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Abstract. We propose a semantics for positive abductive logic pro-
grams with implicative integrity constraints, in the form of implications,
as well as denial integrity constraints, in the form of negated conjunc-
tions. We argue that this semantics is better suited to deal with sev-
eral applications of abductive logic programming. We prove that, in the
propositional case, the existing abductive proof procedure IFF is sound
and “strongly” complete w.r.t. the proposed semantics. Thus, we improve
upon the existing “weak” completeness results for IFF.

1 Introduction

Abduction is a powerful mechanism for hypothetical reasoning with incomplete
knowledge, that has found broad applications in artificial intelligence [8, 2]. This
form of reasoning is handled by labeling some pieces of information as abducibles,
i.e. as possible hypotheses, that can be assumed to hold provided that they are
compatible with the available knowledge.

Abductive Logic Programming (ALP) combines abduction with standard logic
programming, by assuming that the available knowledge is modelled as a logic
program and abducibles are atoms not defined by the logic program. A number
of abductive proof procedures have been proposed in the literature, e.g. [9,1, 3, 6,
14], to compute hypotheses/abducibles to explain observations seen as standard
logic programming queries. These proof procedures allow the use of integrity
constraints to restrict the range of possible hypotheses. Abductive proof proce-
dures compute abductive answers to queries (), meant to provide explanations
for these Q): answers specify which abducibles have to be assumed to hold for @
to hold as well, while also validating the integrity constraints.

Integrity constraints can in principle be any logical formulas, but are more
conventionally assumed to be in the form of denials and/or implications. ALP
with implicative integrity constraints has been advocated as a useful knowledge
representation mechanism to support several applications, including agents [11,
17,13, 10], active databases [17] and automated repairing of web sites [15]. How-
ever, the current notion of abductive answer is not suitable to model implicative
integrity constraints, when these are used for these applications. Indeed, this
current notion allows to validate implicative integrity constraints by arbitrarily
enforcing their premises (and, as a consequence, their conclusion) even when



these premises have no reason to be enforced. For example, the integrity con-
straint alarm — run, modeling the reactive behaviour of an agent, with alarm
and run both abducible3, can be validated by arbitrarily abducing alarm, and
as a consequence run. The resulting abductive answer is counter-intuitive (in
the absence of other information) for the intended agent application and gives
unwanted behaviour. Interestingly, existing abductive proof procedures refrain
from computing these counter-intuitive abductive answers. For instance, in the
earlier example, IFF [6] would compute the empty abductive answer. Indeed,
IFF is shown to be “weakly complete” w.r.t. the current notion of abductive
answer: IFF is only guaranteed to compute a subset of every such answer. Thus,
the existing notion of abductive answers can be deemed to be “weak”.

In this paper we give a novel notion of abductive answer, overcoming the
limitations of the existing notion for implicative integrity constraints, and prove a
“strong” completeness result for IFF, namely that IFF is guaranteed to compute
every abductive answer in our novel sense. Moreover, we prove that IFF is still
sound w.r.t. our new notion of abductive answer (as it was w.r.t. the old notion).

Our new notion of abductive answer is given in terms of a notion of computa-
tion, inspired by a corresponding notion recently proposed in [12] to understand
answer set programming. This notion is not dependent on any proof procedure
and could in principle be used to provide a semantics to any abductive proof
procedure, e.g. [13].

The paper is organised as follows. In section 2 we give background on ALP
and its existing semantics. In section 3 we discuss some examples, motivating
the inadequacy of the existing semantics for ALP for a class of applications. In
section 4, we then propose our novel semantics for ALP for positive abductive
logic programs and queries. Here, we also illustrate the novel semantics for the
motivating examples and prove some properties of this semantics, including a
comparison with the existing semantics for ALP. We then prove, in section 5,
that the IFF proof procedure for ALP is sound and complete w.r.t. our proposed
semantics. Finally in section 6 we consider related work and conclude.

This paper extends [16] by considering denials alongside implicative integrity
constraints.

2 Background
An abductive logic program (ALP) [8] is a tuple (P, A, IC) where:

— P is a normal logic program, namely a set of clauses of the form:
p—liAN.. AL, (n>0)
where p is an atom and each [; is a literal, i.e. an atom a or the negation (as
failure) —a of an atom a. All variablesin p, 1, ..., l, are implicitly universally
quantified over p < I1 A...Al,. We refer to p as the head and to [y A... AL,
as the body of the clause.

3 When ALP is used to model agents, both observations and actions by agents are
modelled as abducibles, see [11].



— A is a set of (ground) atoms, referred to as abducibles. The predicates of
abducibles do not occur in the head of any clause of P (without loss of
generality, see [8]).

— IC is a set of integrity constraints, that can be of two forms:

o implicative integrity constraints of the form: 4
LA AL, = p (n>0)
where p is an atom and each [; is a literal. All variables in p,l,...,1,
are implicitly universally quantified over the implication. We refer to
l1 A... A, as the body and to p as the head of the integrity constraint.
e denial integrity constraints, of the form
Sl A AL (n>1)
where each [; is a literal. All variables in [y, ..., are implicitly univer-
sally quantified over the denial.

Note that, differently from existing presentations of ALPs, we do not require
that at least one literal in the the body of implicative integrity constraints or in
the denials is abducible.

We refer to the set of all predicates occurring in (P, A, IC) as the signature
of (P, A, IC) and to all literals that can be built from predicates in the signature
of (P, A, IC) as the Herbrand base of (P, A, IC), denoted HBp, 4, ¢y. Clauses
with an empty body (n = 0) will be represented as p < true, with true not
already in HB(p, 4, 1¢cy- Integrity constraints with an empty body (n = 0) will
be represented as true — p.

A query Q to an ALP (P, A, IC) is a (possibly empty) conjunction of literals
whose predicates belong to the signature of (P, A, IC). The variables in ) are
implicitly existentially quantified, with scope the query. The empty query is
represented as true.

Informally, given an ALP (P, A, IC) and a query @, an “abductive answer”
for a query @ is a set of (ground) abducibles A that, together with P, “entails”
both @ and IC, w.r.t. some notion of “entailment”. The notion of “entailment”
depends on the semantics associated with the logic program P (there are many
different possible choices for such semantics [8]). Formally, an abductive answer
to a query @ w.r.t. an ALP (P, A, IC) is a finite set A of abducibles such that,
for some ground substitution ¢ for the variables of Q:

— PUAELp Qo and
— PUA }:LPIC

where =pp stands for entailment w.r.t. the chosen semantics for logic pro-
gramming.

Positive ALPs and queries are ALPs and queries where no negative literals
occur. Note that in the case of positive ALPs, =1 p is necessarily entailment
under the least Herbrand model, referred to below as ipm.

4 In some approaches to ALP, e.g. [6], the head of integrity constraints can be a
disjunction of atoms. We do not consider these other forms of implicative integrity
constraints, without loss of generality. Indeed, an integrity constraint p — gV r can
be rewritten equivalently as p — newp with rules newp < g and newp < r.



In the remainder of the paper, as conventional in logic programming when
defining semantics, we will assume that any ALP (P, A, IC) stands for its
ground instantiation (w.r.t. HB(p 4, 1¢y), or, equivalently, that (P, A, IC) is
propositional. Moreover, we will focus on positive ALPs and queries.

3 Motivation

As mentioned in section 1, ALP with implicative constraints has been advocated
as a useful knowledge representation mechanism to support several applications.
In this section, we show that the current notion of abductive answer is not
suitable to model implicative integrity constraints, when these are used for the
aforementioned applications.

Ezample 1. Let (P, A, IC) be
P={} A={ab}; IC={a—10b}

In line with [11, 17, 10], this could be used to determine the reactive behaviour
of a hardware agent (robot) that, when a fire alarm goes off (a) should immedi-
ately evacuate the building in which it is situated (b). In addition, in line with
[17], it could be used to represent an active rule over a database sanctioning that
every employee (a) should have a social security number (b). Finally, in line with
[15], it could be used to represent a rule over a web site about books, that each
book documented on the site (@) should have an author (b).

Consider three possible queries @1 = true, Q2 = b, 3 = a. Then, given
the earlier notion of abductive answer, {a,b} is the only possible answer to
Q3, whereas {a,b} and {b} are alternative answers to Q2 and {a,b} and {}
are alternative answers to ()1. However, for the applications mentioned earlier,
{a, b} is not an appropriate answer to Q1 = true and Q2 = b. Indeed, this answer
unnecessarily and arbitrarily contains a.

Ezample 2. Let (P, A, IC) be
P={p«<b}y; A={ab}; IC={a—p}

This simple (P, A, IC) could be used for example to represent the reactive
behaviour of a software agent that should increase the amount held by a bank
account (p) when this amount goes below some threashold (a). One way to do
so may be to transfer some money from another account (b).

Consider again queries Q1 = true, Q2 = p, Q3 = a. Intuitively, the abductive
answers should be for Qi: {}; for Qq: {b}; for Qs: {a,b}. However, {a,b} is an
additional abductive answer for ()7 and @2 according to the earlier definition.
This is counter-intuitive for the intended application.

In the next section we give a novel notion of abductive answer overcoming
the limitations of the existing notion when used with implicative integrity con-
straints. Note that all counter-intuitive abductive answers obtained in the earlier
examples could be eliminated by imposing that abductive answers be (subset)
minimal. However, in general simply imposing minimality would not suffice, as
illustrated by the following example.



Ezample 3. Consider (P, A, IC) with

P={p+anqq+bArr«,qg«bAc}; A={a,b,c}; IC={}

Both {a, b} and {a, b, ¢} are abductive explanations, computed by all existing
abductive proof procedures (as viable alternatives). Only {a, b} is minimal. Im-
posing minimality in this case would render existing abductive proof procedures
unsound. Indeed, the computed answer {a, b, ¢} would not be an abductive ex-
planation if minimality were a requirement. On the other hand, enforcing that
computed answers be minimal would put additional computational burdens un-
necessarily.

4 Revised abductive answers for positive ALPs and
queries

Throughout this section we take as given a (propositional) positive ALP (P, A, IC)
and a (propositional) positive query @. We first give some preliminary defini-

tions and notations, then define the notion of r-abductive answer in terms of

computations, illustrate this notion, and give some properties for it.

4.1 Preliminary notions

We first define the notion of implicative integrity constraints “fired” by a set of
abducibles. This notion is given in terms of the following notation:

Notation 1 For any A C A,
M(A)={x € HB(p a,1c) | PUA l=ipm x}

Definition 1. Given A C A and a set of (implicative) integrity constraints S,
the integrity constraints in S fired by A are given by

fireds(A) ={a — B € S|la C M(A) U {true}}

As an illustration, given IC' = {a — p} as in example 2 and S = ICU{true —
a}, fireds({a}) = S and fireds({}) = {true — a}. Also, given S = {a Ab —
p,c — p,d — e}, fireds({a,c,d}) = {c = p,d — e} and fireds({a,b,c,d}) =
S.

We then define the notion of relevant explanation of a conjunction of atoms,
used in the definition of r-abductive answer both for given queries and heads of
fired implicative integrity constraints. This definition is inspired by the notion
of argument in [4].

Definition 2. Given (P, A, IC) and a conjunction of atoms X, £ C A is a
relevant explanation for X w.r.t. (P, A, IC) if and only if

— if X = true then & ={}



— if X is an atom, let T be a tree with nodes labelled by literals in HBp, 4, ¢y
or by the symbol T (not already occurring in HB p, 4, 1¢y), such that the root
of T'x is labelled by X and for every node N

e if N is a leaf then N is labelled either by an abducible or by T;
e if N is not a leaf and I is the label of N, then there is a clause I +
bi,...,b; € P and
either m = 0 and the child of N is T
orm >0 and N has m children, labelled by by, ..., b, (respectively);
then & is the set of all abducibles labelling the leaves of Tx;

— if X is a (non-empty) conjunction ly A...Al, (n>0) and &, is a relevant

explanation for l;, then € =&, U...U&, .

Note that integrity constraints play no role in the definition of relevant ex-
planation.

As an illustration, consider (P, A, IC) of example 2: here, {b} is a relevant
explanation of p, whereas {} and {a, b} are not. Also, Consider the (P, A, IC) in
example 3. Both {a, b} and {a, b, c} are relevant explanations of p. Thus, relevant
explanations may be non-minimal.

It is easy to see that relevant explanations correspond to SLD derivations:

Lemma 1. If £ C A is a relevant ezxplanation for a conjunction of atoms X
then there exists a SLD derivation for X from P UE U {true}.

Thus, by soundness of SLD resolution (and since true is assumed to hold):

Lemma 2. If £ is a relevant explanation of a conjunction of atoms X then

PUE Epm X.

Note that the converse of this lemma does not hold, e.g., in example 3,
P U {a,b} Eipm g but {a,b} is not a relevant explanation of q. However, the
following result holds:

Lemma 3. If PU A i Q then there exists £ C A such that € is a relevant
explanation of Q.

The following notation will be used to define the notion of explanation of
(heads of) implicative integrity constraints (definition 3 below).

Notation 2 Given any z € HB(p, 4, 1¢),
Ep(z) = {€]€ C A is a relevant explanation of z}

Note that, if  admits no relevant explanation, then £p(z) is empty, and
if  admits {} as a relevant explanation, then {} belongs to £p(z). Moreover,
if a € A, then Ep(a) = {{a}}. As an illustrative example, given (P, A, IC)
with P = {p < a,p + b,q + ¢} and A = {a,b,c}, then Ep(p) = {{a}, {b}},
€p(q) = {{c}}, and Ep(r) = {}.



Definition 3. Let « — 3 be an implicative integrity constraint and S a set of
implicative integrity constraints.

— explp(a — B) (explanation of « —  w.r.t. P) is defined as:

ceep(B) ifEp(B) #{}

undefined  otherwise

coirio > )~ {

— explp(S) (explanation of S w.r.t. P) is defined as:

U explp(z) if, Vo € S,explp(x) CA
explp(S) = < z€s
unde fined otherwise

Note that, if explp(z) = undefined for some x € S, then explp(S) =
unde fined. Note also that explp returns one single relevant explanation, if one
exists, for the head of each integrity constraint it receives in input. Thus, there
is a non-deterministic choice underlying the definition of explp. As an illustra-
tion, in example 3, assuming IC = {true — p}, both explp(IC) = {a,b} and
explp(IC) = {a,b, c} are acceptable.

Finally, note that queries can be seen as implicative integrity constraints. Let
ICq = IC U {true — ¢|q is a conjunct in Q}. Trivially, the following statements
are equivalent (for the existing notion of abductive answer given in section 2)

1. A is an abductive answer to Q w.r.t. (P, A, IC)
2. Ais an abductive answer to true w.r.t. (P, A, ICg)

We will define the notion of r-abductive answer (see definition 5) in the con-
text of (P, A, ICg).

4.2 Computations and r-abductive answers

First, let us consider the case of IC consisting solely of implicative integrity
constraints. Then, the notion of r-abductive answer can be refined as follows:

Notation 3 Given a sequence Ay, ..., 4;,... of sets of abducibles (4; C A, for
i > 0), we denote Ao, = |J A;.

i>0

Definition 4. A computation (for (P, A, ICq)) is a sequence Ao, ..., A, ...
such that A; C A, fori >0, Ag = {}, and the following properties are fulfilled:

— Monotonicity:

A;—1 CA; for each i >0
— Groundedness:

A; = explp(firedic,(Ai—1)) for each i >0
— Convergence:

A = explp(firedrc,(As))



Definition 5. A finite A C A is a revised abductive answer (r-abductive an-
swer in short) of a positive Q given (P, A, IC) with implicative integrity con-
straints only if and only if A = Ay for some computation Ag,...,A;,... for
(P, A, ICq).

Groundedness of the computation ensures that the head of each integrity
constraint that is fired “so far” can be derived from the r-abductive answer,
specifically from a subset of this that is a relevant explanation for the head
(by definition of explp). Convergence guarantees that all heads of integrity con-
straints that are fired can be derived from the r-abductive answer. Monotonicity
of the computation guarantees that relevant explanations for (the heads of)
integrity constraints already fired “so far” can only be enlarged during the com-
putation. This is illustrated by the following example.

Ezample 4. Consider P = {p + a,p < a ANb,p < d}, A = {a,b,c,d}, IC =
{¢ = p} and Q = c. Then,
{}{c} {c,a}, {c,al,...
{},{c},{c,a,b},{c,a,b},...
{}.{c}.{c,a}. {c.a,b}, {c,a,b}, ...
are all computations, whereas
{}: et {e,a}, {c,d}, {c,d}, . ..
{},{c},{c,a},{c,a,b},{c,a},{c,a},...
corresponding to changing relevant explanation for p from {a} to {d} and
from {a,b} to {a}, respectively, are not, since they do not fulfil the property
of monotonicity. Moreover, {},{c},{c,a},{c,a,d},{c,a,d},... is not a compu-
tation, as it does not fulfil the property of groundedness (since {a,d} is not a
relevant explanation for p). Finally, {}, {c},{c},... is not a computation, as it

does not fulfil the property of convergence (since ¢ — p is fired but not explained
in Ax).

To conclude, let us consider the general case when the given ALP also includes
denials, namely IC = IC7UIC™ where IC™ are implicative integrity constaints
and IC™ are denial integrity constraints.

Definition 6. A finite A C A is a revised abductive answer (r-abductive an-
swer in short) of a positive Q given (P, A, IC) with IC = IC~ UIC™ if and
only if

1. A= Ay for some computation Ay, ..., A, ... for (P, A, ICo\ IC™)
2. there exists no —[ly A ... Alp] € IC™ such that {l1,...,1,} C M(Ax)

Ezample 5. Consider the ALP of example 4 but with IC = {¢ — p,—[b]}
(namely IC™ = {—[b]}). Then, {},{c},{c, a},{c,a},... is the only possible com-
putation.



4.3 TIllustration

Let us illustrate the notion of r-abductive answer for the motivating examples
given earlier in the paper.

Example 1 (revisited) Q1 = true and Q2 = b admit r-abductive answers
{} and {b} respectively, with computations (respectively):

{4k
bbb
To see why {a,b} is not a r-abductive answer for @3, observe that, in any
computation for Q2, Ay = {b} necessarily (since this is the only possible relevant
explanation of b). Since fired;c,({b}) = ICq, then A; = A; for all i > 1, Thus,
Ay = {b} and {a,b} cannot possibly be a r-abductive answer. Finally, {a,b} is
a r-abductive answer for Q3 = a since {},{a}, {a,b},{a,b},... is a computation.

Example 2 (revisited) {a,b} is a r-abductive answer for Q3 = a since

{1 {a} a,b}, {a,b}, ..

is a computation. Instead, {a, b} is not a r-abductive answer for Q2 = b since

the only possible computation in this case is {}, {b}, {b},... If we extend P in
example 2 to also include p < ¢ with ¢ added to A, then Q3 = a admits two
r-abductive answer: {a,b} and {a, c}. However, A = {a,b,c} is not a r-abductive
answer for 3, since the only possible computations in this case are

{}{a}. {a. b}, {a. b}, .

{}:{a},{a, ¢}, {a,c}, ...

4.4 Properties of r-abductive answers

Every r-abductive answer is guaranteed to be an abductive answer in the old
sense. Formally:

Theorem 1. Let A be a r-abductive answer for a positive query Q given a
positive (P, A, IC). Then A is an abductive answer for Q given (P, A, IC)

(11).’!“.15. Izlhm)-

Proof. By definition of r-abductive answer, there exists a computation Ay =
{},A1,..., with A = A,. Then there exists Ag C A; that is a relevant expla-
nation for @ (since integrity constraints with a true body are all fired by {}), and,
by lemma 2, P U Ag =ipm Q. Thus, by monotonicity of =ipm, PUA =ipm Q.
To prove that P U A =y IC we need to check that 1) PU A =, b for each
h such that B — h € IC™ and PU A ., B; and 2) PU A P, B for each
—[B] € IC™. Consider 1): if PUA =y, B then B — h € firedc,(4;) for some
i > 0 and some Ap_,;, C A;;; is a relevant explanation for h. As a consequence,
by lemma 2, PU Ap_; Eipm b and, by monotonicity of pm, PU A Eipm h.
Consider 2): by contradiction, if P U A =, B then B C M(A), by definition
of M. But this would violate condition 2 of definition 6, and thus A would not
be a r-abductive answer. qed



Notice that an abductive answer may not be a r-abductive answer. For in-
stance, in example 1, {a, b} is an abductive answer but not a r-abductive answer
for (1. However, if an abductive answer exists, a r-abductive answer is guaran-
teed to exist too. Formally:

Theorem 2. If there exists an abductive answer, w.r.t. Eipm, for a positive
query @ given a positive (P, A, IC), then there exists a r-abductive answer for
Q given (P, A, IC).

We have seen, in example 4, that relevant explanations for heads of fired
integrity constraints can “grow” in computations. We now define a notion of
“persistent” computation where such explanations cannot “grow” over compu-
tations. Naturally, these kinds of computations lend themselves better to be
constructed by proof procedures for ALP, and indeed we will see that IFF con-
structs such computations.

Definition 7. A persistent computation (for (P, A, ICq)) is a computation
(for (P, A, ICq)) fulfilling the following property
— Persistence of explanations:
for each x € firedrc,(Ax), there exists one £, € Ep(x) such that £, C A;
for all i > k where k is the least integer such that x € fired;c,(Ar).

For example 4, given p as query: {},{a,b},{a,b},{a,b},... is a persistent
computation whereas {}, {a}, {a, b}, {a,b},... is a non-persistent computation.

Note that there could be multiple &, fulfilling definition 7, as illustrated by
the following example.

Ezample 6. Given P = {p < a,p < b,q + a}, A = {a,b}, IC = {} and
@ = pAg, the computation (w.r.t. (P, A, ICq)) {}, {a, b}, {a,b},...is persistent.
Here, there are two relevant explanations ({a}, {b}) for (the head p of) true — p
fulfilling definition 7.

The notion of persistent computation is sufficiently expressive so that we can
restrict r-abductive answers to be obtained from persistent computations. Indeed,
for every non-persistent computation, there exists a persistent computation from
which the same r-abductive answer can be obtained (and vice versa, trivially,
since persistent computations are computations). Formally:

Lemma 4. Let Ag,...,A4;,... be a non-persistent computation. Then, there ex-
ists a persistent computation Ay, ..., AL ... such that As = AL.

Ly
Proof (Sketch). If Ay, ..., A,,... is non-persistent then there exist at least one
z € firedrc,(As) with at least two different relevant explanations £} # €2,
both in explp(z), such that £ C Ay, and £2 C Ay, with Ay, C Ay, in the
computation. Assume that there is exactly one such z and exactly two such ex-
planations £, £2. (The case with m > 1 such xs and k; explanations for each
x (k; >2) is similar.) By monotonicity of computations, £} C £2. We can then
obtain a persistent computation Ay, ..., AL ... by replacing £! in Ay, with £2.
Trivially, Ay, = AL. ged



5 Correctness of IFF

In this section we show that our newly defined notion of r-abductive answer is a
perfect fit for the existing IFF proof procedure for ALP, in the sense that IFF is
sound and complete, in a “strong” sense, w.r.t. this notion. We first we describe
the procedure, and then prove our soundness and completeness results.

5.1 The IFF proof procedure

We give here a simplified version, for ground and positive ALPs and queries, of
the fully-fledged IFF proof procedure of [6,5]. This procedure uses the selective
completion of the logic program P w.r.t. the abducibles A, denoted compa(P)
and defined as the union of the completions of all the atoms in HBp, 4, 1c) \ A.
As conventional, the completion of an atom p such that p < D1,...,p < Dy, are
all the clauses in P with head p (k > 1) is the iff-definition p <> D1V ...V Dy,
and the completion of an atom p for which no clause in P has p as its head
is p + false. Also, IFF treats denial integrity constraints —[l1 A ... A l,] as
implicative integrity constraints of the form i; A ... Al, — false.

Given (P, A, IC), an IFF derivation for a query @ is defined as a sequence
of “goals”, Gy, ...,Gyg, such that G; = Q A IC. These goals are disjunctions of
disjuncts, which are conjunctions of the form °

AN ANALANT A AN,
where n,m > 0, n +m > 0, the A; are atoms, and the I; are implications, with
the same syntax as implicative integrity constraints. Each G;11 (1 < i < k)
is obtained from G; by application of one of the inference rules defined below,
using the notation G [W / 1/)} to denote the goal obtained from goal G by replacing
a conjunct ¢ in it with ¢.

Unfolding an atomic conjunct: given p <> Dy V ...V Dy, in compa(P) and an
atom p which is a conjunct of a disjunct G in G;, then G, is G; with G

replaced by \/ G’[Dj /»]
j=1

Unfolding an atom in the body of an implication: given p <> Dy V ...V D, in
compa(P) and an implication [l A...Al; A... Al — ¢] which is a conjunct
of a disjunct G of G; with I; = p, then G4, is G; with the implication in G
m
replaced by the conjunction A [l1 A...ADsA ... Al — (]
s=1
Propagation: given an atom p and an implication [imp = [y A. . .AL;A. .. Al — ¢]
with I; = p, both conjuncts of the same disjunct G in Gj, if
UAN LA NG A A N = qif k> 1 ;
imp’ _ 1 j—1 j+1 k q 1 - then G; [zml)/imp/]
q if k=5=1

® These disjuncts are simplified versions of the simple disjuncts of the original IFF,
that may also include disjunctions as additional conjuncts. By merging splitting into
other rules, discussed below, we do not need general simple goals.



Logical simplification replaces, within disjuncts:
B A true or true A B or true — B by B
B A false or false N B by false
false — B by true

In this variant of IFF we do not explicitly use the splitting rule, which dis-
tributes disjunctions over conjunctions. In the original IFF [6] splitting was in-
troduced as a separate inference rule, but, at the same time, its systematic use
as a rule with higher priority was suggested, in order to simplify the overall
procedure. In our variant, splitting is directly incorporated into the unfolding
rule which is the only rule that can potentially introduce disjunctions within
disjuncts in the case of ground positive ALPs.

Note that we have not included the simplification rules for disjunction, as dis-
junction never occurs in disjuncts, given that splitting is implicitly applied within
unfolding. Note also that we have not included the simplification rules involving
negation, nor the negation elimination rule as we are considering positive ALPs
and queries. Further, we do not include inference rules such as factoring and case
analysis, since they have to do with non-propositional ALPs and queries.

Finally, notice also that Fung and Kowalski define the propagation rule so
that G;41 is obtained by conjoining imp’ to G; (rather than replacing imp in G;
with émp’ as we have done), and associate a propagation history with atoms in
the body of implications in disjuncts, in order to avoid applying the same prop-
agation step to the same implication and atom (see page 67 of [5]). Our propa-
gation rule renders this propagation history unnecessary. Moreover, it prevents
the same integrity constraint to be propagated with several times unnecessarily,
as in the following example.

Ezample 7. Consider (P, A, IC) with P ={p + ¢,p + d}, IC = {a ANb — p}
and A = {a,b, c,d}. Consider Q = a Ab. Our variant of IFF computes

Gi=QANIC

Go =aAbA[a— p] (by propagation)

G3 = a AbAp (by propagation)

Gy=[aNbAc]V[aAbAd (by unfolding).

Instead, the original formulation of IFF may compute

Gi=QnIC

GL=aNbANIC A[a — p] (by propagation)

Gt =aAbANICAlJa— p]A[b— p] (by propagation)

Gﬁl =[aANOANIC Afa— p| A[b— p] Ap (by propagation with a — p)
=[aANbANIC Afa— p]A[b— p] ApAp (by propagation with b — p)
=[...cAp|V]...dAp] (by unfolding the first occurrence of p)
=[..cAcV]...end]V]..dAp] (by unfolding p in the first disjunct)

Given an IFF derivation Gy, ..., G, for a query @, let G be a disjunct of G,,.
G is called

- conclusive if no inference rule can be applied to G;

- failed if false is a conjunct in G;

- successful if G is conclusive and not failed.



Then, an IFF derivation G, ..., G, is successful if and only if there exists a
successful disjunct in G,,. An answer extracted from a successful IFF-derivation
Gy, ...,G, for Q is the set of all abducible atoms in a successful disjunct in G,,.

In the propositional case, our variant of IFF (with the simplified propagation
rule) is trivially equivalent to the original IFF, in the sense that every answer
computed by our variant is also computed by the original IFF, and (some subset
of) every answer computed by the original IFF is computed by ours.

5.2 Correctness results for IFF

Theorem 3. (Soundness of IFF)
Given (P, A, IC), let A be an answer extracted from a successful IFF-derivation
for a query Q. Then A is a r-abductive answer for @ given (P, A, IC).

Proof (Sketch). We first define inductively a construction from an IFF deriva-
tion Gy = Q ANIC,...,G, to a sequence S1,...,S, where each S; is a set of
forests of trees, each forest corresponding to a disjunct in G;. We then define an
order < over trees in the forest F' corresponding to the node of G,, from which
A is extracted. All trees in F' are “complete”, in that they have abducibles or
true as their leaves. Basically, a tree is ordered before another if it has become
“complete” before the other in the construction of F' in the sequence Sy, ..., S,.
The resulting order has a top element T} (since the IFF derivation is finite).
Finally, we map F onto a computation Ay,...,4;,... such that Ay = {}, for
0 <i <k, 4A; is the union of all sets of abducibles at the leaves of trees with
i-th position w.r.t. <, and for j > k, A; = A. ged

We illustrate this result in the case of example 7, for the answer {a,b,c}
extracted from the first disjunct in Gy, given derivation Gy, ...,Gy. The corre-
sponding computation is {}, {a, b}, {a, b, c}, {a, b, c}, ..., obtained from Sy,..., Sy
where S; consists of two forests, one of which consists of three trees, T,, T and
T,, with, respectively: root (and leaf) a, root (and leaf) b, and root p with child
(and leaf) c. The order < is such that T,=T;, < T, (with T, the top element).
Note that the resulting computation is persistent.

We prove completeness for persistent r-abductive answer, namely r-abductive
answer obtained from persistent computations. Then, by lemma 4, completeness
holds for any computation.

Theorem 4. (Completeness of IFF)
Let A be a persistent r-abductive answer for a query Q, given (P, A, IC). Then,
A is an answer extracted from a successful IFF-derivation for Q.

Proof (Sketch). If A is a persistent r-abductive answer for @, then there exist
a persistent computation Ag,...,4;,... such that A = A,. It is easy to see
that, if ic is fired by 4;, then there is an SLD derivation for its body, from
PU A; U{true}. Moreover, if the head of ic can be explained, then by lemma 1,
there is an SLD derivation for this head, from P U A; 1 U {true}. It is also easy



to see that SLD derivations can be mapped onto IFF derivations. All these IFF
derivations can be combined into a single successful IFF derivation (including
suitable steps corresponding to “firing”) from which A can be extracted. ged

6 Conclusions

We have defined a new notion of abductive answer for positive ALPs with im-
plicative integrity constraints that is better suited to a class of applications of
ALP and provides a “better fit” than the existing notion for the IFF abduc-
tive proof procedure. Our new notion is defined in terms of relevant explana-
tions, adapted from the notion of argument in [4], and a notion of computation,
adapted from a corresponding notion in answer set programming [12]. In par-
ticular, our monotonicity is the same as the notion of “persistence of beliefs” in
[12] and our groundedness corresponds to the notion of “revision” in [12], but,
whereas revision there amounts to obtaining each element in the computation by
applying the standard logic programming Tp operator to the previous element,
in our case groundedness amounts to obtaining each element in the computation
by adding relevant explanations for the head of newly fired integrity constraints.
The notion of convergence is also present in [12], but again defined in terms
of Tp rather than explp(firedrc,) as in our case. Finally, our persistence of
explanations corresponds to the “persistence of reasons” in [12], but there this
notion amounts to making sure that the same rules guarantee the derivation of
atoms over (their kind of) computations.

Inoue and Sakama [7] also propose a fixpoint semantics for abductive logic
programming, based upon their rewriting as disjunctive logic programs and the
use of (a suitable) Tp operator. Their semantics agrees with ours in some ex-
ample, e.g. example 2, but does not enforce relevance of explanations (in our
sense) in general. For example, consider (P, A, IC) with P = {p < b,p + c},
IC = {a — p} and A = {a,b,¢} and @ = a. The only possible r-abductive
answers are {a,b} e {a,c}. Inoue and Sakama also obtain {a,b,c} as an an-
swer. This is not computed, e.g., by IFF. The formal relationships between our
approach and the approach of [7] deserves further study.

The applications that have inspired our approach use implicative integrity
constraints to determine behaviour (e.g. of agents, or database or web manage-
ment systems, see examples 1 and 2). It would be interesting to study whether
our approach would be suitable to explain behaviour.

We have restricted attention to positive ALPs and queries, and omitted (for
lack of space) to consider denials. Future work includes considering negation in
ALPs and queries and denials alongside implicative integrity constraints.

We have studied soundness and completeness of IFF in the propositional
case and for positive ALPs and queries. Future work is needed to consider the
non-propositional case and negation, in particular the NAF extension of IFF
given in [17]. Moreover, it would be interesting to consider other abductive proof
procedures that use implicative integrity constraints, e.g. the variant [13] of the
procedure of [9].
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