules in R. For example, given 〈Lg, Rg, Ag, 〉
above, {a} ` p is an argument.

In order to determine whether a conclusion (set of sentences) should be drawn, a
set of assumptions needs to be identified providing an “acceptable” support for the con-
clusion. Various notions of “acceptable” support can be formalised, using a notion of
“attack” amongst sets of assumptions whereby X1 attacks X2 iff there is an argument in
favour of some y ∈ x supported by (a subset of)X1 where x is inX2 (for example, given
〈Lg, Rg, Ag, 〉 above, {b} ` c1 attacks {a} ` p). In this paper, we will consider the
following notions of “acceptable” set of assumptions and support:

• a set of assumptions is admissible iff it does not attack itself and it attacks every
set of assumptions attacking it;

• an admissible support for a claim is an admissible set X of assumptions such that
there exists an argument in favour of the claim supported by a subset of X .

As shown in [9], there is a one-to-one correspondence between admissible supports
for conclusions, in terms of sets of assumptions, and admissible sets of arguments (sup-
ported by assumptions), in the sense of [6].

AB-dispute derivations [7,9] allow to compute admissible supports for given claims
(if any exists). They are finite sequences of tuples 〈Pi,Oi, Di, Ci〉 where Pi and Oi

represent (the set of sentences and the set of sets of sentences held by) the proponent and
opponent (respectively) at step i in the dispute, Di is the set of assumptions generated
by the proponent in support of the initial claim and to defend itself against the opponent,
and Ci is the set of assumptions in counter-arguments generated by the opponent that the
proponent has chosen as “culprits” to counter-attack. The tuple at the start of a derivation
for claim x is: 〈{x}, {},A ∩ {x}, {}〉.

Example 1 The AB-dispute derivation for the framework (L is omitted for brevity)
R = {p← a, r; c1 ← b, s; c1 ← t; c2 ← q; q; r ← e}, A = {a, b, e},
a = {c1} and b = {c2} and e = {z}
computes an admissible support {a, e} for claim p as can be seen in table 1.

AB-dispute derivations make use of a selection function to pick a sentence from the sup-
port of a “potential argument” to expand it further (if it is not an assumption) or to iden-
tify a possible point of attack (if it is an assumption). Such selection can be based on
random choice, on whether or not the sentence is an assumption or on more complex
criteria. The sentence selected by the chosen selection function at each step is under-
lined in the derivation in table 1. AB-dispute derivations implicitly compute a dialectical
structure of (“potential”) arguments. For the derivation in table 1, these arguments are (1)



Step Proponent Opponent DefenseSet Culprits

0 p
1 a, r a

2 r {c1} a

3 r {b, s}, {t} a

4 c2, r {t} a b

5 q, r {t} a b

6 r {t} a b

7 e {t} a, e b

8 {t}, {z} a, e b

9 {z} a, e b

10 a, e b

Table 1. AB-dispute derivation for example 1.

{a, e} ` p, (2) {b, s} ` c1, (3) {} ` c2, where (3) attacks (2) and (2) “potentially” attacks
(1) (here, (2) is a “potential” argument as its support contains a non-assumption s - see
section 3 for a formal definition). This structure however is hidden in the computation.
In [11], we presented structured AB-dispute derivations computing this structure in the
case of patient selection functions, namely always selecting non-assumptions first (the
selection function used in table 1 is not patient). Below, we define generalised structured
AB-dispute derivations working with any selection function. We also formalise many of
the concepts intuitively used in [11] and prove some formal results for the generalised
structured AB-dispute derivations we define here.

3. Generalised structured AB-dispute derivations

Our generalised structured AB-dispute derivations, that we refer to simply as structured
AB-dispute derivations, are sequences of tuples of the form 〈Pi,Oi, Di, Ci, Ai, Ri〉. The
elements Di and Ci are the defense set and the set of culprits, exactly as in the orig-
inal AB-dispute derivations. The elements Pi and Oi, as before, represent the state of
the proponent and opponent, but they are no longer sets of sentences and sets of sets
of sentences, respectively. Instead, they consist of “potential arguments” together with
information about which arguments they “potentially attack”.

Definition 1 A potential argument (Y,X ` x) in favour of a sentence x ∈ L supported
by (Y,X), withX ⊆ A and Y ⊆ L is a (backward) deduction from x toX∪Y , obtained
by applying backwards the rules inR.

Trivially, a potential argument ({}, X ` x) corresponds to an argument X ` x as in
conventional ABA. Below, we will refer to arguments in conventional ABA as actual
arguments. A potential argument (Y,X ` x) with Y ⊆ A also corresponds to an actual
argument X ∪ Y ` x.

Intuitively, potential arguments correspond to intermediate stages in the construction
of actual arguments. It may be possible to turn a potential argument into zero, one, or
many actual arguments, depending on whether all non-assumptions in Y can be reduced
to assumptions via the backward application of rules inR. In example 1, ({r}, {a} ` p)



is a potential argument that can be turned into a single actual argument {a, e} ` p and
({s}, {b} ` c1) is a potential argument that cannot be turned into an actual argument.

The notion of attack between (actual) arguments can be generalised to a notion of
“potential attack” between potential arguments:

Definition 2 A potential argument (Y1, X1 ` x1) potentially attacks a potential argu-
ment (Y2, X2 ` x2) iff x1 ∈ z for some z ∈ (Y2 ∩ A) ∪X2.

Trivially, potential attacks correspond to actual attacks whenever the potential arguments
correspond to actual arguments.

The two new elements in structured AB-dispute derivations, Ai and Ri, hold, re-
spectively, the currently computed (potential and actual) arguments and a binary relation
between these arguments, corresponding to (potential and actual) attacks. In order to ease
the representation of Ri, we adopt a labelling convention for arguments, namely

• Pi and Oi are sets of expressions of the form: id : (Y,X ` x) ; id∗ indicating
a (potential or actual) argument (Y,X ` x) labelled id (potentially or actually)
attacking another argument labelled id∗

• Ai consists of expressions of the form id : (Y,X ` x) representing a (potential
or actual) argument (Y,X ` x) labelled id

• Ri is a set of expressions of the form id ; id∗ standing for “the (potential or
actual) argument labelled by id (potentially or actually) attacks the (potential or
actual) argument labelled by id∗”

Structured AB-dispute derivations interleave the construction of arguments and their
evaluation (with respect to the admissibility semantics) and thus need to store potential
arguments (in the components Pi and Oi). Once these arguments are evaluated (with re-
spect to admissibility) they are eliminated from Pi or Oi and stored in Ai (with Ri also
appropriately modified).

For the purpose of labelling arguments, we will assume the existence of a function
newLabel() that returns a fresh label every time it is invoked. We will adopt a marking
mechanism for specifying our structured AB-dispute derivations, so that sentences in
the support of arguments in Pi and Oi are marked after they have been selected (by
the selection function). We will assume that the selection function will always select
a sentence in the unmarked bit of the support of a potential argument. This is similar
to the marking mechanism adopted for elements of Oi in IB-dispute derivations in [9].
However, here we store marked assumptions in the X component of the support of a
potential argument (Y,X ` x), and unmarked elements in its Y component. Moreover,
here the marking is needed in order to compute the dialectical structures, whereas in [9]
it was needed to ensure the correctness of IB-dispute derivations.

Definition 3 A (generalised) structured AB-dispute derivation of a defense set D and of
a dialectical structure (A,R) for a sentence α ∈ L is a finite sequence of tuples〈
P0,O0, D0, C0, A0, R0

〉
, . . . ,

〈
Pi,Oi, Di, Ci, Ai, Ri

〉
, . . . ,

〈
Pn,On, Dn, Cn, An, Rn

〉
where initially

P0 = {l1 : ([{α}, {}] ` α) ; ∅} where l1 = newLabel() and ∅ is a special label
representing that this does not attack any other arguments



D0 = A ∩ {α}
O0 = C0 = A0 = R0 = {}

and upon termination

Pn = On = {}
D = Dn, A = An, R = Rn

and for every 0 ≤ i < n, one potential argument curArg, of the form l : ([Su, Sm] `
G) ; le, is chosen in either Pi or Oi, a sentence σ is selected in Su, and:

1. If curArg is chosen in Pi then

(i) if σ is an assumption then

Pi+1 = Pi − {curArg} ∪ newP
Oi+1 = Oi ∪ {new : ([{x}, {}] ` x) ; l | x ∈ σ and new = newLabel()}
Di+1 = Di

Ci+1 = Ci

Ai+1 = Ai ∪ newArg
Ri+1 = Ri ∪ newRel

where newP, newArg, newRel are defined in the table below, separating out
whether or not the selected σ was the last unmarked element in the premise of
curArg (i.e. Su = {σ})

Su − {σ} = {} Su − {σ} 6= {}
newP = {} newP = {l : ([Su−{σ}, Sm∪{σ}] ` G) ; le}
newArg = {l : ([{} , Sm∪{σ}] ` G)} newArg = {}
newRel = {l ; le} newRel = {}

(ii) if σ is a non-assumption and there exists some rule of the form σ ← B ∈ R
such that Ci ∩B = {} then 1

Pi+1 = Pi − {curArg} ∪ newP
Oi+1 = Oi

Di+1 = Di ∪ (A ∩B)
Ci+1 = Ci

Ai+1 = Ai ∪ newArg
Ri+1 = Ri ∪ newRel

where newP, newArg, newRel are defined in the table below

(Su − {σ}) ∪ (B −Di) = {} (Su − {σ}) ∪ (B −Di) 6= {}
newP = {} newP = {l : ([S′u, S

′
m] ` G) ; le}

newArg = {l : ([{} , Sm ∪B] ` G)} newArg = {}
newRel = {l ; le} newRel = {}

where S′u = (Su − {σ}) ∪ (B −Di)

and S′m = Sm ∪ (B ∩Di)

1We treat B and all bodies of inference rules inR as sets.



2. If curArg is chosen from Oi then

(i) if σ is an assumption then

(a) either σ is ignored, i.e.
Pi+1 = Pi

Oi+1 = Oi − {curArg} ∪ {l : ([(Su − {σ}), (Sm ∪ {σ})] ` G) ; le}
Di+1 = Di

Ci+1 = Ci

Ai+1 = Ai

Ri+1 = Ri

(b) or σ ∈ Ci and σ 6∈ Di

Pi+1 = Pi

Oi+1 = Oi − {curArg}
Di+1 = Di

Ci+1 = Ci

Ai+1 = Ai ∪ {l : ([Su − {σ}, Sm ∪ {σ}] ` G)}
Ri+1 = Ri ∪ {l ; le} ∪ {someLabel ; l}

where someLabel is any label such that, for some value of X,Y, Z
and for some x ∈ σ, either someLabel : ([X,Y ] ` x) ∈ Ai or
someLabel : ([{X}, {Y }] ` x) ; Z ∈ Pi. 2

(c) or σ 6∈ Ci and σ 6∈ Di and
Pi+1 = Pi ∪ {new : ([{x}, {}] ` x) ; l}
where x ∈ σ and new = newLabel()

Oi+1 = Oi − {curArg}
Di+1 = Di ∪ (A ∩ {x})
Ci+1 = Ci ∪ {σ}
Ai+1 = Ai ∪ {l : ([Su − {σ}, Sm ∪ {σ}] ` G)}
Ri+1 = Ri ∪ {l ; le}

(ii) if σ is a non-assumption, then
Pi+1 = Pi

Oi+1 = Oi − {curArg} ∪ {l : ([(Su − {σ} ∪B), Sm] ` G) ; le |
σ ← B ∈ R and B ∩Ci = {} }

Di+1 = Di

Ci+1 = Ci

Ai+1 = Ai ∪ {n : ([(Su − {σ}) ∪ (B − Ci), Sm ∪ (B ∩ Ci)] ` G) |
n = newLabel() and σ ← B ∈ R andB∩Ci 6= {} }

Ri+1 = Ri ∪ {m ; n | σ ← B ∈ R and B ∩ Ci 6= {} and
m = find_label(B ∩Ci)}

∪ {n ; le | n : ([S′u, S
′
m] ` l) ∈ Ai+1 −Ai}

where find_label(Set) = someLbl such that ω ∈ Set and
((someLbl : ([X,Y ] ` ω)) ∈ Ai or (someLbl : ([X,Y ] ` ω) ; Z) ∈ Pi)

2If σ ∈ Ci, either the culprit σ is already defeated or it is on the proponent’s agenda of things to be defeated.
One must search through both Pi and Ai to find someLabel.



Intuitively, three choices have to be made at each step in a derivation. First a (fic-
tional) player must be chosen: either the proponent (Pi) or the opponent (Oi). Next,
from the chosen set, one (potential or actual) argument curArg needs to be chosen for
further consideration. curArg will be of the form l : ([Su, Sm] ` G) ; le. Finally, one
element σ from (the unmarked part Su of) the support of curArg is selected. There are
now four main cases to consider, depending on the player and whether σ is an assumption
or not.

In case 1(i), the proponent plays and σ is an assumption: this is simply marked, and
new potential arguments for the contraries of σ are added to the opponent. Moreover, if
σ is the last unmarked element, the dialectical structure also gets augmented (note that
in this case the argument added to Ai is an actual argument).

In case 1(ii), the proponent plays and σ is a non-assumption: this is unfolded using
a rule with body B. If B is empty or all elements in B are assumptions that have already
been defended (i.e. they are in Di), then the dialectical structure gets augmented (note
that in this case the argument added toAi is an actual argument). Otherwise, σ in curArg
is unfolded to the rule bodyB: The part ofB that is already in the defense set is added to
the marked elements Sm (and hence treated as if already considered), whereas the part
of B that is not yet in the defense set is added to Su for future consideration.

In case 2(i), the opponent plays and σ is an assumption. If σ ∈ Di, then the only
option is to ignore it (case 2ia), as choosing such a σ as a culprit would make the defense
set attack itself and hence not be admissible.

If however σ 6∈ Di, then it could be a culprit (but note that it could also be ignored).
If σ is already a known culprit (σ ∈ Ci), then case 2ib applies and the potential attack
curArg can be moved to Ai (and Ri be appropriately modified, too) since either σ has
already been defeated or the fact that it needs to be defeated must already have been
“stored” in Pi. Here, the argument defeating σ is labelled with someLabel.

If σ is not a known culprit yet (σ 6∈ Ci), then we add it to the set of culprits and pick
one of its contraries (say, x) for the proponent to show (in order to thereby counter-attack
curArg). Note that, for a derivation to exist, all potential arguments in all Oi need to
be defeated, as otherwise the termination condition On = {} would not be met. If some
chosen culprit cannot be defeated, then the implementation of the algorithm can resort to
backtracking on some of the choices (either the culprit itself, that can be ignored, or the
contrary of the chosen culprit, or one of the rules at step 1(ii) for generating the argument
attacking the culprit).

In case 2(ii), the opponent plays and σ is a non-assumption. Here, the opponent
expands σ in all possible ways (i.e. using all possible rules). curArg is replaced with
many new potential arguments, one for each applicable rule which has no known culprit
in its body. For each applicable rule which has some known culprit in its body, we extend
the dialectical structure by adding to Ai one potential argument for each rule that had
culprits in its body. Ri is also augmented appropriately.

Let us now consider the ABA framework in example 1. A structured AB-dispute
derivation exists for claim p, e.g. as given table 2 (others exist for other choices of players
and selection functions, here we have used the same choices and selection functions as
in table 1). Note that we obtain the same number of steps, the same defense set and the
same set of culprits as for ordinary AB-dispute derivations (table 1).



# Proponent Opponent D C A R

0 l1 : ([{p}, {}] ` p) ; ∅
1 l1 : ([{a, r}, {}] ` p) ; ∅ a

2 l1 : ([{r}, {a}] ` p) ; ∅ l2 : ([{c1}, {}] ` c1) ; l1 a

3 l1 : ([{r}, {a}] ` p) ; ∅ l2.1 : ([{b, s}, {}] ` c1) ; l1, a

l2.2 : ([{t}, {}] ` c1) ; l1

4 l3 : ([{c2}, {}] ` c2) ; l2.1, l2.2 : ([{t}, {}] ` c1) ; l1 a b l2.1 : ([{s} , {b}] ` c1) l2.1 ; l1

l1 : ([{r}, {a}] ` p) ; ∅
5 l3 : ([{q}, {}] ` c2) ; l2.1, l2.2 : ([{t}, {}] ` c1) ; l1 a b l2.1 : ([{s} , {b}] ` c1) l2.1 ; l1

l1 : ([{r}, {a}] ` p) ; ∅
6 l1 : ([{r}, {a}] ` p) ; ∅ l2.2 : ([{t}, {}] ` c1) ; l1 a b l2.1 : ([{s} , {b}] ` c1), l2.1 ; l1,

l3 : ([{} , {}] ` c2) l3 ; l2.1

7 l1 : ([{e}, {a}] ` p) ; ∅ l2.2 : ([{t}, {}] ` c1) ; l1 a, e b l2.1 : ([{s} , {b}] ` c1), l2.1 ; l1,

l3 : ([{} , {}] ` c2) l3 ; l2.1

8 l2.2 : ([{t}, {}] ` c1) ; l1, a, e b l2.1 : ([{s} , {b}] ` c1), l2.1 ; l1,

l4 : ([{z}, {}] ` z) ; l1 l3 : ([{} , {}] ` c2), l3 ; l2.1,
l1 : ([{} , {a, e}] ` p) l1 ; ∅

9 l4 : ([{z}, {}] ` z) ; l1 a, e b l2.1 : ([{s} , {b}] ` c1), l2.1 ; l1,

l3 : ([{} , {}] ` c2), l3 ; l2.1,
l1 : ([{} , {a, e}] ` p) l1 ; ∅

10 a, e b l2.1 : ([{s} , {b}] ` c1), l2.1 ; l1,

l3 : ([{} , {}] ` c2), l3 ; l2.1,
l1 : ([{} , {a, e}] ` p) l1 ; ∅

Table 2. Structured AB-dispute derivation for example 1.

The following realistic example illustrate the possible use of structured AB-dispute
derivations in real-world setting. Imagine a scenarios whereby parents are trying to find
a name for their new-born baby. Let us assume that parents deem a name as acceptable
if they both like it and it is easy to remember. Also, Dad dislikes common names and he
also does not want the baby to have the same name as his uncle. Mom on the other hand
by default hates all names unless she explicitly approves of them. This scenario can be
expressed as the following ABA framework 3:

L = {p(t) | p ∈ Preds and t ∈ Terms} where Preds are all predicates occurring
inR and Terms = {adrian, vercingetorix}
A = {all_like(Name),mom_hates(Name)|Name ∈ Terms}

R =



acceptable(Name)← all_like(Name), easy_to_remember(Name);
easy_to_remember(Name)← short(Name);
some_dislike(Name)← mom_hates(Name);
some_dislike(Name)← dad_hates(Name);
dad_hates(Name)← too_commom(Name);
dad_hates(Name)← uncle_has(Name);
mom_not_hate(Name)← mom_said_ok(Name);
mom_said_ok(adrian);
short(adrian)


3The rules containing variables, i.e. words beginning with an upper case letter, are short-hand for all their

ground instances (e.g. all rules where Name is instantiated to adrian).



There exists a structured AB-dispute derivation of defence set D11 and of dialelectical
structure (A11, D11) for acceptable(adrian) where

D11 = {all_like(adrian)} and R11 = {l1 ; ∅, l2 ; l1, l3 ; l2} and
A11 = {l1 : ([{} , {all_like(adrian)}] ` acceptable(adrian)),

l2 : ([{} , {mom_hates(adrian)}] ` some_dislike(adrian)),
l3 : ([{} , {}] ` mom_not_hate(adrian))}

Note that all computed arguments are actual arguments. The dialectical structure can be
graphically represented as follows (here← stands for attack):

({}, {all_like(a)}) ` acceptable(a) ({}, {mom_hates(a)}) ` some_dislike(a)oo

({}, {}) ` mom_not_hate(a)

OO

Figure 1. Dialectical structures for the realistic example.

4. Results

In this section, we state and sketch formal proofs of the following main results 4: 1) our
structured AB-dispute derivations are a direct generalisation of the AB-dispute deriva-
tions of (a variant of) [7,8,9] (see theorem 1 below); 2) structured AB-dispute derivations
compute admissible supports of the input claims (see corollary 1 below); 3) the dialec-
tical structure computed by structured AB-dispute derivations can be mapped onto ad-
missible dispute trees [7,9] (see theorem 2 below). We prove the results for ABA frame-
works where the contrary of every assumption is a singleton set (as in original ABA). As
discussed in section 2, this can be done without loss of generality.

Theorem 1 For any structured AB-dispute derivation of a defense set D and of dialecti-
cal structure (A,R) for a claim α there exists an AB-dispute derivation of a defense set
D for α.

Note that the converse also holds, namely existence of an AB-dispute derivation guar-
antees existence of a structured AB-dispute derivation computing the same defense set
(and some dialectical structure).

The proof of theorem 1 uses a variant of AB-dispute derivation, equivalent to the
one in [9]. This variant combines two cases in AB-dispute derivations in [9], cases 2ic.1
and 2ic.2, into one single case 2ic, corresponding to case 2ic in definition 3. This vari-
ant is equivalent to the original version under the restriction that, when the contrary of
an assumption is an assumption, its original contrary is the original assumption. This
restriction also held (implicitly) in [9]. The proof of theorem 1 is constructive, in that
it uses mappings from the Pi and Oi components in structured AB-dispute derivations
onto Pi and Oi components in AB-dispute derivations: these mappings turn sets of po-

4Full proofs can be found in an accompanying technical report.



tential arguments into sets of assumptions (for Pi; these are all the assumptions in the
unmarked part of the support of the potential arguments) and sets of sets of assumptions
(forOi; each such set is the unmarked part of the support of one potential argument). No
mappings are required for the Di and Ci components - that are identical in the two kinds
of derivations, or the Ai and Ri components, that are absent in the original AB-dispute
derivations.

Corollary 1 Given any structured AB-dispute derivation of a defense set D and of a
dialectical structure (A,R) for a sentence α, D is an admissible support for α.

This result follows directly from theorem 1 and the correctness of AB-dispute derivations
in [7,9].

Theorem 2 below sanctions that the dialectical structure computed by structured
AB-dispute derivations can be mapped onto admissible dispute trees [7,9], defined as
follows.

Definition 4 (definitions 3.1 and 3.2 in [9]) A dispute tree for an argument a is a (possi-
bly infinite) tree T such that

1. Every node of T is labelled by an argument and is assigned the status of propo-
nent node or opponent node, but not both.

2. The root is a proponent node labelled by a.
3. For every proponent node N labelled by an argument b, and for every argument
c that attacks b, there exists a child of N , which is an opponent node labelled by
c.

4. For every opponent node N labelled by an argument b, there exists exactly one
child of N which is a proponent node labelled by an argument which attacks b.

5. There are no other nodes in T except those given by 1-4 above.

The set of all assumptions belonging to the proponent nodes in T is called the defense
set of T . A dispute tree is admissible iff no argument labels both a proponent and an
opponent node.

Given a dialectical structure (A,R) computed by a structured AB-dispute derivation, let
Actual(A,R) stand for the pair (A∗, R∗) consisting of the setA∗ of all actual arguments
that can be obtained from A (by backward deduction from the potential arguments in A)
and R∗ the restriction of R to elements of A∗. Moreover, given a dialectical structure
(Args,Rel), T (Args,Rel) will refer to the tree constructed as follows: the root is the
argument attacking ∅ in Args; nodes are in correspondence with elements of Args; x is
a child of y iff (x, y) ∈ Rel. Then,

Theorem 2 For any structured AB-dispute derivation of a defense set D and of dialecti-
cal structure (A,R) for a claim α, let Actual(A,R) = (A∗, R∗) and T = T (A∗, R∗).
Then, T is an admissible dispute tree for α with defense set D′ such that D′ ⊆ D.

The proof of this theorem relies upon a number of lemmas, including:

Lemma 1 For each structured AB-dispute derivation of a defense set D and of dialec-
tical structure (A,R) for a claim α, let C be the final set of culprits. For every x ∈ C
there exists an argument in A attacking x.



Lemma 2 For each structured AB-dispute derivation of a defense set D and of dialecti-
cal structure (A,R) for a claim α, all the actual arguments that one can build from any
potential argument in A are attacked by some argument in A.

Lemma 3 For each structured AB-dispute derivation of a defense set D and of dialec-
tical structure (A,R) for a claim α, let C be the final set of culprits. Every potential
argument in A of the form (Su, Sm ` x) such that Su 6= {} has the property that
(Xu ∪Xm) ∩ C 6= {} .

5. Conclusions

We have presented a computational model for a form of argumentation that is a hybrid
between abstract and assumption-based argumentation. To the best of our knowledge,
this work is the first attempt to combine the two forms of argumentation in a synergetic
and practical manner, building upon [7,9,11]. Our hybrid computational model would
be beneficial to developing applications of argumentation where explicit justifications of
claims in terms of full dialectical structures are required, for example, for the purpose
of argumentation-based negotiation, as it would provide the negotiating agents with an
explicit structure of the dialectical process.

Computational models have been proposed for abstract argumentation, such as the
Two Party Immediate response (TPI) disputes [14] and the dialectical proof theories of
[4,13]. Like ours, these models can be seen as games between two fictional players in
which the proponent always acts first. These models compute different semantics than
admissibility (i.e. preferred [4,14], robust and defensible [13] semantics) for a differ-
ent argumentation framework (i.e. abstract argumentation). In particular, these computa-
tional models do not need to construct arguments, as arguments are seen as black boxes
within abstract argumentation. Moreover, although they use a dialectical protocol similar
to the one underlying the generalised AB-dispute derivation, [4,13] insist on and [14]
implies strictly alternating turns between proponent and opponent, whereas we do not do
so in order to allow interleaving the construction of arguments and the analysis of their
dialectical status.

Compared to existing computational models for assumption-based argumentation
(e.g. [9]), our computational model manipulates potential, rather than actual, arguments.
These correspond to stages in the construction of actual arguments, and allow the inter-
leaving of the construction of (actual) arguments and their evaluation (with respect to
the admissibility semantics). As a result, the set of arguments returned by our computa-
tional model may include potential arguments, that have been defeated before being fully
constructed. This may seem as a departure from conventional abstract argumentation.
Note however that the computational model relies upon a selection function for deciding
how arguments are constructed, using backward deductions. As noted in [7], when this
selection function is patient, the computed arguments are all guaranteed to be actual. In
other words, our computational model generalises conventional abstract argumentation
without changing its spirit.

Structured AB-dispute derivations have been implemented in the CaSAPI (Credu-
lous and Sceptical Argumentation: Prolog Implementation) system (in its current version
v4.3) which can be downloaded from www.doc.ic.ac.uk/∼dg00/casapi.html. Previous



versions were inspired by traditional assumption-based argumentation (version 2, [10])
and by a restricted form of hybrid argumentation (version 3, [11]).

In the near future we aim at improving the practical aspects of hybrid argumentation,
by extensive experimentation with the CaSAPI system and by extending its graphical
user interface. We also plan to compare this system with a number of other argumentation
systems, including Gorgias [5], for credulous argumentation in argumentation frame-
works with preferences amongst defeasible rules, the ASPIC system [3] dealing with
quantitative uncertainty, DeLP [12] for defeasible logic programming, and the system
by Krause et al. [2]. A mapping from these various frameworks onto assumption-based
argumentation (possibly extended) is needed in order to carry out a full comparison.

Finally, we also plan to extend (theoretically and practically) the computational
machinery in this paper to compute sceptical semantics for argumentation, namely the
grounded and ideal semantics, already implemented in version 2 of CaSAPI.
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