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Abstract

Arguments in structured argumentation are usually defined as trees, and extensions as sets of such tree-
based arguments with various properties depending on the particular argumentation semantics. However,
these arguments and extensions may have redundancies as well as circularities, which are conceptually and
computationally undesirable. Focusing on the specific case of Assumption-Based Argumentation (ABA), we
propose novel notions of arguments and admissible/grounded extensions, both defined in terms of graphs. We
show that this avoids the redundancies and circularities of standard accounts, and set out the relationship to
standard tree-based arguments and admissible/grounded extensions (as sets of arguments). We also define
new notions of graph-based admissible/grounded dispute derivations for ABA, for determining whether
specific sentences hold under the admissible/grounded semantics. We show that these new derivations are
superior with respect to standard dispute derivations in that they are complete in general, rather than
solely for restricted classes of ABA frameworks. Finally, we present several experiments comparing the
implementation of graph-based admissible/grounded dispute derivations with implementations of standard
dispute derivations, suggesting that the graph-based approach is computationally advantageous.

1. Introduction

Argumentation theory is a powerful reasoning abstraction in which conflicting arguments are represented
and evaluated against one another in order to resolve conflicts and find those sets of arguments which are
together dialectically superior. It has been extensively studied in AI over the past two decades—see (Bench-
Capon and Dunne, 2007), (Besnard and Hunter, 2008) and (Rahwan and Simari, 2009) for an overview—and
used as the formal basis of a number of applications. Several forms of argumentation have been proposed.
The simplest form is the seminal abstract argumentation defined by Dung (1995), where the basic structure
is a graph whose vertices represent arguments and whose edges, called attacks, represent a relation of conflict
between arguments. By contrast, in structured argumentation—see (Besnard et al., 2014) for an overview—
arguments and attacks are not primitive but are derived from more basic structures. It is common in
structured argumentation to define arguments as trees, whose edges represent a relation of dependency
holding between sentences labelling the nodes.

Assumption-Based Argumentation (ABA) (Bondarenko et al., 1997; Dung et al., 2006, 2007, 2009; Toni,
2013, 2014) is a well-known form of structured argumentation. In ABA, arguments are obtained from
the rules of a given deductive system and assumptions (special sentences in the language underlying the
deductive system). More specifically, arguments are finite trees whose leaves must either be labelled by
assumptions or must represent the empty body of a rule in the deductive system. Such an argument is
attacked by another argument when an assumption on which the first argument is built has as contrary a
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sentence labelling the root of the second argument. In ABA, the internal structure of arguments is explicit,
as is also the reason why there is an attack between two arguments.

The semantics of argumentation frameworks typically determine different dialectically superior or winning
sets of arguments, known as acceptable extensions. Both abstract argumentation and ABA define various
alternative semantics and corresponding kinds of acceptable extensions. In the case of ABA, extensions
can be equivalently understood in terms of sets of assumptions (in the support of arguments in acceptable
extensions)—see (Bondarenko et al., 1997; Dung et al., 2007; Toni, 2014).

ABA has been applied in several settings, e.g., to support medical decision-making (Craven et al., 2012;
Fan et al., 2014) and e-procurement (Matt et al., 2008). ABA’s applicability relies on the existence of
computational mechanisms, based on various kinds of dispute derivation (Dung et al., 2006, 2007; Toni,
2013) that are formally proven to be correct procedures under various semantics. Whereas the semantics are
non-constructive specifications of what can be deemed acceptable extensions, dispute derivations are fully
constructive algorithms. One kind of dispute derivation for computation under the semantics of admissible
extensions was presented by Dung et al. (2006); this was extended to the semantics of grounded and ideal
extensions by Dung et al. (2007), and, in a parametric version with a richer output (encompassing both
views of extensions as sets of arguments and as sets of assumptions) by Toni (2013).

ABA is not alone among forms of structured argumentation in representing arguments as tree structures;
(Modgil and Prakken, 2013) and others do the same. This has several consequences. Positively, it means that
the relation of support is depicted explicitly in the formalism, with an edge of such a tree-based argument
representing the relation of dependence of one sentence on others. Yet, negatively, it can lead to several
problems, both conceptual and computational. First, defining arguments as trees whose nodes are labelled
by sentences means that there can be circular dependencies amongst those sentences, even if these trees are
required to be finite. The potential for circular dependency also causes problems computationally: it means
that, in the course of a dispute derivation, loops may be encountered which prevent standard procedures
from terminating, leading to incompleteness. Secondly, even if there is no circular dependency, the use
of trees to represent arguments allows a sentence to be proved in several different ways (which we call
flabbiness). Flabbiness is conceptually undesirable and involves redundancy, with the same sentence being
reproved needlessly; it is also therefore inefficient.

Thirdly, some of these issues arise not only with the definition and computation of individual arguments,
but also with the definition and computation of extension-based semantics, i.e., with sets of arguments.
These sets are intended to represent a coherent dialectical position, but, as we discuss in the paper, if the
same sentence is proved in multiple different ways in different arguments belonging to the set (which we call
bloatedness), it can rightly be questioned whether an appropriate notion of coherence applies. Indeed, one
may have already computed that there is an argument for some sentence, but not use this where it could
serve as a subargument elsewhere. Again, as with the case of the flabbiness of individual arguments, there
is also a question of efficiency in the computation of extensions.

In the current paper we provide a solution, which answers the conceptual problems, as well as the
computational issues of incompleteness and inefficiency. The solution relies upon altering the underlying
conception of an argument to an approach which is graph-based rather than tree-based, and which also
reconceives the nature of the set of arguments sanctioned by the semantics and computed in a dispute
derivation, removing redundancy across arguments. Using graphs rather than sets of trees, circularity,
flabbiness and bloatedness are removed at a stroke. Our work focuses on the case of ABA in particular, but
we think that the approach of using graphs would also generalize to other forms of structured argumentation
which are currently based on trees, such as (Modgil and Prakken, 2013).

We provide a link between our argument-graph approach and rule-minimal arguments, which makes the
connection to standard, tree-based accounts of arguments in ABA explicit. We define novel admissible and
grounded graph-based semantics for our argument graphs, and show the correspondence with the standard
semantics using trees. We then define dispute derivations for the new structures, which we prove are sound
and complete with respect to the novel semantics. Completeness in the dispute derivations for grounded
semantics is an important further advantage of our approach, for previous dispute derivations for ABA—
those of Dung et al. (2006), Dung et al. (2007) and Toni (2013)—are complete solely for a special form of
(p-acyclic) ABA frameworks. Indeed, our dispute derivations are complete for any form of ABA framework.

2



In addition to the gains in conceptual justification and completeness, there are improvements in the
speed with which computation is performed in the new approach. We implemented our algorithms in
Prolog,1 and conducted a preliminary experimental evaluation of the new algorithms in comparison with an
implementation of the previous dispute derivations of Toni (2013). The results, as can be seen in §6, favour
the graph-based approach.2

The work here substantially extends the preliminary research in (Craven et al., 2013). First, the previous
work was restricted to the grounded semantics, still defined in terms of sets of tree-based arguments rather
than graphs. Secondly, the main results of that paper were given as proof sketches; full proofs are now
provided. Thirdly, the previous paper focused on soundness; full completeness results are now also provided.
Fourthly, we conduct a more thorough experimental comparison with standard dispute derivations. Fifthly,
many more examples are provided. Sixthly, in previous work argument graphs were conceived more as a
data structure to aid computation; in the present paper they are justified on more conceptual grounds, as an
appropriate representation of the justification structure in arguments. Seventhly, and related to the previous
point, we provide a new semantics for argument graphs.

The paper is organized as follows. In §2 we give background on ABA. In §3 we describe conceptual
and associated computational problems with the existing formulation. In §4 we describe our formalism
and relate it to existing definitions and semantics for ABA. In §5 we give dispute derivations for argument
graphs, proving soundness and completeness with respect to admissible and grounded semantics. In §6 we
discuss experiments comparing standard dispute derivations with the graph-based derivations introduced in
the previous section. In §7 we compare our contribution in this paper to related work. In §8 we conclude
and discuss future research. Proofs not included in the main text are in the Appendix.

2. Background

An ABA framework (Bondarenko et al., 1997; Dung et al., 2009; Toni, 2014) is a tuple (L,R,A, ):

• (L,R) is a deductive system, with L a set of sentences and R a set of (inference) rules of the form
s0 ← s1, . . . , sm, for m > 0 and s0, s1, . . . , sm ∈ L;

• A ⊆ L is a non-empty set, the assumptions;
• is a total mapping from A to L, with ā known as the contrary of a.

A flat ABA framework is an ABA framework such that for no rule s0 ← s1, . . . , sm ∈ R does it hold that
s0 ∈ A. In the remainder of the paper, unless otherwise specified, we assume as given a flat ABA framework
(L,R,A, ).

In ABA, arguments are proofs using rules in R, with each argument ultimately depending on assump-
tions (Dung et al., 2009; Toni, 2014). Proofs and arguments are standardly defined as trees:

• A proof for s ∈ L supported by S ⊆ L is a (finite) tree with nodes labelled by sentences in L or > 6∈ L,
where the root is labelled by s and:

– all non-leaf nodes n are labelled by some s0 ∈ L, such that there is some rule s0 ← s1, . . . , sm ∈ R
with either (i) m = 0 and the unique child of n is labelled by >, or (ii) m > 0 and n has m
children, labelled by s1, . . . , sm respectively; and

– S is the set of all sentences in L labelling the leaves.3

• An argument for s ∈ L is a proof for s supported by some A ⊆ A.4 (We sometimes call such arguments
tree-based arguments, in order to distinguish them from the argument graphs we later introduce.)

1Implementations and several ABA frameworks freely available at http://robertcraven.org/proarg/.
2Experimental data and results available from http://robertcraven.org/proarg/experiments.html.
3Note that > may label a leaf, > is not included in S since > 6∈ L.
4Although these definitions of proof and argument allow for multiple isomorphic proofs and arguments, labelled in the same

way, we will ignore this complication in the rest of the paper, and presume that the definitions uniquely specify proofs and
arguments; this is common in discussions of ABA and structured argumentation.
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Figure 1: Arguments and attack relation for Example 1

We will use the following notation regarding the structure of arguments. Where a is an argument for s
supported by A, claim(a) = s (s is the claim of a) and support(a) = A (A is the support of a). Where
A ⊆ A, then args(A) is the set {a | support(a) ⊆ A}, i.e., the set of arguments whose support is a subset of
A. Where A is a set of arguments (an extension), claims(A) is {claim(a) | a ∈ A}. Where a is an argument,
we let nodes(a) be the set of nodes of a. Where n ∈ nodes(a), label(n) is the sentence, or >, which labels n
and children(n, a) is the (possibly empty) set of children of n in a; where a is clear from the context, we write
children(n, a) simply as children(n); where N is a set of nodes of a proof, labels(N) is {label(n) | n ∈ N}.

In ABA the attack relation between arguments is defined in terms of assumptions and their contraries:

• an argument a attacks an argument b (written here as a  b) iff there is some b ∈ support(b) such
that b̄ = claim(a).

This notion is lifted to sets as follows: a set of arguments A attacks a set of arguments B (written here as
A B) iff some a ∈ A attacks some b ∈ B; an argument a attacks a set of arguments B (written here a B)
iff a  b for some b ∈ B; and a set of arguments A attacks an argument b (written here A  b) iff some
a ∈ A attacks b.

Example 1. Consider the ABA framework (L,R,A, ) where:

L = { p, q, r, s, a, b }
R = { p← q, r,

q ←,
r ← a,

s← b }
A = { a, b }
ā = s, b̄ = p

The arguments and attack relation depicted in Figure 1 are obtained. Here (as throughout the paper),
arguments are in shaded boxes, The root of an argument is always at the top of a box and where a sentence
within an argument depends on others—say, p on q and r, in the diagram, through the rule p← q, r—then
this is represented by the others’ being below the sentence in question and connected to it by a directed
edge (the dotted end of the edge is the sentence in the body). Attacks between arguments are shown as
arrows. If a b, we show the arrow as stemming from the vicinity of claim(a) and finishing in the vicinity
of some b ∈ support(b) such that b̄ = claim(a). y
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Attacks represent conflicts, and argumentation semantics constitute recipes to determine how to resolve
these conflicts and determine acceptable (or winning) sets of arguments (Dung, 1995; Bondarenko et al., 1997;
Dung et al., 2007). Several alternative notions of acceptable sets of arguments (referred to as extensions)
have been proposed for ABA (Bondarenko et al., 1997; Dung et al., 2007). Here, we focus on admissible
and grounded extensions. An extension is defined to be:

• conflict-free iff it does not attack itself;
• admissible iff it is conflict-free and attacks every argument attacking it;
• complete iff it is admissible and contains all arguments it can defend (by attacking all arguments

attacking them);
• grounded iff it is minimally (w.r.t. ⊆) complete.

A sentence s ∈ L is admissible/grounded (optionally, w.r.t. A ⊆ A) iff

• there is an argument a with claim(a) = s such that a ∈ A for some admissible/grounded extension A
(optionally, with A =

⋃
a∈A support(a)).

Example 1 (Continued). Let p∗ be the argument for p in Figure 1, a∗ the argument for a in Figure 1, and
so on. (In the present example, these are unambiguously defined.) Then, the admissible extensions are:

{p∗} ∅
{p∗, q∗} {s∗}
{p∗, r∗} {s∗, b∗}
{p∗, a∗} {s∗, q∗}
{p∗, q∗, r∗} {s∗, b∗, q∗}
{p∗, q∗, a∗} {q∗}
{p∗, r∗, a∗}
{p∗, q∗, r∗, a∗}

The complete extensions are just {p∗, q∗, r∗, a∗}, {s∗, b∗, q∗} and {q∗}. The grounded extension—unique, as
always—is {q∗}. y

Several algorithms for determining acceptability of sentences in ABA have been proposed (Dung et al.,
2006, 2007; Toni, 2013), starting from the dispute derivations presented by Dung et al. (2006), to the generic
form, taking parameters which give specific instances for the two mentioned semantics (as well as a third
semantics not considered here), presented by Toni (2013). We leave the details as references for the interested
reader, but note that the dispute derivations we present in §5 are based on this existing work.

Given a set Args of arguments, and an attack relationship ⊆ (Args×Args), Dung (1995) also defines the
characteristic function of the abstract argumentation framework (Args, ) as the function f : 2Args → 2Args

such that, for all A ⊆ Args:

f(A) = {a ∈ Args | ∀b ∈ Args((b a)→ (A b))}.

Thus f(A) is the set of all arguments defended by A. The characteristic function provides an alternative
means of specifying the various semantics defined above, as well as alternative semantics treated in the
literature. Given a conflict-free extension A ⊆ Args, it was shown by Dung (1995) that:

• A is admissible iff A ⊆ f(A);
• A is complete iff A = f(A);
• A is grounded iff A is the least fixed point of f .

This alternative characterization of the semantics will be important when we give a semantics for our
argument graphs, in §4.3.
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Figure 2: Trees a1–a4 (left to right). a1 does not qualify as an argument in ABA; a2–a4 do (see the definition in §2).

3. Motivation

In at least those forms of structured argumentation which use trees, or analogues of them, to represent
arguments—e.g., ABA and (Modgil and Prakken, 2013)—the conception of an argument enforces a form of
relevance of the support to the claim. However, the practice of defining arguments as trees allows undesirable
patterns of circularity and redundancy in arguments, even if these trees are required to be finite, as is the
case for ABA—see §2. In the current section we investigate and define these forms of redundancy. We focus
on ABA specifically, but much of what is said here, and the particular definitions, could easily be adapted
to other forms of tree-based structured argumentation.

As a basis for discussion, consider the following example in ABA.

Example 2. Consider the ABA framework (L,R,A, ) where:

L = { p, q, r, s, x, a, b }
R = { p← q, r,

p← b,

q ← p,

q ← r,

r ← a,

r ← b,

s← r }
A = { a, b }
ā = x, b̄ = x

Figure 2 shows four trees: a2–a4 are arguments for p, and a1 is an infinite tree which does not qualify as
an argument. Figure 3 shows two extensions. Both extensions are admissible. However, A contains one
argument in which r is supported by a and another in which r is supported by b. y

In Example 2, each sentence in the infinite tree a1 depends on other sentences, as determined by the rules in
R; in that sense, the tree satisfies one criterion of what an argument for a claim must be, since every sentence
in a1 has an immediate justification. a1 would satisfy the account of an argument in ABA if that account
were relaxed to allow the trees to be infinite. Yet we take the view that the sort of structure a1 typifies,
in which there is an infinite path of support, should not represent a possible pattern of dependency in an

6



p

q

r

a

r

a

s

r

b

p

q

r

a

r

a

s

r

a

Figure 3: Two extensions, A (left) and B (right), for Example 2.

argument. This is because a chain of justifications must end somewhere: one cannot pass the buck forever.
Thus, the definition of an argument in ABA, and in other standard approaches to structured argumentation,
rightly excludes such infinite structures from being arguments.

a2–a4 all do conform to the definition of argument in ABA. However, as we now describe, a2 has a kind
of circularity which should be excluded; we then show that a3 has a further kind of redundancy which also
ought to be disallowed. Finally, we turn to the extensions in Figure 3 and note that A has a generalized
form of the problem with a3.

In a2 there is a circular dependency of a sentence, p, on itself (indirectly, through q): arguably, this
ought not to be allowed as a representation of the way in which sentences are supported. It represents a
situation in which the justification for a given belief comes partly from itself, a notion which we regard as
incoherent; the situation in which an agent attempts to justify a sentence on the grounds of that sentence
itself is also rhetorically flawed. We therefore think that the definition of an argument should exclude the
kind of dependency shown by a2; in this way we will in §4 follow others such as (Vreeswijk, 1997), who have
defined arguments so as to eliminate such dependency. (Note that in the case of ABA, where R is finite,
then a tree in which there is an infinite path must also involve this type of circular dependency.)

Consider now a3. Here, a sentence, r, is proved in two different ways. Even if neither proof involves a
circularity (as in a2), the argument can be deemed to be redundant and also to lead to inefficiency, since
it supports the same sentence in two different ways at different points of the argument, using a and b as
different reasons for the same conclusion. (It is important to note that this is different from the phenomenon
of ‘aggregation’, in which a sentence is everywhere justified jointly by several reasons; aggregation is an
important topic not addressed in ABA or other forms of structured argumentation, which we do not address
in the current work either.) We therefore exclude the possibility of such redundant arguments.

The following definition formally captures the types of problem discussed for a2 and a3 from Example 2.

Definition 3.1. An argument a is circular if it contains a directed path from a node n labelled by some
s ∈ L to another node n′ labelled by s. An argument a is flabby if it is non-circular and there are different
nodes n, n′ labelled by s ∈ L such that the children of n are labelled by different members of L∪ {>} from
the children of n′. y

According to this definition, in Example 2 a2 is circular (and not flabby), a3 is flabby (and not circular),
and a4 is neither circular nor flabby.

The sort of redundancy shown by a3 can be found also in sets of arguments, as in A in Figure 3. The
same considerations in favour of ruling out flabby arguments also suggest ruling out extensions such as A,
in which a sentence is supported in different ways in two different arguments. Indeed, extensions should
represent dialectically coherent positions; if we rule out a reading whereby r is supported by an aggregation
of the reasons a and b, then it should be supported either by a exclusively or b exclusively, as in B in Figure 3
(for the case of support by a). Further, just as there can be a form of circularity internal to arguments, there
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might also be extensions in which, though no individual argument is circular, there are arguments a and b
such that s depends on t in a, but t depends on s in b. The following definition captures these undesirable
forms of extension.

Definition 3.2. An extension A is bloated if there are arguments a, b ∈ A (possibly a = b) containing nodes
na and nb, where label(na) = label(nb) but labels(children(na)) 6= labels(children(nb)). y

According to this definition, A in Example 2 is bloated, but B is not.
The relations between the three concepts defined in this section are set out in the following.

Theorem 3.3. Let A be a set of arguments. If A contains a circular or flabby argument, then A is bloated.

Proof. If a ∈ A is flabby, then it is trivial to show that A bloated.
Assume a ∈ A is circular. Then there is a path in a from some node n0 to some node nl, both labelled by

s. Let (n0, . . . , nm), for 0 < m 6 l be the smallest initial sequence of (n0, . . . , nl) ending in a node labelled
by s, and let (s0, . . . , sm) be the corresponding sequence of labels of those nodes (so s0 and sm are both s).
Then we consider in a the longest path

(n0, . . . , nm, nm+1, . . . , nm+(m−1), n2m, . . . , nKm+I),

such that the label of node nkm+i (i < m and 0 6 km + i 6 Km + I) is identical to that of ni. This path
cannot be infinite, since arguments are finite. But then node nKm+I must have differently-labelled children
from node nm+I , and thus A is bloated. y

The set A from Example 2 shows that the ‘only if’ direction of Theorem 3.3 fails to hold, namely a set of
arguments may be bloated but contain no circular or flabby arguments.

Is the sort of circular dependency shown in a2 exhibited in argumentation frameworks which represent
real-world domains? In previous work, the current authors have worked on several practical applications of
structured argumentation (Craven et al., 2012; Fan et al., 2013, 2014; Zhong et al., 2014) to domains including
medicine and law. We conducted an analysis of the argumentation frameworks for these applications,5 which
showed that none of them contained rules which allow the construction of cyclical arguments like a2. (The
largest of the frameworks we analyzed contained 11,147 rules.) This is minor evidence that the theoretical
arguments for the exclusion of such structures from being arguments is also supported by the absence of
such arguments from practical applications. However, it must also be noted that all of the argumentation
frameworks in question were constructed by a single researcher or small group of researchers, trained in
argumentation theory. Where applications involve disparately constructed knowledge bases, and where any
cycles which may exist cannot be eliminated by a detailed revision and repair of the combined base, then
the need for definitions of argument which themselves constrain the arguments constructed to be acyclic
will become pressing.

Flabbiness and bloatedness, by contrast, do exist in real-world argumentation frameworks. All of the
frameworks mentioned above contain many possibilities for the construction of flabby arguments, and this
means that bloated extensions are also possible. Thus, there is a pragmatic justification for excluding the
redundancy shown by many tree-based approaches to structured argumentation; this justification is seen
even in argumentation frameworks in which the knowledge has been carefully represented.

We will show that circularity, flabbiness and bloatedness can be removed at a stroke by switching from
a conception of arguments as trees to graphs, and by moving from a conception of an acceptable dialectical
position as a set of arguments again to graphs.

5We thank an anonymous reviewer for suggesting this.
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4. Argument graphs

Argument graphs, which we introduce in the present section, serve two fundamental, related roles. First,
they correspond to standard arguments: structures supporting a single, specific claim. Secondly, they
correspond to the extensions used in defining the semantics of argumentation frameworks, and which are
an overall representation of an acceptable dialectical position of an agent. Accordingly, in §4.1 below we
initially treat argument graphs in their first role, and then in §4.3 in their second (where the emphasis will
be on new forms of semantics defined in terms of argument graphs). An interlude, in §4.2, on the relations
between argument graphs and forms of minimality fits between these two treatments. Recall, as stated in
§2, that except where noted we are presuming a fixed ABA framework (L,R,A, ).

In defining argument graphs below and in the rest of the paper we adopt the following notation. Where
G is a graph, we sometimes use v(G) to denote its vertices, and e(G) to denote its edges (thus e(G) ⊆
v(G) × v(G)). A sink vertex has no outgoing edges; we write the sink vertices of the directed graph G as
sinks(G). A source vertex is a vertex with no incoming edges.

Definition 4.1. An argument graph G is a directed, acyclic graph where v(G) ⊆ L and for all s ∈ v(G):

i. if s ∈ A, then s ∈ sinks(G);
ii. if s 6∈ A, then there is a rule (s ← s1, . . . , sm) ∈ R such that there is an edge (s, s′) in e(G) iff

s′ ∈ {s1, . . . , sm}.

Where G is an argument graph, the support of G, written support(G), is v(G) ∩ A.
An argument graph G is said to be focused iff it has a unique source, called the claim of G and represented

as claim(G). y

Note that vertices of argument graphs are sentences, whereas nodes of standard arguments in ABA, as given
in §2, are labelled by sentences (or >). Note also that we overload the terms ‘support’ and ‘claim’, defined
with similar intentions for both tree-based arguments and argument graphs. Figure 4 shows all argument
graphs that can be obtained from the ABA framework in Example 2, if the rules in that framework are
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restricted to:

R = { p← b,

r ← a,

r ← b }.

Here, for example, the top, left-most argument with support a is focused, with claim a, whereas the top,
right-most argument with support {a, b} is not focused, as it has two sources, r and b. The bottom-right
argument graph, Gp,r, can be written as ({p, r, a, b}, {(p, b), (r, a)}). This makes the nature of v(Gp,r) and
e(Gp,r) as a sets of sentences and pairs, respectively, explicit.

Note that, in Figure 4 and throughout the paper, in visualizing argument graphs, we follow the same
conventions, given in Example 1, as for tree-based arguments (e.g., the direction of an edge is represented
by the relative vertical position of its nodes as well as disambiguated by a dot).

4.1. Argument graphs and tree-based arguments
In this section, we show how the notion of an argument graph addresses some of the issues raised in §3

and how it relates to the original notion of ABA arguments as trees.
Argument graphs can be seen as representing only those tree-based arguments without the undesirable

properties of the kinds identified in §3. The required notion of representation is given in the following.

Definition 4.2. Let G be an argument graph, and a a tree-based argument. We say that a is represented
in G if there is a function f : (nodes(a) \ {n | n ∈ nodes(a)∧ label(n) = >})→ v(G) mapping nodes of a not
labelled by > to nodes of G such that, where n ∈ (nodes(a) \ {n | n ∈ nodes(a) ∧ label(n) = >}):

• f(n) = label(n);
• if f(n) = s, then labels({n′ | n′ ∈ children(n)}) \ {>} = {s′ | (s, s′) ∈ e(G)}. y

This notion is illustrated below.

Example 3. Consider the ABA framework:

L = { p, q, r, s, t, x, a }
R = { p← q, r,

q ← s,

r ← s, a,

s←,
t← r }

A = { a }
ā = x

Figure 5 shows an argument graph and the arguments it represents. y

Figure 5 demonstrates the concision in representation afforded by argument graphs, compared with tree-
based arguments. Indeed, the following result shows that argument graphs are a combined representation
of several tree-based arguments—one argument for each node in the argument graphs, with the claim the
node in question.

Theorem 4.3. Let G be an argument graph. For each s ∈ v(G), there is an argument a such that
claim(a) = s, support(a) ⊆ support(G) and a is represented in G.
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Figure 5: Argument graph (left) and the arguments represented in it (right), for Example 3.

Proof. We generate an argument from s and G in the following way. First, create a new node nr labelled
by s (nr has depth 0 in the argument). Then, starting at i = 0, for each node n′ at depth i, where n′ is
labelled by s′, for each s′′ such that (s′, s′′) ∈ e(G) create a new child n′′ of n′ in a labelled by s′′. Then
increment i until there are no nodes of depth i. Since there are no cycles in G, this process terminates.

Let a be the resulting argument; to show that a is represented in G, let f : nodes(a)→ v(G) be such that
f(n) = label(n). According to Definition 4.2 we just need to show that if f(n) = s for any n ∈ nodes(a),
then labels({n′ | n′ ∈ children(n)}) \ {>} = {s′ | (s, s′) ∈ e(G)}. This is true by construction.

Since a is represented in G, it is immediate that support(a) ⊆ support(G). y

We have seen in §3 that tree-based arguments may be circular or flabby in general. The following theorem
shows that the desirable properties of non-circularity and non-flabbiness hold for tree-based arguments
represented in argument graphs.

Theorem 4.4. Let G be an argument graph, and a an argument represented in G. Then a is neither circular
nor flabby.

Proof. Let a be represented in G. Non-circularity is easy to show, given the non-circularity of G. Assume a is
flabby. Then there are n1, n2 ∈ nodes(a) such that n1 6= n2, label(n1) = label(n2), and labels(children(n1)) 6=
labels(children(n2)). But from label(n1) = label(n2) (from the second bullet in Definition 4.2) we know that
labels(children(n1)) = labels(children(n2)). Contradiction. y

To investigate the converse direction to Theorem 4.4, i.e., whether each non-circular, non-flabby argument
is represented in some argument graph, we first define a mapping from tree-based arguments to argument
graphs, as follows:

Definition 4.5. Let a be a tree-based argument. A focused argument graph G is a graphical conversion of
a if:

• claim(a) = claim(G);
• if (s, s′) ∈ e(G), then there are n, n′ ∈ nodes(a) such that n′ ∈ children(n), label(n) = s and label(n′) =
s′.
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Figure 6: A set of arguments A (left) for Example 4, with two argument graphs, G1 (top) and G2 (bottom), each of which is
a graphical conversion of A (right).

Let A be a set of tree-based arguments. An argument graph G is a graphical conversion of A if:

• claims(A) ⊆ v(G);
• if (s, s′) ∈ e(G), there is a ∈ A and n, n′ ∈ nodes(a) such that n′ ∈ children(n), label(n) = s and
label(n′) = s′. y

This notion of graphical conversion is illustrated in the following example.

Example 4. Consider the ABA framework:

L = { p, q, r, z, a, b, c }
R = { p← a, q,

p← b, r,

q ← p,

r ← b,

r ← c }
A = { a, b, c }
ā = z, b̄ = z, c̄ = z

Figure 6 shows a set of arguments A with two graphical conversions G1 and G2 of that set. Note that
claims(A) is {p, r}, and {p, r} ⊆ v(G1), {p, r} ⊆ v(G2), as Definition 4.5 requires. Further, for any edge in
either G1 or G2, there is a similarly-labelled edge in one of the arguments in A. y

A graphical conversion of an argument a is a focused argument graph G with the same claim, which can
be thought of as pruning the argument in such a way as to remove circularity and flabbiness. Similarly,
a graphical conversion of a set of arguments A is an argument graph that retains the claims of arguments
in A as nodes, but prunes those arguments in such a way as to remove bloatedness (and thus also, given
Theorem 3.3, circularity and flabbiness). As a consequence, the graphical conversion of a non-circular, non-
flabby argument and the graphical conversion of a non-bloated set of arguments are guaranteed to be unique
and to have the same claims and the same supports as the original (sets of) arguments, as we now prove.
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Figure 7: A non-circular, non-flabby argument (left) and its graphical conversion (right), for Example 3.

Theorem 4.6. (i) Let a be a non-circular, non-flabby argument. Then there is a unique graphical conversion
G of a which is a focused argument graph with claim(a) = claim(G) and support(a) = support(G), such that
a is represented in G. (ii) Let A be a non-bloated set of arguments. Then there is a unique graphical
conversion G of A with claims(A) ⊆ v(G) and

⋃
a∈A support(a) = support(G) and each argument in A is

represented in G. y

Note that for any non-circular, non-flabby argument a there may, in fact, be many different argument graphs
(not necessarily focused) in which a is represented; this occurs when there are argument graphs G′ where a
graphical conversion G of a is such that G is a sub-graph of G′, as illustrated next.

Example 4 (Continued). Figure 7 shows (left) an argument (from Figure 5) with its (focused) graphical
conversion (right). The left argument is also represented in the (non-focused) argument graph in Figure 5
(left). y

Theorems 4.4 and 4.6 together mean that all and only those tree-based arguments that are both non-
circular and non-flabby are represented in argument graphs. Directly from these results, it is easy to see that
there is an analogous relationship of equivalence between non-circular, non-flabby arguments and tree-based
arguments in general.

Theorem 4.7. Let s ∈ L and A ⊆ A. (i) For every non-circular, non-flabby tree-based argument for
s supported by A there exists a tree-based argument for s supported by A. (ii) For every tree-based
argument for s supported by A there exists a non-circular, non-flabby tree-based argument for s supported
by A′ ⊆ A. y

Theorems 4.4, 4.6 and 4.7 easily let us show the following, which establishes the desired result: argument
graphs are, in at least one important sense, equivalent to the tree-based arguments in standard ABA.

Corollary 4.8. Let s ∈ L and A ⊆ A. (i) For every focused argument graph G with claim s supported
by A, there exists an argument a with claim s supported by A. (ii) For every argument a with claim s
supported by A, there exists a focused argument graph G with claim s supported by A′ ⊆ A.

Proof. (i) Let G be a focused argument graph, with claim(G) = s and support A. Then by Theorem 4.3
there is an argument a represented in G, such that claim(a) = s and support(a) ⊆ support(G). It is easy to
see that at least one such a must be such that support(a) = support(G).

(ii) Let a be an argument with claim(a) = s and support(a) = A. Then by Theorem 4.7(ii) there is
a non-circular, non-flabby argument a′ with the same claim, and support A′, where A′ ⊆ A. Then by
Theorem 4.6 there is an argument graph G with claim(G) = s and support(G) ⊆ A. y

Corollary 4.8 indicates that it is possible, when determining whether a sentence is acceptable according to
the various standard extension-based semantics of ABA, to restrict attention to argument graphs. Indeed,
in §4.3 we redefine ABA semantics of admissible and grounded extensions in terms of argument graphs. Yet
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although the corollary shows that there is a correspondence in terms of the existence of arguments for a
given claim, one of the main strengths of using structured argumentation is that the detailed justification for
such claims is presented. As we argued in §3, using trees as representations for arguments typically admits
circularity, flabbiness and bloatedness, and all of these should be excluded, something which is achieved by
the use of argument graphs. We therefore think that there are strong conceptual reasons for preferring them
to tree-based arguments. Other gains, in terms of the dispute derivations and efficiency, are discussed in
later sections.

First though, we consider the relationships between argument graphs and two restricted types of tree-
based arguments.

4.2. Argument graphs and two forms of minimality
To avoid redundancies in arguments, of the form illustrated in Example 2, several existing approaches to

structured argumentation, e.g., logic-based argumentation (Besnard and Hunter, 2014) and DeLP (García
and Simari, 2004), impose forms of minimality on the support of arguments. In this section we consider two
forms of minimality, in relation to argument graphs.

Definition 4.9. An argument a is rule-minimal iff for any two nodes n, n′ in a labelled by the same s ∈ L
the children of n and n′ are labelled by the same elements of L ∪ {>}. y

All arguments shown to the right in Figure 5 are rule-minimal; arguments a2 and a3 from Figure 2 are not.
An alternative way to impose absence of circularity and flabbiness in an argument is to require that it

be rule-minimal.

Theorem 4.10. An argument is rule-minimal iff it is neither circular nor flabby.

Proof. Let a be an argument. First assume a is rule-minimal. By Definitions 3.2 and 4.9, {a} is not bloated.
Thus by the contrapositive of Theorem 3.3, a is neither circular nor flabby.

For the other direction, suppose that a is neither flabby nor circular. Assume for contradiction that it
is not rule-minimal. Then there are nodes n and n′ labelled by some s such that the children of n and n′
are differently labelled. n and n′ cannot be on the same path in a, for then a would be circular. So they are
not; but then a must be flabby. Contradiction. y

Thus, results from §4.1 which make reference to non-circular, non-flabby arguments, are equivalent to
analogous theorems for rule-minimal arguments: Theorem 4.4, for example, can be rephrased as stating that
if a is represented in an argument graph, then a must be rule-minimal.Similar rephrasings of Theorems 4.6,
4.7 and Corollary 4.8 also hold.

Given the relationship between rule-minimal arguments and argument graphs, it should be asked what
the advantages or disadvantages are of using one over the other. First, although a focused argument graph
can be seen as equivalent to a single rule-minimal, tree-based argument, argument graphs also function
for us as representations of a number of different arguments operating dialectically as one: they play the
role of extensions, as we will see more clearly in §4.3 when discussing argument-graph semantics. Bloated
extensions are not excluded by confining ourselves to rule-minimal arguments—as we saw in Example 2, A
is a set of rule-minimal arguments but is bloated. Secondly, argument graphs are inherently more compact
representations: the possible presence of different nodes in a rule-minimal, tree-based argument, labelled by
the same sentence, is wasteful.

While focused argument graphs correspond to rule-minimal arguments and remove several forms of
redundancy, they may still contain redundancies in their support, as illustrated by the following example.

Example 5. Consider the ABA framework in Example 2 but with q ← r in R replaced by q ← b. Shown in
Figure 8 are argument graphs G1 and G2 for p, supported by {a, b} and {b} respectively. Here, the support
of G1 is non-minimal, in that support(G2) ⊂ support(G1). y

Thus, an alternative notion of minimality for arguments is obtained by requiring that their supports are
minimal. The same idea can be applied to argument graphs, as follows.
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Figure 9: Arguments for Example 6. Both a1 (left) and a2 (right) are support-minimal, but only a2 is rule-minimal.

Definition 4.11. A focused argument graph G is support-minimal iff there is no focused argument graph
G′ with claim(G) = claim(G′) such that support(G′) ⊂ support(G). y

Example 5 shows that argument graphs, though representing only rule-minimal arguments, may not be
support-minimal. (In relation to this, see the remarks in Section 7 on the work of Besnard and Hunter
(2008) and García and Simari (2004).)

An analogous notion of support-minimal tree-based arguments can be easily defined. It is also true that,
where some argument a is support-minimal, it does not need to be rule-minimal—and so does not have to
correspond directly to an argument graph. To see this, consider the following simple example.
Example 6. Consider the ABA framework with

L = { p, x, a }
R = { p← p,

p← a }
A = { a }

ā = x

In Figure 9, arguments a1 and a2 are for p and are support-minimal, being supported by {a}, but only a2
is rule-minimal. y

Thus, support-minimality does not guarantee non-circular and non-flabby arguments. Moreover, identifying
support-minimal arguments may be computationally demanding. Indeed, whereas the notion of support-
minimality is ‘global’, in that to check whether a focused argument graph is support-minimal it may need
to be compared with all other focused argument graphs for the same claim, the notion of rule-minimality is
‘local’, in that to check whether an argument is rule-minimal all that is required is a syntactic check of the
argument.

4.3. Argument graph semantics
As noted earlier, argument graphs can be used to replace sets of tree-based arguments (extensions) as

the basic unit of semantics. In discussing extensions in §3, we noted that bloatedness was an undesirable
property. The following theorem shows that argument graphs as the analogues of extensions avoid it.
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Theorem 4.12. Let G be an argument graph, and A the set of arguments represented in G. Then A is not
bloated.

Proof. We must show that there are no two arguments a and b in A such that claim(a) = claim(b). Suppose,
for contradiction, that a and b are two such arguments. Then a and b are identical up to some depth i > 0,
but there is some node na of a, and node nb of b, both of depth i, such that label(na) = label(nb), but

labels(children(na)) 6= labels(children(nb))

But by Definition 4.2, this means that, where a′ is the argument given by the subtree of a rooted at na, and
b′ is the argument given by the subtree of b rooted at nb, then

{s′ | (claim(a′), s′) ∈ e(G)} 6= {s′ | (claim(b′), s′) ∈ e(G)}

But this is impossible, by Definition 4.1, since claim(a′) = claim(b′). Contradiction. Thus there are no such
a and b and A is not bloated. y

In moving to argument graphs as a representation of the relations of rational support between sentences
according to an agent, we need to define corresponding versions of existing, extension-based, argumentation
semantics. To do so, though, we first need to redefine the notion of attack, as follows:

Definition 4.13. Let G, G′ be two argument graphs. Then G attacks G′, written G  G′, if there is
a ∈ v(G′) such that ā = s, for some s ∈ v(G). y

Note that, since an argument graph G represents the relations of rational support holding amongst
sentences, then the agent has an argument for any s ∈ L if s ∈ v(G). Thus, it is appropriate to define a
relation of attack between argument graphs, G  G′, allowing the sentence in G that is contrary of the
attacked assumption in G′ to feature anywhere in G. This contrasts with the definition of attack in tree-
based ABA, in which only the claim—i.e., the root—of the argument is relevant. The following example
illustrates the notion of attack between argument graphs and how it differs from the standard ABA notion
of attack between arguments.

Example 7. Consider the ABA framework:

L = { p, x, y, z, a, b, c }
R = { p← a,

p← b,

x← y,

y ← c }
A = { a, b, c }
ā = y, b̄ = z, c̄ = y

Figure 10 shows the attacks between two argument graphs for this framework. To the left, there is a focused
argument graph G1 with claim p, and to the right, a focused argument graph G2 with claim x. Since
a ∈ v(G1) and ā = y, with y ∈ v(G2), then G2  G1. Similarly, since c ∈ v(G2) and c̄ = y, then G2 attacks
itself: G2  G2. Note that if the graphs were interpreted as tree-based arguments, then neither of these
attacks would be present, since they both stem from an internal node (y is not the claim of G2). y

Using the notion of attack between argument graphs, we can proceed to analogues of the standard
extension-based semantics. Some extension-based semantics make use of the relation of subset inclusion,
⊆, in order to impose a maximality or minimality requirement on the extensions. In moving to argument
graphs, we must use an analogous relation—that of subgraph: whereG andG′ are graphs (including argument
graphs), then G is a subgraph of G′ (written G ⊆ G′) iff:
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Figure 10: Attacks in Example 7. The argument graph G1 is on the left, and G2 is on the right. G2  G1 and G2  G2.

• v(G) ⊆ v(G′); and
• e(G) is the restriction of e(G′) to v(G), i.e.,

e(G) = e(G′) ∩ (v(G)× v(G)).

Moreover, G is a proper subgraph of G′ (written G ⊂ G′) iff G ⊆ G′ and G 6= G′. Finally, we use ♦ to
represent the empty graph (∅, ∅).

Recall the definition of a characteristic function for an abstract argumentation framework (presented in
§2). In defining our semantics for argument graphs, we will make use of the idea of an argument graph
characteristic function, applied here to sets of argument graphs instead of sets of arguments. We will make
use of the following notions.

Definition 4.14. Let G be an argument graph. We define rules(G) to be

{s← s1, . . . , sm | (s← s1, . . . , sm) ∈ R ∧ s ∈ v(G)) ∧ ∀s′((s, s′) ∈ e(G)↔ s′ ∈ {s1, . . . , sm})}.

Let R ⊆ R. We will say that R is rule-consistent iff there are no s← s1, . . . , sm, s← s′1, . . . , s
′
k in R such that

{s1, . . . , sm} 6= {s′1, . . . , s′k}. Further, R is maximally rule-consistent iff R is ⊆-maximally rule-consistent. y

Thus, rules(G) is, informally, the set of rules used in the construction of G. In Figure 10, for Example 7,
rules(G1) = {p ← a} and rules(G2) = {x ← y, y ← c}. In this example, there are two maximally
rule-consistent sets, R1 = {p← a, x← y, y ← c} and R2 = {p← b, x← y, y ← c}.

We now give the definition of argument graph characteristic function. This is analogous to the definition
of the characteristic function of an abstract argumentation framework (see §2), in that it gives a maximal
argument graph which is defended; but we parameterize the function on maximally rule-consistent sets R to
capture the choice of rules underlying the construction of an argument graph. Formally:

Definition 4.15. Let R ⊆ R be maximally rule-consistent, and let G be the set of all argument graphs G
such that rules(G) ⊆ R. The argument graph characteristic function w.r.t. R is the function fR : G→ G such
that for all argument graphs G where rules(G) ⊆ R, fR(G) is the ⊆-maximal argument graph G′ such that:

i. rules(G′) ⊆ R;
ii. for any argument graph G∗, if G∗  G′ then G G∗. y

As shown above, for an argument graph G there may in general be several maximally rule-consistent R
such that rules(G) ⊆ R. Thus, different argument graph characteristic functions can be applied to G to
yield (possibly) ⊆-larger argument graphs. To illustrate this, consider again Example 7, and let Gb be
the argument graph just containing a single node b (so that v(Gb) = {b} and e(Gb) = ∅). Then, for
R1 = {p← a, x← y, y ← c} and R2 = {p← b, x← y, y ← c} given above, it is plain that fR1(Gb) = Gb,
and fR2(Gb) is Gp,b, where v(Gp,b) = {p, b} and e(Gp,b) = {(p, b)}.

The following provides a property of argument graph characteristic functions which we use frequently.
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Figure 11: Argument graphs and attacks for Example 8.

Theorem 4.16. Any argument graph characteristic function fR has a least fixed point equal to fω
R (♦). y

Now, properties of the argument graph characteristic function can then be used to define semantics for
argument graphs, in a way analogous to the relationship between characteristic functions and semantics in
abstract argumentation.

Definition 4.17. Let G be an argument graph.

• G is conflict-free iff it is not the case that G G.
• G is admissible iff it is conflict-free and for all argument graph characteristic functions fR such that
rules(G) ⊆ R, we have G ⊆ fR(G).

• G is complete iff it is conflict-free and for all argument graph characteristic functions fR such that
rules(G) ⊆ R, we have G = fR(G).

• G is grounded iff it is conflict-free and for all argument graph characteristic functions fR such that
rules(G) ⊆ R, G is the least fixed point of fR. y

These are increasingly strong: if G is grounded, it is complete; if G is complete, it is admissible; and if G is
admissible, it is conflict-free.

Example 8. Consider the ABA framework:

L = { p, q, r, a, b }
R = { p← a,

q ← p,

r ← b }
A = { a, b }
ā = r, b̄ = p

Note that here only one set of rules, R itself, is maximally rule-consistent. The argument graphs for this
framework—without ♦—and attacks between them are shown in Figure 11. Since there are no two argument
graphs with the same claim in this example, we let Gx denote the argument graph whose claim is x (for any
x ∈ L).
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All argument graphs here are conflict-free. Gp is admissible, since we have Gp ⊆ fR(Gp) (in fact,
fR(Gp) = Gq); also admissible are Gq itself, Gr, and the empty argument graph ♦. Since fR(Gp) 6= Gp,
Gp is not complete. However, since fR(Gq) = Gq, fR(Gr) = Gr and fR(♦) = ♦, all of Gq, Gr and ♦ are
complete. Finally, ♦ is the only grounded argument graph. y

It might be asked whether the universal quantification over argument graph characteristic functions in
Definition 4.17 is essential, or whether the definition could be weakened to existential quantification and be
equivalent. For the admissible semantics, this is the case, as the following theorem shows.

Theorem 4.18. Let G be conflict free. G is admissible iff for some argument graph characteristic function
fR such that rules(G) ⊆ R, we have G ⊆ fR(G).

Proof. Evidently if G is an argument graph then there is some fR such that rules(G) ⊆ R; we therefore just
need to show that if G ⊆ fR(G) for some such function, then where rules(G) ⊆ R′ for some fR′ , we have
G ⊆ fR′(G).

Suppose for contradiction that there is R′ such that G 6⊆ fR′(G). Then there must be a ∈ v(G)∩A such
that a 6∈ fR′(G), which means that there must be some G∗ such that G∗  G but not G  G∗, with G∗
attacking G at a. Yet then a 6∈ fR(G), contradicting the fact that G ⊆ fR(G). So there is no such maximally
rule-consistent R′. y

By contrast, Example 7 affords an example of why the equivalence which Theorem 4.18 states does not hold
for the complete or grounded semantics. To see this, consider again the (conflict-free) argument graph Gb

such that v(Gb) = {b} and e(Gb) = ∅, and the two maximally rule-consistent sets R1 = {p← a, x← y, y ←
c} and R2 = {p ← b, x ← y, y ← c}. Evidently it is true that fR1(Gb) = Gb, so that there is some set R1
for which Gb is a fixed point; but R2 is also such that rules(Gb) ⊆ R2, and yet fR2(Gb) 6= Gb.

The various semantics introduced earlier can be equivalently reformulated without making use of the
argument graph characteristic function, in a style similar to that of the definition of the corresponding
semantics in abstract argumentation, by virtue of the following result.

Theorem 4.19. Let G be a conflict-free argument graph.

i. G is admissible iff for any argument graph G′ such that G′  G, then G G′.
ii. G is complete iff it is admissible and there is no argument graph G′ such that G ⊂ G′ and for all

argument graphs G∗, if G∗  G′, then G G∗.
iii. If G is grounded, then it is ⊆-minimally complete.

Proof. Let G be conflict-free.

i. First suppose G is admissible, and that G′ is such that G′  G. Pick any fR such that rules(G) ⊆ R.
Then since G is admissible, G ⊆ fR(G). But then G′  fR(G), so that by the definition of fR, G G′.
Suppose now that for any argument graph G′ such that G′  G, then G  G′ (namely G defends
itself). We must show that G is admissible. G is conflict-free, so that we need to show that for all
argument graph characteristic functions fR such that rules(G) ⊆ R, G ⊆ fR(G). Let fR be any such
function. That G ⊆ fR(G) follows directly from Definition 4.15 and G defending itself.

ii. Suppose G is complete; then it is admissible. We must show that there is no G′ such that G ⊂ G′

and for all G∗, if G∗  G′ then G  G∗. Suppose there is such a G′, for contradiction, and let
fR′ be such that rules(G′) ⊆ R′. By the definition of complete argument graph, and the fact that
rules(G) ⊆ rules(G′), it must be that G = fR′(G). But that violates the ⊆ -maximality condition in
Definition 4.15: contradiction. So there is no such G′.
Suppose now that G is admissible and there is no G′ such that G ⊂ G′ and for all G∗, if G∗  G′

then G  G∗. Let fR be such that rules(G) ⊆ R. By admissibility, G ⊆ fR(G), so we only need to
show that fR(G) ⊆ G. The result easily follows by Definition 4.15.
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Figure 12: Argument graphs and attacks for Example 9.

iii. Assume G is grounded. Plainly it is complete; we must show that it is ⊆-minimally so. Suppose
for contradiction there is G− ⊂ G such that G− is complete. Then, by Definition 4.17, for all
fR− such that rules(G−) ⊆ R−, we have G− = fR−(G−). But then, since G− ⊂ G, we have that
rules(G−) ⊂ rules(G), so that for all fR such that rules(G) ⊆ R, G− = fR(G−), i.e., G− is a fixed
point for all such fR. This contradicts the groundedness of G. So there is no such G−, and G is
⊆-minimally complete. y

It is important to note here that the conditional (iii) of Theorem 4.19 cannot be strengthened to a bicondi-
tional, as we show next.

Example 9. Consider the ABA framework:

L = { p, q, x, y, z, a, b, d, c, e }
R = { p← a,

q ← p, b,

q ← p, d,

y ← c,

z ← e }
A = { a, b, c, d, e }
ā = x, b̄ = y, c̄ = q, d̄ = z, ē = p

Now consider Figure 12. First consider the argument graphs in the left-hand box. The large, central
argument graph G1 (containing q) defends itself from the argument graph containing y (G2, left) and the
argument graph containing z (G3, right). Since these are the possible attacks on G1, G1 is admissible. Then
it is also complete. Is it grounded? Yes, since rules(G1)={p ← a, q ← p, d}; it is not hard to see that for
any fR such that rules(G1) ⊆ R, G1 is the least fixed point of fR; and, as ensured by Theorem 4.19, G1 is
⊆-minimally complete.

Now consider the argument graphs in the right-hand box. Let G4 be the central argument graph
(containing q), with G5 the argument graph to its left containing y, and G6 the argument graph to its
right. Plainly, v(G1) = v(G4); the difference between them is in the rule used to support q. As be-
fore, G4 is admissible, and it is also ⊆-minimally complete. However, it is not grounded: for consider
R = {p ← a, q ← b, p, y ← c, z ← e}. This is the only maximally rule-consistent set of rules such that
rules(G4) ⊆ R. Now:

fR(♦) = ({p, a}, {(p, a)})
f2

R(♦) = ({p, a, d}, {(p, a)})
f3

R(♦) = f2
R(♦)
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Figure 13: Complete argument graphs for Example 10.

Let G′ = ({p, a, d}, {(p, a)}). Then G′ 6= G4 is the least fixed point of all fR such that rules(G4) ⊆ R (as we
have seen there is only one such R), so that G4 cannot be grounded. Note that G′ itself is not grounded, since
it is not the least fixed point of all fR′ such that rules(G′) ⊆ R′, e.g. for R′ = rules(G1) for G1 considered
earlier.

The fact that G1 is grounded and G4 is not can be intuitively understood with reference to the way the
argument graph characteristic function operates with respect to the two sets of rules. q in G4 depends on
b, yet for b to be defended, q must already have been established; this pattern does not exist in G1, where
q does not depend on b. y

In general, there may be more than one grounded argument graph for a given framework, as the following
example shows.

Example 10. Consider the ABA framework:

L = { p, q, r, x, a, b, c, d, e, f }
R = { p← a,

p← b,

q ← c,

r ← d }
A = { a, b, c, d, e, f }
ā = x, b̄ = x, c̄ = p, d̄ = q, ē = f, f̄ = e

Figure 13 shows all the complete argument graphs for this framework. These are also admissible (there are
additional admissible argument graphs, e.g., the empty argument graph). It is evident that the two left-most
graphs are ⊆-minimal as well as grounded. y

The following two theorems establish the relations between argument graph semantics and extension-
based semantics.

Theorem 4.20. Let G be an argument graph and AG the set of arguments represented in G.

i. If G is admissible, so is AG.
ii. If G is complete, then there is a complete extension A∗ such that AG ⊆ A∗ and claims(AG) =

claims(A∗).
iii. If G is grounded and A∗ is the grounded extension, then AG ⊆ A∗ and claims(AG) = claims(A∗). y

As an illustration of this result, consider the top-left, grounded argument graph in Figure 13 for the ABA
framework in Example 10. The set of arguments it represents is shown to the left of Figure 14, the grounded
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Figure 14: To the left: the arguments represented by the top-left argument graph from Figure 13. To the right is the grounded
extension. (Both concern the framework of Example 10.)

extension is shown to the right. As Theorem 4.20 ensures, the left-hand set is a subset of the right-hand set.
The converse direction of Theorem 4.20 holds, making use of the notion of graphical conversion from

Definition 4.5, as follows:

Theorem 4.21. Let A be a set of tree-based arguments.

i. If A is admissible, then for all conversions G of A, G is admissible.
ii. If A is complete, then for all conversions G of A, G is complete.
iii. If A is grounded, then there exists a conversion G of A such that G is grounded. y

The existential quantifier of part (iii), here, cannot be strengthened to a universal, as Example 9 shows. For
let A be the set of arguments that are either represented in G1 or in G4; A is the grounded extension. Both
G1 and G4 are conversions of A. Since G1 is grounded, then (iii) is confirmed, but the fact that G4 is not
grounded shows that we cannot strengthen the existential quantifier. Note that, as a corollary of this result
and existing results on existence of grounded and admissible extensions for all ABA frameworks (Bondarenko
et al., 1997; Dung, 1995), grounded and admissible argument graphs are also always guaranteed to exist, for
any ABA framework.

Recall now the notion of a sentence s being admissible or grounded with respect to some A ⊆ A (defined
in §2). The following corollary, which follows easily from ones already proven, shows that this notion is
matched by a corresponding notion defined in terms of argument graphs.

Corollary 4.22. (i) Let A be an admissible (respectively grounded) extension, with a ∈ A such that
claim(a) = s. Then there is an admissible (respectively grounded) argument graph G such that s ∈ v(G).
(ii) Let G be an admissible (respectively grounded) argument graph with s ∈ v(G). Then there is an
admissible (respectively grounded) extension A and some a ∈ A such that s = claim(a).

Proof. Part (i) is an easy consequence of Theorem 4.21. Part (ii) is an easy consequence of Theorem 4.20. y

We will use this last result in the following section, in relation to the soundness and completeness of the
dispute derivations we therein define.

5. Graphical Dispute Derivations

In this section we define the novel computational machinery of graphical dispute derivations (graph-DDs
in short) for determining whether a given sentence is supported by an admissible or grounded argument
graph, and computing an admissible argument graph for showing that this is the case. These graph-DDs
can be seen as an evolution of the dispute derivations of (Dung et al., 2006, 2007; Toni, 2013) for ABA and
of (Thang et al., 2009) for abstract argumentation. Like their predecessors, graph-DDs are finite sequences
of tuples, each tuple representing a state of play in a game between two fictional players, proponent and
opponent. However, whereas their ABA predecessors use sets of assumptions or intermediate steps in the
construction of arguments to represent a state of play, graph-DDs use intermediate steps in the construction
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of argument graphs. Moreover, graph-DDs use a graph to guarantee termination and completeness in the
grounded case, inspired by (Thang et al., 2009), but having sentences rather than arguments as nodes. Like
the X-dispute derivations of (Toni, 2013), graph-DDs are defined parametrically, with specific choices of
parameters supporting computation under different semantics; however, whereas graph-DDs are defined for
admissible and grounded argument graphs, X-dispute derivations are defined for admissible, grounded and
ideal sets of assumptions/arguments.

Before we formally define graph-DDs in §5.2, we give some preliminary definitions in §5.1. We illustrate
graph-DDs in §5.3, also pointing out differences with the dispute derivations of (Dung et al., 2006, 2007;
Toni, 2013). We prove soundness and completeness of graph-DDs with respect to the semantics of admissible
and grounded argument graphs in §5.4, and discuss in §5.5 an implementation of graph-DDs we have used
for experimentation in §6.

5.1. Preliminaries
In graph-DDs, argument graphs are built gradually, starting with a single sentence. This process requires

some means of marking which sentences s of a growing argument graph have already been processed—where
processing typically involves, if s 6∈ A, extending the graph at s by adding edges to other sentences in a rule
whose head is s. Potential argument graphs are intermediate steps in the construction of argument graphs
where sentences are marked or unmarked, defined as follows.

Definition 5.1. A potential argument graph G is a directed acyclic graph equipped with a set of unmarked
sentences u(G) ⊆ sinks(G), where v(G) ⊆ L and for all s ∈ v(G):

i. if s ∈ A, then s ∈ sinks(G);
ii. if s 6∈ A, then either (a) s ∈ u(G); or (b) s 6∈ u(G) and there is a rule (s← s1, . . . , sn) ∈ R such that

there is an edge (s, s′) in e(G) iff s′ ∈ {s1, . . . , sn}.

If s ∈ u(G) it is said to be unmarked; if s ∈ v(G) \ u(G) it is said to be marked. We sometimes write m(G)
for v(G) \ u(G).

G is said to be focused if it has a unique source, called the claim of G and represented as claim(G). The
support of G, written support(G), is v(G) ∩ A.

If u(G) = ∅ then G is also referred to as an actual argument graph. y

Note that, if we ignore the (empty set of) unmarked sentences, an actual argument graph G is an argument
graph according to Definition 4.1. We call this the corresponding argument graph of G. Note also that we
sometimes elide the ‘potential’ qualification where this causes no ambiguity.

An actual argument graph corresponds to the situation where all of the beliefs of an agent which stand
in need of inferential support have an appropriate support—if one is needed—with respect to the beliefs
of that agent, and this is known to the agent. The existence of an appropriate support is secured for
non-assumptions by condition (ii)(b) in Definition 5.1; assumptions need no support, and indeed cannot
have one—this is ensured by condition (i). The knowledge to the agent is represented by the condition
on actuality of the argument, that u(G) = ∅. Potential argument graphs, by contrast, correspond to the
situation where some of the beliefs of an agent which require support do not yet have it, or to the situation
where an agent has beliefs that do not require inferential support, but the agent does not yet know this.
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Figure 15: Graph G1 (left) and graph G2 (right) for Example 11.

Example 11. Consider the following ABA framework:

L = { p, q, r, s, t, x, y, a, b }
A = { a, b }
R = { p← q, r,

q ← a,

r ← t, a, b,

s← b,

t← }
ā = x, b̄ = y

Consider graphs G1 and G2, shown to the left and right, respectively, in Figure 15. Now, G1 is necessarily
merely a potential argument graph, since it must be that s, r ∈ u(G1). (That a ∈ u(G1) and that a 6∈ u(G1)
are both consistent with Definition 5.1.) However, G2 may be either potential or actual: for any of a, t, or
b—or none of them—might be members of u(G2). If G2 is potential and t ∈ u(G2) then t is a belief that
requires no inferential support but the agent does not yet know this. y

It may be possible to expand a potential argument graph to form a single actual argument graph, several
actual argument graphs, or not to expand it further at all, as illustrated by the following example.

Example 12. Consider the ABA framework shown below.

L = { p, q, r, z, a, b }
A = { a, b }
R = { p← a,

q ← a,

q ← b }
ā = z, b̄ = z

Consider the potential argument graphs shown in Figure 16. The argument graph Gp, shown on the left
of the leftmost box, is such that v(Gp) = u(Gp) = {p}, and e(Gp) = ∅: this is a potential argument graph
in which p is unmarked. Gp can be expanded into the actual argument graph Gp,a shown on the right of
the leftmost box, where u(Gp,a) = {a} or u(Gp,a) = ∅; this corresponds to an argument graph as given by
Definition 4.1, if we ignore the marking. Given the absence of any rule in R other than p ← a, there is no
other actual (or indeed, potential) argument graph than Gp,a which is an expansion of Gp.

By way of contrast, the leftmost potential argument graph in the middle box, Gq, with v(Gq) = u(Gq) =
{q}, can be expanded into both Gq,a and Gq,b, as shown in Figure 16; this is allowed by the presence of both
q ← a and q ← b in the set of rules.
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Figure 16: Potential argument graphs for Example 12: in the leftmost box, Gp, and Gp,a; in the middle box, Gq , Gq,a and
Gq,b; in the rightmost box, Gr. The unmarked sentences are given in bold (the sentences p, q and r from Gp, Gq and Gr,
respectively).

Finally, note that Gr with v(Gr) = u(Gr) = {r}, in the rightmost box, cannot be expanded into an
actual argument graph, since there is no rule in R whose head is r. y

The notion of expansion used informally in Example 12 can be formalized as follows.

Definition 5.2. Let G be a potential argument graph. An expansion of G is an potential argument graph
G′ such that:

• v(G) ⊆ v(G′);
• e(G) ⊆ e(G′);
• m(G) ∩ u(G′) = ∅;
• if s ∈ v(G) and {s′ | (s, s′) ∈ e(G)} is non-empty, then {s′ | (s, s′) ∈ e(G)} = {s′ | (s, s′) ∈ e(G′)}. y

(Note that this allows a potential argument graph to be an expansion of itself.)

Thus, an expansion G′ of a potential argument graph G is another potential argument graph which ‘grows’
G′ in a particular way, by choosing rules to justify all members of u(G). We saw this in Example 12, where
Gp was expanded into Gp,a by the rule p← a; and Gq may be grown into Gq,a or Gq,b depending on whether
the rule q ← a or q ← b is used. Note that, trivially, the expansion of a focused potential argument graph
is a focused argument graph with the same claim.

Our graph-DDs manipulate sets of potential argument graphs (generated by the opponent player), which
are equipped with machinery for distinguishing their marked (i.e., processed) and unmarked members. We
refer to these sets as argument graph sets, defined as follows.

Definition 5.3. An argument graph set O is a set of potential argument graphs, equipped with a set
u(O) ⊆ O of the unmarked members. If G ∈ u(O) we say that G is unmarked in O; if G ∈ O \u(O) we say
that G is marked in O. y

Note that this definition implies that, if O is an argument graph set and O = ∅, then u(O) = ∅.
To simplify the presentation of graph-DDs, it will prove convenient to define the following operations in

relation to potential argument graphs and argument graph sets. Some are overloaded.

Definition 5.4. In the following, G and G′ are potential argument graphs; s ∈ L; S ⊆ L; O and O′ are
argument graph sets; and X is a set of potential argument graphs (not an argument graph set).

• newgrph(s) is G, where v(G) = u(G) = {s} and e(G) = ∅.
• G ∪u S is G′, where v(G′) = v(G) ∪ S, e(G′) = e(G) and u(G′) = u(G) ∪ S.
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G ∪g E
X=adm G
X=grn (v(G) ∪ {x | (s, s′) ∈ E, (x = s ∨ x = s′)}, e(G) ∪ E)

Table 1: Definition of ∪g .

• G ∪m S is G′, where v(G′) = v(G) ∪ S, e(G′) = e(G) and u(G′) = u(G) \ S.
• O ∪u X is O′, where O′ contains just the argument graphs in O and X, and u(O′) = u(O) ∪X.
• O ∪m X is O′, where O′ contains just the argument graphs in O and X, and u(O′) = u(O) \X.
• O \X is O′, where O′ contains just the argument graphs in O but not in X, and u(O′) = u(O) \X.
• updtgrph(G, s← s1, . . . , sn, S), where (s← s1, . . . , sn) ∈ R, is G′, where:

– v(G′) = v(G) ∪ {s1, . . . , sn};
– e(G′) = e(G) ∪ {(s, s′) | s′ ∈ {s1, . . . , sn}};
– u(G′) = (u(G) ∪ {s′ ∈ {s1, . . . , sn} | s′ 6∈ m(G)}) \ ({s} ∪ S). y

In words, these operations are as follows. newgrph takes a sentence s ∈ L and forms a new potential
argument graph in which s is unmarked. G∪u S is the result of adding the sentences in S unmarked to the
argument graph G, and leaving G otherwise unchanged; G ∪m S is the result of adding the sentences in S
marked to G. O∪uX adds the argument graphs inX unmarked to O, and O∪mX adds the argument graphs
in X marked to O. O\X removes all argument graphs in X from O. Finally, updtgrph(G, s← s1, . . . , sn, S)
extends G at s by adding s1, . . . , sn to G’s vertices (where not already present), and by adding edges from
s to each of s1, . . . , sn; any si which was not already marked in G is, in updtgrph(G, s ← s1, . . . , sn, S),
unmarked—unless si is in S.

5.2. Graphical dispute sequences and derivations
In this section we give the full definition of the graph-DDs used to determine whether some sentence

s ∈ L is admissible/grounded. The basic concept is that of an X-graphical dispute sequence (graph-DS in
short), where X can be either adm (for ‘admissible’) or grn (for ‘grounded’). Successful graph-DDs are
graph-DSs of a particular form.

In defining graph-DSs, we make use of a concept of selection, in the same spirit of (Dung et al., 2006,
2007; Toni, 2013). Given the ith tuple, this chooses, for some specified component in the tuple, an element
of that component. This element is then operated on, to form the (i+ 1)th tuple. Informally, the ith tuple
in a graph-DS consists of

• a proponent potential argument graph Pi;
• an opponent argument graph set Oi;
• a graph Gi whose nodes are sentences;
• a set of assumptions Di (the proponent defences);
• a set of assumptions Ci (the opponent culprits).

Moreover, the definition of graph-DSs uses the operator ∪g defined in Table 1. ∪g is defined parametrically
according to whether X is adm or grn, for G a graph and E a set of pairs of sentences (edges). Thus,
substantially, G ∪g E is only playing a role when X = grn (as it ignores E for X = adm). Finally, in the
definition of graph-DSs, for any graph G or proponent potential argument graph P, acyclic(G)/acyclic(P)
is true iff G/P (respectively) is acyclic.

In presenting the definition we follow the convention that where elements of a tuple do not change from
the ith to the (i+ 1)th step, then this is not noted explicitly, and we typically write rules in R in the form
s← R where R is the set of sentences in the body of the rule.
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Definition 5.5. Let s0 ∈ L. Let n be such that 0 6 n 6 ω.6 An X-graphical dispute sequence (X-graph-DS,
for X ∈ {adm,grn}) for s0 of length n is a sequence ((Pi,Oi,Gi, Di, Ci))n

i=0, where:

P0 = newgrph(s0)
O0 = ∅

G0 =
{
♦ if X = adm
({s0}, ∅) if X = grn

D0 = A ∩ {s0}
C0 = ∅

and for every i such that 0 6 i < n, only one s ∈ u(Pi) or one G ∈ u(Oi) is selected and

1. if s ∈ u(Pi) is selected, then

(i) if s ∈ A, then:

Pi+1 = Pi ∪m {s}

Oi+1 =
{

Oi if ∃G ∈ Oi such that s̄ = claim(G)
Oi ∪u {newgrph(s̄)} otherwise

Gi+1 = Gi ∪g {(s̄, s)}

and acyclic(Gi+1);
(ii) if s 6∈ A, then there is some (s← R) ∈ R such that R ∩ Ci = ∅, and

Pi+1 = updtgrph(Pi, s← R, ∅)
Gi+1 = Gi ∪g {(s′, s) | s′ ∈ R}
Di+1 = Di ∪ (R ∩ A)

and acyclic(Pi+1), acyclic(Gi+1);

2. if G ∈ u(Oi) and s ∈ u(G) are selected, then

(i) if s ∈ A, then:
(a) either s is ignored, i.e.:

Oi+1 = (Oi \ {G}) ∪u {G ∪m {s}}

(b) or s 6∈ Di and s ∈ Ci, and:

Oi+1 = (Oi \ {G}) ∪m {G ∪m {s}}
Gi+1 = Gi ∪g {(s̄, claim(G))}

and acyclic(Gi+1);
(c) or s 6∈ Di and s 6∈ Ci, and:

Pi+1 =
{
Pi if s̄ ∈ v(Pi)
Pi ∪u {s̄} otherwise

Oi+1 = (Oi \ {G}) ∪m {G ∪m {s}}
Gi+1 = Gi ∪g {(s̄, claim(G))}
Di+1 = Di ∪ ({s̄} ∩ A)
Ci+1 = Ci ∪ {s}

and acyclic(Gi+1);

6As conventionally, ω is the least infinite ordinal.
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Figure 17: A depiction of an adm-graph-DS for a for Example 13.

(ii) if s 6∈ A, let:

RC =
{
∅ if X = grn
{R | (s← R) ∈ R, R ∩ Ci 6= ∅, acyclic(updtgrph(G, s← R, ∅))} otherwise

R¬C = {R | (s← R) ∈ R, acyclic(updtgrph(G, s← R, ∅)), R 6∈ RC};

then:

Oi+1 = ((Oi \ {G}) ∪m {updtgrph(G, s← R,Ci) | R ∈ RC})
∪u {updtgrph(G, s← R, ∅) | R ∈ R¬C}. y

Several examples of (finite) graph-DSs are given in §5.3, to illustrate different aspects of the sequences. The
following is a simple example.

Example 13. Consider the ABA framework:

L = { p, q, a, b }
A = { a, b }
R = { p← b,

q ← }
ā = p, b̄ = q

A sample adm-graph-DS of length 4 for a is represented in Figure 17. Here and in the remainder, (a
representation of the components of the tuple in) each step is enclosed within dashed lines. The proponent
argument graphs are shaded, and the opponent argument graphs are in solid lines (opponent graphs are
in thick solid lines if unmarked, in thin lines if marked). Within an argument graph, the unmarked sentences
are depicted in bold. The same sequence is represented in tabular form in Table 2 (with the same convention
on unmarked sentences as in Figure 17). Here, we also show the case of the definition of an adm-graph-
DS which was applied (cf. Definition 5.5), and we only show the unmarked opponent argument graphs.
Moreover, we omit (in both presentations of the sequence) the Gi component (as this is always the empty
graph for an adm-graph-DS).

Note that this sequence is also a grn-graph-DS, if the components Gi are added as in Table 3. The
acyclicity check is clearly passed by Gi at each step.
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Step Case Pi Oi (only u(Oi) shown) Di Ci

0 n/a ({a}, ∅) ∅ {a} ∅
1 1(i) ({a}, ∅) {({p}, ∅)} {a} ∅
2 2(ii) ({a}, ∅) {({p,b}, {(p, b)})} {a} ∅
3 2(i)(c) ({q, a}, ∅) ∅ {a} {b}
4 1(ii) ({q, a}, ∅) ∅ {a} {b}

Table 2: Tabular adm-graph-DS for the same derivation shown in Figure 17.

Step Gi

0 ({a}, ∅)
1 ({a, p}, {(p, a)})
2 ({a, p}, {(p, a)})
3 ({a, p, q}, {(p, a), (q, p)})
4 ({a, p, q}, {(p, a), (q, p)})

Table 3: Gi components for grn-graph-DS version of the adm-graph-DS in Figure 17 and Table 2.

Note further that any initial sequence of the graph-DS here is also a graph-DS; this is true in general,
both for adm-graph-DSs and grn-graph-DSs. y

Some commentary on Definition 5.5 is appropriate here; we take the cases by turn.

1. A sentence s is selected amongst the unmarked sentences in the proponent potential argument graph,
for attempted expansion of this graph.

1(i). If this selected sentence s is an assumption, then where this has already been considered as a
point of attack (as determined by seeing that there is an opponent focused potential argument
graph G in the current argument graph set Oi with claim the contrary of the sentence), no
further processing needs to be performed on s. Otherwise, the existence of opponent focused
argument graphs attacking s needs to be determined and each such graph needs to be counter-
attacked, so a new opponent focused potential argument graph with just s̄ as a node is added
to the argument graph set (to form Oi+1). In both cases the selected assumption is marked.

1(ii). If s is not an assumption, then the proponent potential argument graph is expanded by adding
edges corresponding to sentences in the body of a chosen rule whose head is s, and marking
s in the resulting potential argument graph. The rule chosen for expansion needs to have no
current culprits amongst its assumptions (R ∩ Ci = ∅). The fact that s was unmarked ensures
that it has no existing children in the proponent potential argument graph. An acyclicity
check is performed on the resulting proponent potential argument graph (to ensure the result
of the update is still a potential argument graph). Every assumption in R is added to Di, to
remember that it is necessarily a defence for the proponent.

After each of these cases, if X = grn, Gi will have been updated, and an acyclicity check performed.
2. An opponent potential argument graph (in the current opponent argument graph set Oi) is selected

for expansion or for being counter-attacked, and an unmarked s selected from the graph.

2(i)(a). The selected sentence s is an assumption, which is ignored. The graph-DS would then have
to find another means of attacking the selected argument graph, which is therefore returned
unmarked to Oi+1, but with s marked.

2(i)(b). The selected sentence s is an assumption which is already attacked by the proponent (since
it belongs to the current set of culprits). In this case the opponent argument graph can be
marked (with s also marked).
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2(i)(c). s is an assumption which is not yet known to be attacked, and is not amongst the proponent
defences Di. If s̄ is in the proponent potential argument graph, then there is in fact an attack
against s already, so that no further changes to the proponent graph are necessary. If s̄ is not
currently in the proponent potential argument graph, then it is added, so that at some later
stage the proponent must find a way to argue for it. In both cases the opponent argument
graph can also be marked (with the selected sentence also marked). Moreover, the selected
sentence is remembered as a culprit (in Ci+1) and its contrary, if an assumption, is remembered
as a defence (in Di+1).

After each of these cases, if X = grn and Gi has been updated (cases 2(i)(b) and 2(i)(c)), then an
acyclicity check on it is performed.

2(ii). If s is not an assumption, then the opponent argument graph from which it was selected can be
expanded in as many ways as the number of rules with s as their head. For X = adm things work
as follows. Some of those rules (RC) will produce expansions which are already attacked (as they
have a current culprit in their body); these are added marked to Oi to form Oi+1. The others
(R¬C) produce expansions which are not already attacked; these expansions must be added as
unmarked to form Oi+1, so that the proponent must find counter-attacks at a later stage.
In the case of X = grn, all expansions are considered as not currently attacked, independently
of the presence of existing culprits in their bodies.
In both cases (X = grn and X = adm), rules introducing cycles into the selected opponent
potential argument graph G are ignored, as, intuitively, they are not possibly contributing to
generating attacks.
In the case of those expanded argument graphs which are added unmarked to form Oi+1, then
all new sentences are unmarked; for the expanded argument graphs which are added marked to
form Oi+1, those sentences are unmarked which are new and not members of Ci, i.e., not culprits
already.

Note that in general we perform an acyclicity check on potential argument graphs as they are being con-
structed. This occurs, for the proponent, in case 1(ii) of Definition 5.5, where Pi is expanded; and in case
2(ii) for the opponent, where a member of Oi is expanded (possibly, in many different ways). Since argu-
ment graphs must be acyclic by definition, this ensures that the graphs we build conform to that definition,
while at the same time guaranteeing termination. Overall, the following theorem establishes the coherence
of Definition 5.5.

Theorem 5.6. Let ((Pi,Oi,Gi, Di, Ci))n
i=0 be an X-graph-DS for s0. Then for all i such that 0 6 i 6 n (if

n is finite), or all i such that 0 6 i < n (otherwise—i.e., if n = ω):

i. Pi is a potential argument graph, and s0 ∈ v(Pi);
ii. Oi is an argument graph set;
iii. Gi is a directed graph over L;
iv. Di ⊆ A and Ci ⊆ A. y

A graph-DD is a finite graph-DS with a particular constraint on the last tuple, as follows.

Definition 5.7. Let s0 ∈ L. An X-graphical dispute derivation (X-graph-DD, X ∈ {adm,grn}) for s0
with resulting (potential argument graph) Pn is an X-graph-DS for s0 of length n < ω:

(P0,O0,G0, D0, C0), . . . , (Pn,On,Gn, Dn, Cn)

where u(Pn) = ∅ and u(On) = ∅. y
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The graph-DS in Example 13 is a graph-DD. The constraints in Definition 5.7 mean that a graph-DD must
terminate with no members of v(Pn) being without a justification (u(Pn) = ∅), and all opponent potential
argument graphs in On having been processed (u(On) = ∅). The first constraint amounts to imposing that
the resulting potential argument graph of a graph-DD is in fact an actual argument graph, as sanctioned
by the following.

Corollary 5.8. Let X ∈ {adm,grn} and (P0,O0,G0, D0, C0), . . . , (Pn,On,Gn, Dn, Cn) be an X-graph-DD
for s0. Then Pn is an actual argument graph.

Proof. By Theorem 5.6, Pn is a potential argument graph. Definition 5.7 requires that u(Pn) = ∅, so by
Definition 5.1, Pn is actual. y

By virtue of this result, we often use the argument graph P corresponding to Pn as resulting from an
X-graph-DD (P0,O0,G0, D0, C0), . . . , (Pn,On,Gn, Dn, Cn).

Given an X-graph-DS (P0,O0,G0, D0, C0), . . . , (Pi,Oi,Gi, Di, Ci), there are several indeterminacies in
Definition 5.5, which give the X-graph-DS the possibility of being continued in different ways to give an
X-graph-DD. The indeterminacies fall into two categories: (A) those that make no difference to the overall
outcome, i.e. to whether the X-graph-DS can be extended into an X-graph-DD and which X-graph-DDs
are possible; (B) those which do make such a difference. Into the first category fall:

A1. the selection of either s ∈ u(Pi) or G ∈ u(Oi) and s ∈ u(G)—determining whether case (1) or case
(2) in Definition 5.5 applies;

A2. given a choice between cases (1) and (2) of Definition 5.5, the selection of the particular members of
the sets—i.e. for case (1) which s ∈ u(Pi) is selected; for case (2), which G ∈ u(Oi) and s ∈ u(G) are
selected.

That these indeterminacies make no difference to the overall outcome can be seen intuitively. For A1, it
is evident that all s ∈ u(Pi) and G ∈ u(Oi) must be considered at some point, since for there to be a
graph-DD, each of these sets must eventually be empty. For A2, again, it is plain that, in the proponent
case (1), all s ∈ u(Pi) must eventually be selected and treated according to Definition 5.5—intuitively,
all s ∈ u(Pi) are pending proof, and if the potential argument graph is to become an actual argument
graph, everything the proponent needs to support or defend must be proved. In the opponent case, the
reasoning is similar: each G ∈ u(Oi) represents a possible challenge on the part of the opponent to some
assumption the proponent has made use of; and all such challenges must be met. Also, within a specific
opponent G, if s is selected which does not lead to a successful counter-attack by the proponent, then
this can be dealt with by the ‘ignore’ case, which is relevant to eventual success of the graph-DD (see B2).

Evidently, it is not always the case that a selection can be made: if Pi is empty but Oi is not, then the
X-graph-DS can only be continued according to case (2) in Definition 5.5. The selection of type (A1) can
actually be equated to the selection of a player amongst proponent and opponent. This selection can
be made explicit in the specification of graph-DSs and graph-DDs, similarly (Toni, 2013), by means of a
function player : N→ {proponent,opponent} that can be constrained to select a player at any step in a
graph-DD only if its component if non-empty.

The indeterminacies which do make a difference to the overall outcome are:

B1. the choice of a rule s← R in case 1(ii);
B2. the choice between cases 2(i)(a) and either 2(i)(b) or 2(i)(c).

Indeed, several alternative rules may be possible in case 1(ii), and every assumption can be ignored if it does
not belong already to the defence set (if it does, then case 2(i)(a) is the only option). We illustrate how B1
and B2 make a difference to the outcome of a graph-DD in §5.3.

The distinction between those indeterminacies which do, and those which do not, make a difference to
which graph-DD a graph-DS may form part of, is relevant in implementations: for while parameters can be
used to give strategies for making choices in each category, those of the latter need to be capable of being
backtracked over in a search strategy. For example, if no rule for s exists in case (1)(ii) with no culprits in
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Figure 18: adm-graph-DD for p for Example 14.

Step Case Pi Oi (only u(Oi) shown) Di Ci

0 n/a ({p}, ∅) ∅ ∅ ∅
1 1(ii) ({p,a}, {(p, a)}) ∅ {a} ∅
2 1(i) ({p, a}, {(p, a)}) {({z}, ∅)} {a} ∅
3 2(ii) ({p, a}, {(p, a)}) ∅ {a} ∅

Table 4: Tabulated form of the derivation from Figure 18.

the body, then the graph-DS cannot be continued and backtracking needs to take place. We discuss this
matter again in §5.5.

5.3. Examples of graph-DDs
Recall the indeterminacies of Definition 5.5, discussed at the end of Section 5.2. It is easy to see that B1

makes a difference to the result of a graph-DD, as follows.

Example 14. Consider the ABA framework:

L = { p, q, z, a }
A = { a }
R = { p← q,

p← a }
ā = z

The graph G consisting of nodes {p, a} and the single edge (p, a) is clearly both an admissible and a grounded
argument graph. Figure 18 depicts an adm-graph-DD for p (which is also a grn-graph-DD for p). Note
that the movement from step 2 to step 3 in Figure 18 removes the opponent argument graph whose claim
is z, since no rule can be used to prove z. The derivation is also shown as a sequence of tuples, in tabular
form (and ignoring the Gi component), in Table 4. However, an adm-graph-DS or grn-graph-DS for p that
picked the rule p← q to use at step 1(ii), after selecting p, could not be extended to a full adm-graph-DD
or grn-graph-DD: indeed, informally, there is no way of proving q in the given ABA framework. Thus, B1
genuinely makes a difference to whether a graph-DS can be extended into a graph-DD. y

That B2 makes a difference to the outcome of a derivation is shown in the following.
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Step Case Pi Gi Di

Oi (only u(Oi) shown) Ci

0 n/a ({p}, ∅) (∅, ∅) ∅
∅ ∅

1 1(ii) ({p,a}, {(p, a)}) ({p, a}, {(a, p)}) {a}
∅ ∅

2 1(i) ({p, a}, {(p, a)}) ({p, a}, {(a, p), (z, a)}) {a}
{({z}, ∅)} ∅

3 2(ii) ({p, a}, {(p, a)}) ({p, z, a, b}, {(a, p), (z, a)}) {a}
{({z,b, c}, {(z, b), (z, c)})} ∅

4 2(i)(a) ({p, a}, {(p, a)}) ({p, z, a, b}, {(a, p), (z, a)}) {a}
{(({z, b, c}, {(z, b), (z, c)})} ∅

5 2(i)(c) ({p, a, r}, {(p, a)}) ({p, r, z, a, b}, {(a, p), (z, a), (r, z)}) {a}
∅ {c}

6 1(ii) ({p, a, r}, {(p, a)}) ({p, r, z, a, b}, {(a, p), (z, a), (r, z)}) {a}
∅ {c}

Table 5: grn-graph-DD for p, for Example 15.

Example 15. Consider the ABA framework:

L = { p, q, z, r, a, b, c }
A = { a, b, c }
R = { p← a,

z ← b, c,

q ← a,

r ← }
ā = z b̄ = q c̄ = r

A grn-graph-DD for p of length 6 is given in tabular form in Table 5 (its first five steps are also shown
graphically in Figure 19): (The final step, after r has been selected and proven using the rule r ←, is not
shown in Figure 19: this adds nothing to the graphical structures, since the rule used to establish r has an
empty body.) This derivation illustrates the importance of case 2(i)(a) (the ‘ignore’ case) in Definition 5.5.
In the move to step 4, case 2(i)(a) is applied, although b in the opponent argument graph is selected, it is
ignored, with no proponent attack directed at b explored.

If case 2(i)(c) had been used instead at step 4, the corresponding sequence would have been as shown
graphically in Figure 20. This sequence is shown in tabular form in Table 6. The sequence of steps
(0, 1, 2, 3, 4∗, 5∗) here represent a grn-graph-DS which cannot be extended to a grn-graph-DD since acyclicG5∗

fails. This example is then also notable for the use of the Gi component in preventing infinite loops. An
implementation would terminate at step 5∗ and realize that it must backtrack, ignore b and try to attack
the opponent argument on c instead (so as to give the graph-DD in Figure 19).

Finally, this example shows an important difference with successful GB-dispute derivations of Dung
et al. (2007) (cf. Definition A.1 of Toni (2013)). Consider the following attempt at a successful GB-dispute
derivation for p for the ABA framework in the example shown in Table 7. Here, if the analogue of case
2(i)(c) is given priority over the ‘ignore’ case 2(i)(a), then implementations will loop infinitely, repeating
steps 4–7. Our use of an acyclicity check on Gi prevents such infinite loops. y

The next example further illustrates how graph-DDs relate to the dispute derivations of (Dung et al.,
2006, 2007; Toni, 2013) and the advantages of our manipulation of (potential) argument graphs rather than
(potential) argument trees in the original dispute derivations.
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Figure 19: Initial stages of the grn-graph-DD for p, for Example 15.
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Figure 20: grn-graph-DS for p, which is not a grn-graph-DD for Example 15.

Example 16. Consider the following ABA framework.

L = { p, q, r, a, b }
A = { a, b }
R = { p← q,

q ← a,

r ← p }
ā = b, b̄ = r

Now consider the adm-graph-DD for p in Table 8 (shown in Figure 21 graphically):
It is interesting to compare this adm-graph-DD to the corresponding AB-dispute derivation of (Dung

et al., 2006, 2007) (cf. Definition A.2 of Toni (2013)). That dispute derivation runs as in Table 9. The
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Step Case Pi/Oi (only u(Oi) shown) Gi Di/Ci

0 n/a ({p}, ∅) (∅, ∅) ∅
∅ ∅

1 1(ii) ({p,a}, {(p, a)}) ({p, a}, {(a, p)}) {a}
∅ ∅

2 1(i) ({p, a}, {(p, a)}) ({p, a}, {(a, p), (z, a)}) {a}
{({z}, ∅)} ∅

3 2(ii) ({p, a}, {(p, a)}) ({p, z, a, b}, {(a, p), (z, a)}) {a}
{({z,b, c}, {(z, b), (z, c)})} ∅

4∗ 2(i)(c) ({p,q, a}, {(p, a)}) ({p, q, z, a, b}, {(a, p), (z, a), (q, z)}) {a}
∅ {b}

5∗ 1(ii) ({p, q, a}, {(p, a), (q, a)}) ({p, q, z, a, b}, {(a, p), (z, a), (q, z), (a, q)}) {a}
∅ {b}

Table 6: Alternative grn-graph-DS for p, which is not a grn-graph-DD, for Example 15.

Step Pi Oi Di Ci

0 {p} ∅ ∅ ∅
1 {a} ∅ {a} ∅
2 ∅ {{z}} {a} ∅
3 ∅ {{b, c}} {a} ∅
4 {q} ∅ {a} {b}
5 {a} ∅ {a} {b}
6 ∅ {{z}} {a} {b}
7 ∅ {{b, c}} {a} {b}
8 {q} ∅ {a} {b}
...

...
...

...
...

Table 7: Attempted GB-dispute derivation for p.

Step Case Pi Oi (only u(Oi) shown) Di Ci

0 n/a ({p}, ∅) ∅ ∅ ∅
1 1(ii) ({p,q}, {(p, q)}) ∅ ∅ ∅
2 1(ii) ({p, q,a}, {(p, q), (q, a)}) ∅ {a} ∅
3 1(i) ({p, q, a}, {(p, q), (q, a)}) {({b}, ∅)} {a} ∅
4 2(i)(c) ({p, q, r, a}, {(p, q), (q, a)}) ∅ {a} {b}
5 1(ii) ({p, q, r, a}, {(p, a), (q, a), (r, p)}) ∅ {a} {b}

Table 8: adm-graph-DD for p, for Example 16.

two derivations are analogous, up until the transition from steps 4 to 5. At this point, the adm-graph-DD
effectively recognizes that p has already been encountered, and therefore does not need to prove p again
(by deriving q and then a). The filtering of the AB-dispute derivation, by contrast, only takes place on
assumptions (achieved by the removal of those elements of rule bodies which are in Di), and thus p and
q are both proved again (at steps 5 and 6 of the AB-dispute derivation). In a short example such as that
under consideration, this only makes a difference of two tuples saved, but in a less trivial example the gains
in efficiency can be considerable. y

Finally, we give an example of a grn-graph-DD which shows the use of ‘filtering by culprits’. In the case
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Figure 21: adm-graph-DD for Example 16.

Step Pi Oi Di Ci

0 {p} ∅ ∅ ∅
1 {q} ∅ ∅ ∅
2 {a} ∅ {a} ∅
3 ∅ {b} {a} ∅
4 {r} ∅ {a} {b}
5 {p} ∅ {a} {b}
6 {q} ∅ {a} {b}
7 ∅ ∅ {a} {b}

Table 9: AB-dispute derivation for p, for Example 16.

of the previous forms of derivation for tree-based arguments in ABA, this was not possible; our use of a
cyclicity check, enabled by the use of the Gi component, allows us to introduce it.

Example 17. Consider the following ABA framework.

L = { p, q, r, s, a, b }
A = { a, b }
R = { p← b, r,

p← b, s,

q ← }
ā = p, b̄ = q
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Figure 22: grn-graph-DD for Example 17.

Step Case Pi Oi (only u(Oi) shown) Gi Di Ci

0 n/a ({a}, ∅) ∅ ({a}, ∅) {a} ∅
1 1(i) ({a}, ∅) {({p}, ∅)} ({a, p}, {(p, a)}) {a} ∅
2 2(ii) ({a}, ∅) {({p,b, r}, {(p, b), (p, r)}), ({a, p}, {(p, a)}) {a} ∅

({p,b, s}, {(p, b), (p, s)})
3 2(i)(c) ({a,q}, ∅) {({p,b, s}, {(p, b), (p, s)})} ({a, p, q}, {(p, a), (q, p)}) {a} {b}
4 1(ii) ({a, q}, ∅) {({p,b, s}, {(p, b), (p, s)})} ({a, p, q}, {(p, a), (q, p)}) {a} {b}
5 2(i)(b) ({a, q}, ∅) ∅ ({a, p, q}, {(p, a), (q, p)}) {a} {b}

Table 10: Tabulated form of derivation from Figure 22.

A grn-graph-DD for a is shown in Figure 22. As usual, we also show the derivation in tabular form—see
Table 10. At step 3, b was selected from the left-most opponent argument graph, and its contrary q added
to P3; b is, accordingly, now a member of C3, the set of culprits. In the transition from step 4 to step 5,
according to case 2(i)(b), b is selected again; this time, since b ∈ C4, there is no need to re-prove the contrary
of b, q, since this has already been encountered. In the GB-derivations for tree-based arguments, this form
of filtering using culprits is not possible: there may have been a loop in the dependencies which would make
the derivation unsound. We avoid such loops using the Gi component, which is checked for cycles. y

5.4. Soundness and completeness of graph-DDs
First, we give two soundness results for the derivations with respect to the argument graph semantics

defined in §4.3.
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Theorem 5.9. For any X-graph-DD (X ∈ {adm,grn}) for s0 with resulting argument graph P, P is
admissible and s0 ∈ v(P). y

Theorem 5.10. For any grn-graph-DD with resulting argument graph P, there is some grounded argument
graph G such that P ⊆ G. y

Then, we give corresponding completeness results, again with respect to the argument graph semantics.

Theorem 5.11. Let L be finite. If G is an admissible argument graph such that s0 ∈ v(G), then there is
an adm-graph-DD for s0 with resulting argument graph some P such that P ⊆ G. y

Theorem 5.12. Let L be finite. If G is a grounded argument graph such that s0 ∈ v(G), then there is a
grn-graph-DD for s0 with resulting argument graph some P such that P ⊆ G. y

In the light of theorems shown in §4.3, we can show the following, concerning the soundness and com-
pleteness of graph-DDs with respect to admissible and grounded acceptance of sentences for tree-based
arguments.

Corollary 5.13. Let there be an adm-graph-DD (respectively grn-graph-DD) for s0 ∈ L resulting in P.
Then the set of arguments represented in P is admissible (respectively an admissible subset of the grounded
extension), non-bloated, and contains some a such that claim(a) = s0.

Proof. Directly from Theorems 4.20, 5.9, 5.10 and 4.12. y

Corollary 5.14. Let L be finite. If A is an admissible (respectively grounded) extension with a ∈ A such
that s0 = claim(a), then there is an adm-graph-DD (respectively grn-graph-DD) for s0 resulting in P such
that support(P) ⊆ support(A).

Proof. Directly from Theorems 4.20, 5.11 and 5.12. y

5.5. Implementation
We implemented the X-graph-DDs in Prolog as abagraph.7 Two principle factors prompted the choice

of programming language. First, we wanted to conduct an experimental comparison of our algorithm
with the leading implementation of dispute derivations for tree-based ABA, proxdd8—and proxdd is itself
implemented in Prolog. Using the same language was therefore necessary for the fairness of the experiments.
Secondly, Prolog itself has built-in backtracking; this made possible a relatively high-level encoding of the
algorithm for X-graph-DDs. Of course, other languages could have been chosen. In previous work, for
example, we have implemented the dispute derivations of (Toni, 2013) in parallel C++ (Craven et al.,
2012), and such an approach would certainly have been feasible for argument graphs.

Given a representation of an ABA framework and some specific sentence s ∈ L as input, abagraph
searches, in Prolog, to find all possible X-graph-DDs, X ∈ {adm,grn}, for s ∈ L. As explained in §5.2,
the definition of an X-graph-DS (and hence X-graph-DD) can allow for a given sequence to be continued in
multiple different ways, depending on a strategy for the selection of various sets and members in the current
tuple (Pi,Oi,Gi, Di, Ci). In abagraph we provide the following built-in strategies for the various selections.

1. A priority ordering for the player choice. In general, the move from step i to step i+1 in Definition 5.5
might be made by the proponent or opponent. If the parameter, for instance, is opponent <
proponent, this means that: if Pi is non-empty, then it will be selected, else if Pi is empty and Oi

is non-empty, then Oi will be selected.
2. A selection criterion for the member O ∈ u(Oi) (if step i is an opponent step). Possible values here

are:

7Available from http://robertcraven.org/proarg/abagraph.html.
8See http://robertcraven.org/proarg/proxdd.html.
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n the newest opponent argument graph to have been added to Oi is selected;
o the oldest opponent argument graph to have been added to Oi is selected;
s the opponent argument graph G such that |u(G)| is as low as possible is selected;
l the opponent argument graph G such that |u(G)| is as high as possible is selected.

3. A selection criterion for the sentence from u(Pi), with possible values:

n the newest sentence added to u(Pi) is selected;
o the oldest sentence added to u(Pi) is selected;
e select an assumption where possible (an eager strategy);
p select a non-assumption (a sentence in L \ A) where possible (a patient strategy).

4. A selection criterion for the opponent sentence from the selected G ∈ u(Oi), with values the same as
those for (3).

There are 2 possible values for the first parameter, and 4 each for the remaining parameters, giving 128 pos-
sible strategies overall. Evidently, these are a very small portion of those strategies even quickly conceivable.

6. Experiments

6.1. Experiment design
We compared our graph-DDs, as implemented in abagraph, with the most competitive existing system

(proxdd) for dispute derivations.9 The implementation of the original algorithm (proxdd) uses the variant
presented by Toni (2013), which records the arguments as well as the attack relationships between them as
they are constructed. This is appropriate for purposes of comparison, as our algorithm and its implemen-
tation (abagraph) record the full argument graph structures, including attacks and counter-attacks, as the
derivations proceed. The work in the present section provides preliminary evidence that the dispute deriva-
tions we defined for argument graphs in §5 may offer computational advantages in speed and the number of
queries answered over implementations of the standard dispute derivations for tree-based arguments. This
can be seen as a first step towards a more thorough experimental evaluation, complementing the conceptual
underpinnings (of argument graphs, their relation to tree-based arguments, the definition of a semantics for
argument graphs, and the definition of sound and complete dispute derivations) that are the main focus of
this paper.

For our experiments, we randomly generated ABA frameworks,10 and compared the performance of
each implementation on sample queries. The random generator takes as input a tuple of parameters,
(Ns, Na, Nrh, Nrph, Nspb, Napb), as follows.

1. Ns is the total number of sentences in the framework, i.e., |L|.
2. Na is the number of assumptions. This can be given either as: (i) an integer; (ii) a percentage of the

number of sentences; (iii) an interval [min,max], where min and max are both integers; (iv) an interval
[pmin, pmax], where pmin and pmax both represent percentages of the number of sentences, Ns = |L|.
In cases (iii) and (iv), the implementation chooses a random number in the interval.

3. Nrh is the number of distinct sentences to be used as heads of rules. This parameter takes the same
form of values as for parameter 2, above.

4. Nrph is the number of rules per distinct rule head, given as: (i) an integer; or (ii) an interval [min,max],
where min and max are integers. In case (ii), for each distinct rule head s, a random value n is chosen
with min 6 n 6 max, and n different rules with head s are then added to R.

9Both available from http://robertcraven.org/proarg/.
10Code for the random generator, the ABA frameworks we used for the experiments, and experimental results are all available

from http://robertcraven.org/proarg/experiments.html/.
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5. Nspb, the number of sentences per body, given as: (i) an integer; (ii) a percentage of the number of
sentences; (iii) an interval [min,max], wheremin andmax are both integers; (iv) an interval [pmin, pmax],
where pmin and pmax both represent percentages of the number of sentences, Ns = |L|. In cases (iii)
and (iv), the implementation chooses, rule-by-rule, a random number in the interval.

6. Napb, the number of assumptions per body, given as: (i) an integer; (ii) a percentage of the number of
sentences of the current body; (iii) an interval [min,max], where min and max are both integers; (iv)
an interval [pmin, pmax], where pmin and pmax both represent percentages of the number of sentences
in the current rule. In cases (iii) and (iv), the implementation chooses, rule-by-rule, a random number
in the interval.

We presume the existence of the following subsidiary functions.

• pickValue(X,Y ), such that:

– where X ∈ N, pickValue(X,Y ) is X;
– where X is a percentage value P%, pickValue(X,Y ) is X × Y/100;
– whereX is [min,max] andmin,max ∈ N, then pickValue(X,Y ) is a random number in the interval

[min,max];
– where X is [min%,max%], then pickValue(X,Y ) is a random number in the interval [Y ×

min/100, Y ×max/100];

• if N ∈ N and S is a set, then pickFrom(N,S) is a random subset of members of S such that
|pickFrom(N,S)| = N ;

• randomMember(S), where S is a set, chooses a random member of S.

To produce a random ABA framework, we used Algorithm 6.1.

Algorithm 6.1 randomABA(Ns, Na, Nrh, Nrph, Nspb, Napb)
1: L := {si | 0 6 i < Ns}
2: A := {si | 0 6 i < pickValue(Na, Ns)}
3: R := ∅
4: for all a ∈ A do
5: ā = randomMember(L \ {a})
6: end for
7: RH := pickFrom(pickValue(Nrh, Ns),L \ A)
8: for all s ∈ RH do
9: RPH := pickValue(Nrph, 0)
10: while RPH > 0 do
11: SPB := pickValue(Nspb, Ns)
12: APB := pickValue(Napb,SPB)
13: B := pickFrom(SPB−APB, (L \ A) \ {s})
14: B := B ∪ pickFrom(APB,A)
15: R := R∪ {s← B}
16: RPH := RPH− 1
17: end while
18: end for
19: return (L,R,A, )

Systematic and thorough comparison of how the performance of our two implementations compares with
different combinations of variation in these parameters would have taken a prohibitively long time; so we
chose to perform experiments on four basic series of ABA frameworks. In the first three series, a single
parameter varies on its own; in the final series, all parameters vary dependently. The form of parameters for
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Series Parameters Values
1 (Ns, 15, 20, [2, 5], [0, 6], [0, 6]) Ns ∈ {20, 30, 40, 50, 60, 70, 80, 90}
2 (40, 15, 20, Nrph, [0, 6], [0, 6]) Nrph ∈ {[2, 5], [5, 8], [8, 11], [11, 14],

[14, 17], [17, 20], [20, 23], [23, 26]}
3 (40, 15, 20, [2, 5], Nspb, [0, 6]) Nspb ∈ {[0, 3], [3, 6], [6, 9], [9, 12],

[12, 15], [15, 18], [18, 21], [21, 24]}
4 (Ns, 37%, Ns/2, [2, Ns/8], [0, Ns/7], [0, Ns/7]) Ns ∈ {16, 24, 32, 40, 48, 56,

64, 72, 80, 88}

Table 11: Experiment series design; all values are rounded to the nearest integer.

all four series are shown in Table 11. In the first series of experiments, we varied the size of L, while keeping
all other parameters the same; since |A| was kept fixed at 15, this had the effect of varying the number of
non-assumptions in the ABA framework. In the second series, we varied the number of rules per head, with
the effect of varying R. In the third series of experiments, we varied the number of sentences per rule; since
the number of assumptions per rule body was not varied (it was given a random value in the interval [0, 6])
this mostly has the effect of varying the number of non-assumptions per rule. Finally, in the fourth series of
experiments, the size of L was varied, and the value of the other parameters tied to this. With the values
of Ns given, this yields the sequence of parameters:

(16, 6, 8, [2, 2], [0, 2], [0, 2]), (56, 21, 28, [2, 7], [0, 8], [0, 8]),
(24, 9, 12, [2, 3], [0, 3], [0, 3]), (64, 24, 32, [2, 8], [0, 9], [0, 9]),
(32, 12, 16, [2, 4], [0, 5], [0, 5]), (72, 27, 36, [2, 9], [0, 10], [0, 10]),
(40, 15, 20, [2, 5], [0, 6], [0, 6]), (80, 30, 40, [2, 10], [0, 11], [0, 11]),
(48, 18, 24, [2, 6], [0, 7], [0, 7]), (88, 33, 44, [2, 11], [0, 13], [0, 13])

Underlying all four series of experiments are the parameters (40, 15, 20, [2, 5], [0, 6], [0, 6]). Informal ex-
perimentation indicated that these values produce ABA frameworks with sentences which, when queried
according to each of the semantics we study (admissible and grounded), yield answers with a mix between
(i) immediate answers, yes or no; (ii) answers which failed to compute because resources were exceeded by
the Prolog implementation, or because a time-limit was exceeded; and (iii) answers which were computed in
times > 1 second, and which had nested structures of attack between the acceptable argument graph and
those attacking it. We take the view that parameters producing frameworks with this mixture of sentences
are desirable, since the effect of varying parameters on the proportion of queries falling into the different
classes can then be studied.

An ABA framework only admits the possibility of circular arguments if it is not p-acyclic; this notion is
defined in (Dung et al., 2007), and the definition is equivalent to:

Definition 6.1. Let the dependency graph of (L,R,A, ) be the directed graph whose nodes are L\A and
where there is a directed edge (s, s′) iff there is a rule s← B ∈ R such that s′ ∈ B. (L,R,A, ) is p-acyclic
iff the dependency graph of (L,R,A, ) is acyclic. y

Thus, an indication of how our implementations fare in the presence or absence of circular arguments can
be found by running experiments on p-cyclic (i.e., non-p-acyclic) and p-acyclic arguments. For each series
of experiments, and each instantiation of parameters per series, 10 p-acyclic frameworks and 10 p-cyclic
frameworks were randomly generated. This made for a total of 680 ABA frameworks in total. The division
into p-cyclic and p-acyclic classes was motivated by a desire to investigate whether there were differences
in performance between abagraph and proxdd in the two cases. Indeed, an important innovation in the
graph-based approach is its completeness for grounded extensions, and associated means of preventing loops
in the case of cyclical dependencies amongst sentences in ABA frameworks.
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abagraph proxdd
Total exceptions 25 2572

Total exceptions and timeouts 4845 6830
Average non-zero solutions 12.947 213.798

Average time per query (secs.), exceptions excluded 41.632 44.934

Table 12: Combined results for all types of derivation and cycle-type.

In comparing the results of the two implementations, that of the structured X-derivations of Defini-
tion 6.3 of (Toni, 2013) and the graph-DDs of Definition 5.7, it is important to set the same search strategy
in each case. Each possible search strategy for abagraph is represented by a choice of the four parame-
ters described in §5.5. The parameters for proxdd are largely similar. Our method was as follows. We
first selected 10 random strategies to be used throughout the experiments. Then, for each framework,
we paired a random sentence s with each strategy, and queried both proxdd and abagraph to find ad-
missible and (fragments of) grounded extensions containing an argument whose claim is s. In each case,
all solutions were attempted to be found. We imposed a time-out of 120 seconds on each computation
(each query/implementation/semantics triple). For each computation, we recorded: (i) the time taken; (ii)
whether or not the computation timed out, threw an exception because resources were exceeded, or suc-
cessfully completed; (iii) how many solutions were found. If the computation terminated successfully, then
the solutions found are all solutions possible; if there was no successful termination—through time out or
an exception—then the number of solutions found may not be the total possible. In sum, this represented
a maximum of 1360 hours of computation (a little over 56 days). Experiments were conducted on a series
of HP Compaq dc8200 machines, with an Intel Core i7-2600 3.40GHz processor and 8GB of RAM, running
64-bit Ubuntu 13.04; the Prolog implementation was SICStus 4.2.3.

6.2. Results
We first give total statistics across the different series of experiments, in tabular form, followed by results

showing the queries successfully answered by an individual solver uniquely. We then give series-specific
results (which concern quantities for the different steps of each series) as graphs.

In the three tables which follow, we record the following information:

• Total exceptions, where the exceptions thrown were always due to exceeding the memory resources of
the Prolog system used.

• Total exceptions and timeouts combined, where the timeout was, as mentioned above, 120 seconds.
• Average non-zero solutions. This is calculated by averaging the number of solutions for those queries
which completed successfully (i.e., disregarding the solutions found in the case where the result was a
timeout), if that number was non-zero. This number, when compared across abagraph and proxdd,
therefore gives an indication of the number of ‘redundant’ or otherwise conceptually ‘bad’ solutions—in
the senses discussed in §3—which are eliminated by abagraph through the shift to argument graphs.

• Average time per query was calculated for those queries in which neither implementation threw an
exception. (Note that if exceptions were included, then the results here tend to favour abagraph even
more.)

Table 12 shows the combined results for all queries, no matter what the type of derivation, or whether the
frameworks were p-cyclic or p-acyclic. There is a clear advantage to using abagraph because the number of
exceptions is dramatically lower. The time taken to return answers to queries is also lower, though here the
gains are smaller. Finally, the fact that the use of argument graphs results in much fewer solutions overall,
shows that the number of ‘redundant’ solutions (in the sense mentioned previously) is, using standard
tree-based arguments, relatively high.

Next, we split the results according to whether the derivation was for the admissible or grounded seman-
tics. The results are shown in Table 13. A number of aspects of this are worthy of comment. First, in the
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X=adm X=grn
abagraph proxdd abagraph proxdd

Total exceptions 0 928 25 1644
Total exceptions and timeouts 2359 3215 2486 3615
Average non-zero solutions 21.281 356.098 3.714 5.696

Average time per query (secs.), exceptions excluded 40.964 45.501 42.305 44.289

Table 13: Results according to derivation type.

p-cyclic p-acyclic
abagraph proxdd abagraph proxdd

Total exceptions 21 1858 4 714
Total exceptions and timeouts 2896 4323 1949 2507
Average non-zero solutions 18.716 2.738 9.109 281.500

Average time per query (secs.), exceptions excluded 48.281 55.614 34.555 35.481

Table 14: Results according to presence of cycles.

case of adm-graph-DDs there were no exceptions. We conjecture that the added overhead of a non-empty G
component in the case of grn-graph-DDs can be used to explain the higher number of exceptions. Secondly,
the difference between the number of solutions found by proxdd and abagraph is much higher in the case of
adm-graph-DDs than with grn-graph-DDs. This is to be expected: there is a single grounded extension in
the case of standard, tree-based semantics for (L,R,A, ), of which the set of arguments found by proxdd
in a grounded dispute derivation must be an admissible subset; yet there can often be many grounded argu-
ment graphs, giving rise to a larger number of solutions for the latter. Other aspects of the comparison are
broadly consonant with the merged results for adm-graph-DDs and grn-graph-DDs presented previously.

Finally, we present in Table 14 results which consider different types of input frameworks, according
to whether these were p-acyclic or not (as verified by a simple graph-theoretic analysis in Prolog on each
framework). What is most worthy of comment here is the comparison on the number of non-zero solutions
found for p-cyclic frameworks: the number found by abagraph is much higher than that found by proxdd.
Why should this be? First note that, in fact, this tendency is much more marked for adm-graph-DDs.11

This is as we expected: grounded extensions are unique, and this low cardinality tends to carry through to
the number of argument graphs, and then to the associated number of solutions for queries. In the p-cyclic
case, adm-graph-DDs give an average of 32.569 solutions for abagraph, and 3.682 solutions for proxdd;
grn-graph-DDs give an average of 2.432 solutions for abagraph, and 1.408 for proxdd. The explanation
is, in fact, simple: there are relatively few instances where abagraph finds a high number of solutions for
adm-graph-DDs queries: 29 instances where the number of solutions is higher than 20. Yet of those 29
queries, all save one, when posed to proxdd, resulted in either timeout or an exception; and thus they are
not counted in the finding of the average number of solutions.

Another measure which can help in comparing the performance of abagraph against proxdd on our par-
ticular sample data is that of the ‘unique solver contribution’ made by each system in answering queries.12

For this, we used the results for all experiments, dividing them into those for p-cyclic and p-acyclic frame-
works, and dividing each of those two categories further into results obtained for abagraph, and results
obtained for proxdd. This gave four groups. We excluded queries which had failed to be answered within
the time-out of 120 seconds, and those queries which raised exceptions in either system, thus keeping only
the results for completely answered queries for both systems. Then, for steps of intervals of 6 seconds, and

11The different figures for adm-graph-DDs and grn-graph-DDs, for the p-cyclic and p-acyclic cases, are not shown in Table 14,
but were recorded in experiments.

12We thank an anonymous reviewer for prompting us to consider this measure and include results for it in the paper.
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of queries uniquely solved by the given solver is shown on the y-axis.

for each of the four groups, we recorded the number of queries answered uniquely by the system in question
(abagraph or proxdd) in the amount of seconds or less—first, the number of queries answered in less than
6 seconds, then those answered in under 12 seconds, etc., up to the maximum of 120 seconds. The results
are shown in Figure 23. They provide preliminary evidence that abagraph may find a larger subset of query
answers, with a more marked difference in the case of frameworks with cycles. For example, after 30 seconds,
abagraph had found 1425 solutions for queries to p-cyclic frameworks which proxdd had not found, and 570
solutions for queries to p-acyclic frameworks which proxdd had not found. Still after 30 seconds, proxdd
had found only 1 solution to a query for a p-cyclic framework that abagraph had not found, and 19 solutions
to queries for p-acyclic frameworks that abagraph had missed.

In presenting the results for sequences of parameters, we will show the time taken on average for answering
a query, where this is understood to be the time taken to find all possible answers. Thus, for some s ∈ L,
there may be multiple adm-graph-DDs or grn-graph-DDs for s, giving rise to many different Pn which
are admissible argument graphs or (subgraphs of) grounded argument graphs. Further, as explained above,
there are several possible outcomes for each query: either (i) all answers were found in under 120 seconds
(the chosen timeout); (ii) the query fails to complete before the timeout; or (iii) an exception is raised. Those
queries for exceptions were raised for either system, i.e., those of class (iii), were removed from contributing
to the results. (However, it is notable that proxdd produced by far the greater number of exceptions for the
particular queries and frameworks we used.) In comparing the results of the two systems, we show the results
for adm-graph-DDs and grn-graph-DDs separately, side by side; intuitive inspection of the shape of the
graphs in each case reveals that the results for each series are similar regardless of whether the derivation
is adm or grn. The different ‘steps’ shown on the x-axis of the graphs represent the various increasing
parameters for the random frameworks generated, according to Table 11.
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Figure 24: Query times for randomly-generated frameworks in which the language-size, or number of sentences |L|, is gradually
increased, while all other parameters for the framework generation are held fixed.

First, Figure 24 shows the results for series 1, in which |Ns| (i.e., |L|) is gradually increased as all other
parameters remain the same. Aside from the peak at step 2, the tendency here is for the average time for
a query gradually to decrease as |L| increases. It might be thought that the explanation for this is the fact
that, as |L| gets larger without any other parameters being affected, the likelihood increases that sentences
in v(Pi), at any stage of an X-graph-DS, will not be the head of a rule—and so that as |L| increases the
number of admissible argument graphs containing s must diminish. It is apparent that this is not the reason,
since the number of solutions does not gradually diminish as |L| increases. We leave more detailed analysis
for future work.

Figure 25 shows series 2, in which the number of rules per given rule head is gradually increased. This
conforms to expectation, in that as the number of rules per head increases, it is likely that the number
of possible argument graphs and arguments to be explored, when a given s ∈ L is chosen, will naturally
increase. Though abagraph outperformed proxdd in the particular experiments we ran, this is not by
very much; and the tendency in these experiments was for the performances of the two systems to become
increasingly closer as the number of rules per head gets larger. We conjecture that the reason for this is the
presence of the acyclicity check on the Pi and Gi components, which in general becomes more demanding
as the number of rules per head increases; we leave possible confirmation of this for further work.

Thirdly, series 3 gradually increases the number of sentences per body, with results shown in Figure 26.
This shows very little effect on the performances of abagraph and proxdd, with abagraph consistently
outperforming proxdd on queries for the particular frameworks we generated. We ourselves find it counter-
intuitive that the number of sentences per body, when increased, should have little impact on the time taken
to find solutions: our expectation had been that more sentences per body would required more to be proved
in order to establish a given argument graph or argument. We again leave deeper analysis for future work.

Finally, we consider the average time for answering queries where the parameters for creating random
frameworks vary together (series 4). These are shown in Figure 27. Though abagraph outperformed proxdd
here, the tendency is for this to be by an increasingly small margin, as the size of the framework increases.
As for series 2, we conjecture that the reason for the approach of the two curves to each other is the acyclicity
checks on Pi and Gi; we leave further investigation for future work.

From this experimentation we draw the tentative conclusion that, in general, there may be computational
gains to using abagraph and argument graphs over proxdd and tree-based arguments. These gains are mostly
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Figure 25: Query times for randomly-generated frameworks in which the number of rules per head is gradually increased. The
x-axis shows the interval within which the number of rules per head for each non-assumption that is the head of rules must
fall (Nh, see §6.1). Other parameters are held fixed.
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Figure 26: Average query times as the number of sentences per rule body is gradually increased; for each body, the number of
sentences is randomly selected within the given interval.

seen in the number of solutions produced and the likelihood of a full set of answers being found at all; but
there my also be also minor gains in the time for a computation.

As Tables 12–14 show, the number of non-zero solutions found by abagraph for the experimental data we
used was much lower than that found by proxdd; we noted that these figures are a measure of the ‘redundant’
or ‘bad’ solutions excluded by abagraph. In future work, we would like to compare the experimental results
achieved for abagraph with a theoretical analysis of the optimum number of distinct solutions found for a
given selection of frameworks, thus seeing whether the number of non-zero solutions found by abagraph is,
or is near to, an optimum.13

13We thank an anonymous reviewer for suggesting this further work to us.
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Figure 27: Average query times, as all parameters are varied dependently. On the x-axis is shown, representatively, |L|. The
way the other parameters for framework generation are varied is described in §6.1.

7. Related work

As mentioned in the introduction, the current paper substantially extends the work we first presented,
with a co-author, in (Craven et al., 2013). In that paper, we introduced the notion of rule-minimality as it
applies to the tree-based arguments which are standard in ABA (it could also easily be extended to other
forms of structured argumentation). In the current paper, by contrast, we move to a more economical and,
arguably, conceptually preferable use of argument graphs as the fundamental representation of arguments.
As §§4.1–4.2 of the current paper show, focused argument graphs are in one-one correspondence with rule-
minimal arguments—but an argument graph may also represent a set of rule-minimal arguments, where
that set is non-bloated. Since non-bloatedness can be motivated in much the same way as rule-minimality,
then this capacity is an advantage. Our previous work in (Craven et al., 2013) was also restricted to the
case of the grounded semantics; here we also cover the admissible semantics, and include full definitions and
proofs for every notion and theorem, at the same time adding completeness results for both the admissible
and grounded semantics.

Our work on the completeness of the grounded semantics has been influenced by that of Thang et al.
(2009). In that paper, the authors define a dialectical proof-procedure to compute admissible subsets of the
grounded extension of an abstract argumentation framework. Significantly, the use of a dependency graph
over arguments, grown gradually during the proof-procedure, ensures that the proof-procedure terminates
finitely. In our work, we adapt the use of such a graph to the case of ABA—it forms the Gi component of
the tuples given in Definition 5.5. Incorporating this into the definition of a grn-graph-DD allows us to
prove the completeness of our procedures in Theorem 5.12; the adaptation is a matter of paying attention to
the internal structure of arguments, so that the Gi is defined over sentences instead of arguments. Whereas
previous completeness results for dialectical proof-procedures for ABA (Dung et al., 2006, 2007; Toni, 2013)
were restricted to p-acyclic frameworks (Dung et al., 2007), our use of a graphical dependency graph Gi and
associated acyclicity check enables us to prove completeness more generally, without the previous restriction.

The overall structure of the X-graph-DSs given by Definition 5.5 follows a common blueprint which
was established in (Dung et al., 2006) and (Dung et al., 2007). As in Definition 6.3 of (Toni, 2013) (the
definition of a ‘structured dispute derivation’), our graphical derivations retain the structure both of the
proponent’s justifications (through the argument graphs Pi), and the various opponent argument graphs
which may attack the proponent’s claims (which are kept in Oi). As we discuss in §5.3, the current
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paper introduces improved forms of filtering over the previous dispute derivations for ABA. Cases 1(ii)
and 2(ii) of Definition 5.5, with their acyclicity conditions, ensure that, in the expansion of an argument
graph, no sentence is proved twice. In the case of the proponent, this is also ensured by case 2(i)(c),
where a sentence is added as unmarked to Pi+1 only if it has not already been added. In previous work,
the proponent could repeat lengthy justifications for sentences. Similarly, suppose that a ∈ A is part of
the proponent’s support. In previous dispute derivations for ABA, if opponent arguments for ā have
been computed already, those same arguments might later be recomputed if ā = b̄ for some b ∈ A also
in the proponent support (for a 6= b). We improve on this in case 1(i) of Definition 5.5, where we add
new potential argument graphs to Oi+1 only when they have not already been added. Some of these forms
of filtering are extrapolations, to the case of ABA, of the use of the SPi and SOi components to achieve
filtering in Definitions 4 and 8 of (Thang et al., 2009).

Modgil and Prakken (2013) define a form of structured argumentation, ASPIC+, with both strict and
defeasible rules, and with notions both of a contrary and contradictory defined, as well as several forms
of semantics. Arguments in ASPIC+ are expressions defined using the rules and an underlying logical
language; although no notion of tree is explicitly invoked in the definition of an argument, it is clear that
ASPIC+ arguments might easily have been defined as trees, and that notions of rule-minimality, bloatedness,
circular and flabby arguments, would apply. The formalism allows arguments to be circular and flabby, and
extensions to be bloated, and in this respect is similar to standard presentations of ABA. An interesting
direction for future work is the study of argument graphs in the context of ASPIC+.

(García and Simari, 2004) take a logic-programming approach to defeasible argumentation, DeLP, also
employing sets of strict and defeasible rules in the construction of arguments. DeLP, similarly to other forms
of argumentation, also employs a notion of dialectical tree in order to establish whether a given claim is to
be accepted (i.e., whether it is ‘undefeated’), or not; nodes of the tree are labelled by argument structures
(R, l), where l is a literal and R a set of defeasible rules which can be used, with the strict rules, to derive
l. As opposed to our argument graphs, the structures (R, l) do not record the structure of a derivation.
However, the sets R are required to be ⊆-minimal, in that no smaller R′ ⊂ R could be used to derive the
same literal l. As we note in the current paper, this constraint means that the construction of arguments
is potentially computationally expensive, compared to our top-down, graph-based, rule-minimal approach.
Another aspect of DeLP is that where an argument structure (R, l) has already appeared in a dialectical
tree, no argument structure (R′, l′) such that R′ ⊂ R may appear, further on the same path as (R, l) from
the root. We impose an analogous constraint on the proponent argument graphs Pi, in that once some
s ∈ L is in v(Pi) \ u(Pi), it can never be the case, for j > i, that s ∈ u(Pj). Since our use of argument
graphs imposes that, for a given sentence s, only one rule with head s is ever used to prove s, it must be
that, for any rule s← s1, . . . , sn, if s, s1, . . . , sn ∈ v(Pi)\u(Pi), then that rule is never selected again for the
(proponent) case 1(ii) of Definition 5.5. This corresponds to the constraint on sub-argument structures in
DeLP.

Vreeswijk (1997) defines arguments recursively so that a given argument depends on its subarguments.
An argument can be a sentence; or a structure σ1, . . . , σn → φ (a strict rule) or σ1, . . . , σn ⇒ φ (a defeasible
rule), such that φ is a sentence and σ1, . . . , σn are subarguments. Of particular interest is the fact that
Vreeswijk imposes a constraint so that any sentence in an argument cannot depend, through the strict or
defeasible rules, on another occurrence of itself elsewhere in the argument (see his Definition 2.5, p. 232); to
this degree he shares part of our motivation. However, Vreeswijk’s definition of argument still allows them
to be flabby, and sets of arguments can accordingly be bloated. In effect, trees are retained to structure
arguments. In our work, by contrast, we shift to a different underlying representation, and remove the three
forms of undesirability at once.

Our concern with the efficient representation and calculation of arguments is shared with others. Besnard
and Hunter (2008) require arguments to have a minimal support; the analogous notion for us (minimal sets of
assumptions as support) is not implied by switching to argument graphs as the fundamental representation.
Support-minimality needs to be ascertained ‘globally’, by checking the entire framework for alternative
argument graphs. The property of rule-minimality which, as we showed is Section 4.1, characterizes those
tree-based arguments which are straightforwardly equivalent to argument graphs, is close to condition 3 in
the definition of argument structure (Def. 3.1) in (García and Simari, 2004). Efstathiou and Hunter (2008)
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present an approach for generating arguments within the context of logical argumentation, using connection
graphs (Kowalski, 1975) to optimize the search for arguments, where—as with (Besnard and Hunter, 2008)—
the support for a given claim consists of a minimal set of propositional formulas which together imply the
claim.

There are many implementations of different forms of argumentation; we here compare our work with
two other representative systems, one for abstract argumentation and one for structured argumentation. For
abstract argumentation, ASPARTIX (Egly et al., 2010) uses an underlying answer-set solver and encodes the
argumentation framework and rules defining various semantics, in order to find extensions. Our work in the
current paper takes a ‘top-down’ approach, starting with a given sentence s and incrementally constructing
arguments and attacks only when relevant; in order to answer the question of whether a given s ∈ L is
contained in a grounded argument graph, we may not need to construct the entire grounded argument
graph, but only an admissible subgraph thereof.

Snaith and Reed (2012) present TOAST—an online, java-based implementation of the ASPIC+ frame-
work. Rules, preferences over rules, assumptions, and other elements of the ASPIC+ framework can be
entered, and a query is a specific formula. An underlying engine then evaluates, for several different se-
mantics, whether there is an acceptable extension which supports the given formula. The implementation
works by constructing the entire abstract argumentation framework from the entered rules and language;
this again contrasts with our top-down approach which only considers relevant information. Plainly, the
different approaches may, in this respect, be suited to different forms of application.

8. Conclusion

In this paper we have proposed an alternative representation for the rational dependencies among sen-
tences in assumption-based argumentation (ABA): argument graphs. An argument graph is analogous both
to a single traditional, tree-based argument in ABA, and also to a set of such arguments. In so doing, it
constrains the rational structures represented to be free from certain properties possible in the tree-based
representation—the properties of circularity, flabbiness, and bloatedness. We argued these correspond to
nothing possible or desirable in the case of the relations of support identified by a rational agent.

We showed that the existence of our argument graphs corresponds both individually, and at the level
of extensions in the admissible and grounded semantics, to the existence of arguments and extensions in
the tree-based approach. We defined new notions of attack and, on that basis, new notions of semantics
for argument graphs. We also introduced two kinds of graph-based dispute derivations, which we proved
to be sound and complete with respect to the admissible and grounded semantics of such argument graphs
respectively. Thus, although we believe that argument graphs are a superior representation of the structures
which an agent brings to bear in argumentation, the argument-graph approach may also be used, computa-
tionally, as a leaner way of proving admissibility or groundedness of a sentence with respect to the traditional
extension-based semantics. Another advantage of our work here is a completeness result for derivations.

We also conducted experiments to investigate the computational efficiency of our new approach, and
concluded that although there is a consistent minor advantage of speed in the case where tree-based and
graph-based approaches both terminate, there appear to be many more instances of tree-based derivations
where the existing best implementation fails owing to memory resources having been exceeded. Thus there
may be computational benefits in switching to argument graphs.

The graph-DDs we define borrow from the work of Thang et al. (2009) the use of a graph whose acyclicity
is an essential prerequisite of success. However, whereas Thang et al. (2009) provide a computational
machinery for abstract argumentation (Dung, 1995), we have focused on structured argumentation in the
form of ABA. Moreover, Thang et al. (2009) consider several argumentation semantics; we have focused on
the admissible and grounded semantics.

We see many directions for future work. In the present paper we have taken ABA as the basic formalism,
and applied the graph-based approach to it. However, as noted, tree-based arguments are widely used in
many forms of structured argumentation. We believe that the motivation for the present work—that of
outlawing circularity, flabbiness and bloatedness—applies just as much to these other forms of structured
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argumentation, and would support converting to argument graphs as the underlying representation. We
intend to investigate this further, with respect to the structured argumentation frameworks of (Modgil and
Prakken, 2013; García and Simari, 2004; Besnard and Hunter, 2008; Amgoud, 2012).

We believe that an absence of rule-minimality in tree-based approaches to argumentation should not
confusedly be thought to correspond to the representation of aggregated reasons for belief. In the present
paper we have not attempted to incorporate aggregation into the graph-based approach. However, this is
evidently of crucial importance. We therefore intend to broaden our work to allow for aggregation.

In the present work we have introduced new graph-based semantics, defining notions of admissible, com-
plete and grounded argument graphs. Our main focus was on establishing fundamental concepts, relating
them to traditional approaches in ABA, and in showing the computational efficacy of our approach. How-
ever, it would be of great interest to conduct a more comprehensive investigation into forms of semantics
possible with argument graphs. That would involve looking at equivalents for other leading semantics of
argumentation—preferred, stable, semi-stable, ideal extensions (Dung, 1995; Caminada, 2006; Dung et al.,
2007)—as well as investigating whether the use of argument graphs allows other forms of semantics which
have no direct equivalent in the use of sets of tree-based arguments.

The computational complexity of several reasoning tasks in ABA, e.g., that of determining membership
in admissible and grounded extensions, or the existence of extensions, is known (Dimopoulos et al., 2002;
Dunne, 2009). An interesting question for future work is whether the computational complexity of the same
reasoning tasks changes when argument graphs rather than sets of argument trees are adopted.

We have focused on flat ABA frameworks. Although they are of restricted form, these admit several
interesting instances, notably logic programming and default logic (Bondarenko et al., 1997). Another
interesting topic for future research is the extension of our novel semantics and procedure to the case of
non-flat ABA frameworks, as defined in (Bondarenko et al., 1997).

Finally, we intend to investigate further the properties of our implementation of the graph-DDs we
have defined, and to see whether the performance can be improved. As noted in §6, there are patterns in
the comparison of abagraph with proxdd that deserve additional study; we also wish to implement any
derivations for alternative semantics that we will define. There are also several respects in which we wish to
make the experimental analysis of the performance of abagraph more thorough. First, it would be desirable
to vary parameters for random framework generation which relate to the contrary of assumptions, such
as how many different contraries there are, and the distribution of contraries amongst R. We also want
to conduct experiments on real-world data, in order to see whether the indications of respects in which
abagraph gives a better performance are borne out on realistic problem areas. It would also be desirable to
obtain measures, for some of the randomly-generated ABA frameworks we have used, on the ‘ideal’ number
of solutions for given queries, in order to test how far abagraph approximates to that idea.

Appendix A. Proofs

Note that in the following proofs, we sometimes write an argument graph G in the form of the pair
(v(G), e(G)). Moreover, for graphs G,G′, we use G ∪ G′ to denote the graph (v(G) ∪ v(G′), e(G) ∪ e(G′)).
For convenience, we recall the statement of the theorem before each proof.

A.1. Theorem 4.6
(i) Let a be a non-circular, non-flabby argument. Then there is a unique graphical conversion G of a which is
a focused argument graph with claim(a) = claim(G) and support(a) = support(G), such that a is represented
in G. (ii) Let A be a non-bloated set of arguments. Then there is a unique graphical conversion G of A with
claims(A) ⊆ v(G) and

⋃
a∈A support(a) = support(G) and each argument in A is represented in G.

Proof. For (i), define G to be such that

v(G) = labels(nodes(a)) \ {>}
e(G) = {(s, s′) | s′ 6= >,∃n, n′ ∈ nodes(a), label(n) = s, label(n′) = s′, n′ ∈ children(n)}
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We first show that G is an argument graph (cf. Definition 4.1). Evidently v(G) ⊆ L. Now, first, if
s ∈ v(G) ∩ A, then there can be no nodes n, n′ in a with n′ ∈ children(n) such that label(n) = s; so
s ∈ sinks(G). Secondly, suppose s ∈ v(G) \ A. Then there is at least one non-leaf node n in a labelled by
s, such that there is a rule s ← s1, . . . , sm in R, and the labels of the children of n are s1, . . . , sm. These
must be all the labels of the children of any node labelled by s, apart from >; for otherwise {a} would be
bloated, and then by Theorem 3.3, a would not be non-circular and non-flabby. Thus G is an argument
graph. Further, since a is a tree it has a unique source, n (where label(n) = claim(a)). It is straightforward
to show that label(n) is the only source in G. Thus G is a focused argument graph with claim(a) = claim(G).

G clearly represents a. For define f so that, for each node n of a, f(n) is label(n) (this is well-defined
and surjective w.r.t. v(G)). We need to check whether, if f(n) = s, then labels({n′ | n′ ∈ children(n)}) =
{s′ | (s, s′) ∈ e(G)}. Assume f(n) = s, so that s = label(n). If s′ ∈ labels({n′ | n′ ∈ children(n)}) \ {>} then
(s, s′) ∈ e(G) by definition of e(G); if s′ ∈ {s′ | (s, s′) ∈ e(G)}, then this can only be because there is n′ in
a such that n ∈ children(n′) and label(n′) = s′, so that s′ ∈ labels({n∗ | (n, n∗) ∈ edges(a)}) \ {>}. Thus
labels({n∗ | (n, n∗) ∈ edges(a)}) = {s∗ | (s, s∗) ∈ e(G)}.

Since v(G) is just {label(n) | n ∈ nodes(a)}, it is immediate that support(a) = support(G).
Plainly, G is a graphical conversion of a by construction. We must show that G is the unique graphical

conversion of a. Thus suppose for contradiction that G′ is some other graphical conversion of a. Then since
claim(G) = claim(G′), it must be that there is s ∈ v(G)∩v(G′) such that {s′ | (s, s′) ∈ e(G)} 6= {s′ | (s, s′) ∈
e(G′)}. But then {a} is bloated, and so a is either circular or flabby. Contradiction.

For (ii), let G be

v(G) = {s | ∃a ∈ A[s ∈ labels(nodes(a))]} \ {>}
e(G) = {(s, s′) | s′ 6= >,∃a ∈ A∃n, n′ ∈ nodes(a)[label(n) = s, label(n′) = s′, n′ ∈ children(n)]}

Similar reasoning to that in (i) shows that G is an argument graph. Plainly claims(A) ⊆ v(G), and since G
is an argument graph we must have that for a ∈ A ∩ v(G), then a ∈ support(G); thus

⋃
a∈A support(a) =

support(G). That G is a graphical conversion of A follows by construction of G, and the uniqueness of G
follows by an argument similar to that for (i). So too for G’s representing each argument in A.

A.2. Theorem 4.7
Let s ∈ L and A ∈ A. (i) For every non-circular, non-flabby tree-based argument for s supported by A there
exists a tree-based argument for s supported by A. (ii) For every tree-based argument for s supported by
A there exists a non-circular, non-flabby tree-based argument for s supported by A′ ⊆ A.

Proof. For (i), non-circular, non-flabby arguments are, of course, arguments. For (ii), our strategy is to
show how to transform any argument into a non-circular, non-flabby one.

Thus let a be an argument for s supported by A. Recall Algorithm 1 from (Craven et al., 2013),
reprinted here as Algorithm A.1.14 This takes an arbitrary tree-based argument a and ‘reduces’ it to an
argument a′. At lines 6 and 9 the algorithm performs non-deterministic choices (of a node/sentence and
of a subtree, respectively). By making alternative such choices different arguments can be obtained. For
example, consider the application of the algorithm to the left-most argument in Figure 28. Depending on
the choice of subtree at line 9, the algorithm may return the middle or the right-most argument above.

We will say that, where a′ may be obtained from a using the algorithm with particular choices, then a′ is
a reduction of a, and write this as reduce(a, a′). Thus, if reduce(a) = a′ for some particular choices, then
reduce(a, a′) holds.

14Here: rank(N, T ) returns the length of the path from N to the root of tree T ; rank(T ) returns the maximum rank of
any node in tree T ; path(N, N ′, T ) returns the set of nodes on the (unique) path from N to N ′ (not including N) in tree T ;
substitute(T, N, T ′) takes tree T and replaces the subtree rooted at N by tree T ′; nodes(T ), root(T ) and subTrees(T ) return,
respectively, the set of nodes, the root and the set of subtrees of tree T ; pickOne(S) chooses a member of S; label(N, a) returns
the label of node N in argument a (this is a member of L or >, see §2).
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Algorithm A.1 reduce(a: argument)
1: r := 0
2: seen := {}
3: while r 6 rank(a) do
4: nodes := {N ∈ nodes(a) | (rank(N, a) = r) ∧ (label(N, a) ∈ L \ A) ∧ (N 6∈ seen)}
5: while nodes 6= {} do
6: N := pickOne(nodes)
7: s := label(N, a)
8: leafTrees := {b∈subTrees(a)|(label(root(b))=s) ∧ ¬∃N ′[N ′∈nodes(b)\{root(b)} ∧ label(N ′, a)=s]}
9: b := pickOne(leafTrees)
10: for all N ′ ∈ nodes(a) s.t. label(N ′, a) = s ∧ ¬∃X[X∈path(N ′, root(a), a)∧label(X)=s] do
11: a := substitute(a, N ′, b)
12: end for
13: seen := seen ∪ {N ∈ nodes|label(N) = s}
14: nodes := nodes \ seen
15: end while
16: r := r + 1
17: end while
18: return a
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Figure 28: If Algorithm A.1 is applied to the left-most argument, either of the other two may result.

Lemma A.1. If reduce(a, a′), then a′ is non-circular and non-flabby, claim(a) = claim(a′) and support(a′) ⊆
support(a).

Proof. First, Algorithm A.1 terminates, since (i) a is finite and thus rank(a) is finite; (ii) there are finitely
many nodes at lines 10, 13; (iii) at every iteration of the external while loop the set nodes is smaller.
Secondly, a′ is a subtree of a with the same root, and so the same claim as a, thus support(a′) ⊆ support(a).
Thirdly, trivially a′ is a tree-based argument. Finally, by construction, each sentence in a′ is proven by only
one rule; thus {a′} cannot be bloated and so by Theorem 3.3, a′ is non-circular and non-flabby. y

This completes the proof of Theorem 4.7: Algorithm A.1 can be used to find, for any argument a,
some argument a′ such that reduce(a, a′), and Lemma A.1 shows that such an a′ will be non-circular and
non-flabby.

A.3. Theorem 4.16
Any argument graph characteristic function fR has a least fixed point equal to fω

R (♦).

Proof. We use the Kleene fixed-point theorem. We must show that fR is Scott-continuous (sometimes just
called ‘continuous’).
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First, some preliminary definitions.

Definition A.2. Let G1, . . . , Gn be argument graphs. They are said to be compatible (which we write as
G1 ‖ · · · ‖ Gn) if there is a maximally rule-consistent R such that (rules(G1) ∪ · · · ∪ rules(Gn)) ⊆ R.

G1 ∪ · · · ∪Gn is defined to be the graph

(v(G1) ∪ · · · ∪ v(Gn), e(G1) ∪ · · · ∪ e(Gn)

and G1 ∩ · · · ∩Gn is
(v(G1) ∩ · · · ∩ v(Gn), e(G1) ∩ · · · ∩ e(Gn).

(Note that these are not, in general, argument graphs.) y

Let us note that G1 ‖ · · · ‖ Gn iff G1 ∪ · · · ∪Gn is an argument graph.

Lemma A.3. Let R be maximally rule-consistent, and GR the set of argument graphsG such that rules(G) ⊆
R. Then (GR,⊆) is a complete lattice, such that for X ⊆ GR, the least upper bound of X (lub(X)) is

⋃
X,

and the greatest lower bound (glb(X)) is
⋂
X.

Proof. Evidently ⊆ partially orders GR. Thus let X ⊆ GR; note that X is finite. As rules(G) ⊆ R for any
G ∈ X, then letting X = {G1, . . . , Gn}, we have G1 ‖ · · · ‖ Gn. Then

⋃
X is evidently an argument graph,

and (
⋃
X) ∈ GR. It is trivial to show that this is lub(X). The result for glb(X) follows similarly. y

The following lemma shows that fR is Scott-continuous (sometimes called ‘ω-continuous’).

Lemma A.4. Let fR the argument graph characteristic function w.r.t. the maximally rule-consistent R.
Then for any X ⊆ GR such that lub(X) ∈ X:

fR(lub(X)) = lub({fR(G) | G ∈ X}).

Proof. GR must be finite, so let X be {G1, . . . , Gn}. We need to show that fR(lub({G1, . . . , Gn})) =
lub({fR(G1, ), . . . , fR(Gn)}). Let G1 ∪ · · · ∪Gn be G∗. So, we need that fR(G∗) =

⋃
{fR(G1), . . . , fR(Gn)}.

Since G1 ⊆ G∗, . . . , Gn ⊆ G∗, then by monotonicity of fR, fR(G1) ⊆ fR(G∗), . . . , fR(Gn) ⊆ fR(G∗). Thus⋃
{fR(G1), . . . , fR(Gn)} ⊆ fR(G∗). But since lub(X) ∈ X just means that G∗ ∈ {G1, . . . , Gn}, it must be

that fR(G∗) ⊆
⋃
{fR(G1), . . . , fR(Gn)}. y

Now, the Kleene fixed-point theorem can be applied to yield that fω
R (♦) is the least fixed point of fR.

A.4. Theorem 4.20
Let G be an argument graph and AG the set of arguments represented in G.

i. If G is admissible, so is AG.
ii. If G is complete, then there is a complete extension A∗ such that AG ⊆ A∗ and claims(AG) =

claims(A∗).
iii. If G is grounded and A∗ is the grounded extension, then AG ⊆ A∗ and claims(AG) = claims(A∗).

Proof. We take the parts i–iii in turn. The proof of part i depends on the following lemma, which relates
properties of argument graphs and reductions of arguments, as defined in the proof of Theorem 4.7 above.

Lemma A.5. If a is a tree-based argument:
I. there is a focused argument graph G, with claim(a) = claim(G) and support(G) ⊆ support(a);
II. if G is a graphical conversion of some a′ such that reduce(a, a′), then G is a graphical conversion of a

(cf. Definition 4.5 for the notion of graphical conversion).

Proof.
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I. Directly from Theorems 4.6 and 4.7.
II. To show that G is a conversion of a, we must further show that if (s1, s2) ∈ e(G), then there is an edge

(n1, n2) ∈ a such that label(n1) = s1 and label(n2) = s2. Suppose (s1, s2) ∈ e(G). Then there must
be nodes n1, n2 in the tree a′ such that label(n1) = s1 and label(n2) = s2 and (n1, n2) is an edge in a.
(Note that not all pairs of nodes in a′ with these labels will be connected by an edge in a; but some
such pair must exist.) y

We now prove the parts i–iii of Theorem 4.20 successively.

i. Assume G is admissible. Then it is conflict-free. If AG is not conflict-free, then there are a, b ∈ AG

such that a  b (a and b need not be distinct). Since claim(a) ∈ v(G) and support(b) ⊆ v(G), then
G G. Contradiction; so AG is conflict-free.
Let a′ 6∈ AG be such that a′  AG. Let s′ be claim(a′). Then by Lemma A.5 there is an argument graph
G′ such that s′ = claim(G′) and support(G′) ⊆ support(a′). Since a′  AG, there is a ∈ support(AG)
such that ā = s′. Evidently a ∈ support(G), so that G′  G. Since G is admissible, then by
Theorem 4.19.i, G  G′. Then there must be s ∈ v(G) with s = ā′ for a′ ∈ v(G′), and clearly
a′ ∈ support(a′). But since s ∈ v(G), then by Theorem 4.3 there is a∗ ∈ AG with claim(a∗) = s, and
a∗  a′. Thus AG defends itself against a′.

ii. Assume G is complete. We first show that AG ∪ args(support(G)) is admissible. Suppose not; then it
is either not conflict-free, or it does not defend itself. Plainly it must defend itself from attacks, for
AG is admissible and support(AG) = support(AG∪args(support(G))). Then (AG∪args(support(G))) 
(AG ∪ args(support(G))). Clearly AG 6 (AG ∪ args(support(G))). If args(support(G)) AG then since
AG is admissible, AG  args(support(G)). But then AG  AG—contradiction. If args(support(G)) 
args(support(G)), then args(support(G))  AG, which again leads to a contradiction. So AG ∪
args(support(G)) is admissible.
We then show that AG ∪ args(support(G)) contains all the arguments it can defend. First we prove
that (*) if G is complete, then claims(AG) = claims(AG∪args(support(G))). The ⊆ direction is trivial.
The other direction follows by noting that if a is such that claims(subargs(a) \ {a}) ⊆ claims(AG)
and a ∈ AG ∪ args(support(G)), then it follows by G being complete that claim(a) ∈ v(G), so that
claim(a) ∈ claim(AG).
So, now suppose that AG∪args(support(G)) does not contain all the arguments it defends. Let b be such
an argument: b 6∈ AG ∪ args(support(G)), but for all c such that c b, (AG ∪ args(support(G))) c.
Consider G+, where v(G+) = v(G) ∪ support(b), and e(G+) = e(G). Evidently G+ 6= G, since as
b 6∈ AG∪args(support(G)), support(b)\v(G) is non-empty. G+ is clearly an argument graph such that
G ⊆ G+; we will show that G defends it from attacks, contradicting (given Theorem 4.19.ii) that G is
complete. Thus assume that G′  G+ but G′ 6 G (if G′  G then plainly G G′ by admissibility of
G). Let c∗ be some argument represented by G′ such that the claim(c∗) = b̄ for b ∈ support(b) \ v(G).
Since c∗  b, (AG ∪ args(support(G)))  c∗. Thus there is some a′ ∈ (AG ∪ args(support(G))) such
that claim(a′) = c̄ for some c ∈ support(c∗). But by our result (*) above, claim(a′) ∈ claims(AG), so
that claim(a′) ∈ v(G). So G  G′, and so G defends G+. So, from Theorem 4.19.ii, G cannot be
complete: contradiction.
Thus AG ∪ args(support(G)) must contain all the arguments it defends, and so is complete.

iii. Suppose G is grounded. Then it is complete, and so, by part ii, AG ⊆ Ac for some complete extension
Ac. To show that AG ⊆ A∗ for A∗ grounded we must show that there is no complete A′ such that
A′ ⊂ AG. Assume there is such an A′; then it must be that A∗ ⊂ AG. Let G∗ be a conversion of A∗.
By Theorem 4.21.ii, G∗ is complete. Clearly G∗ ⊂ G, so that G is not ⊆-minimally complete. Thus,
given Theorem 4.19.iii, G cannot be grounded. Contradiction.
Since AG ⊆ A∗, we have claims(AG) ⊆ claims(A∗). We must show claims(A∗) ⊆ claims(AG). Assume
s ∈ claims(A∗). Since G is grounded, it is complete, so, by part ii, there is some complete Ac such
that claims(AG) = claims(Ac). But since s ∈ claims(A∗), s ∈ claims(Ac). So s ∈ claims(AG).
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A.5. Theorem 4.21
Let A be a set of tree-based arguments.

i. If A is admissible, then for all conversions G of A, G is admissible.
ii. If A is complete, then for all conversions G of A, G is complete.
iii. If A is grounded, then there exists a conversion G of A such that G is grounded.

Proof.

i. Assume A is admissible, but that, for some conversion G of A, G is not admissible, for contradiction.
If G  G, then there are s, a ∈ v(G) such that ā = s. Since G is a conversion of A, it must be that
v(G) ⊆ labels(nodes(A)). Thus there is some a ∈ A such that a ∈ support(a). If there is an a′ ∈ A
such that s = claim(a′), then A  A: contradiction. Suppose there is no such a′. Then there must
be a′ ∈ A such that s ∈ labels(nodes(a′)). Let a′′ be a subtree of a′ such that claim(a′′) = s. Then
a′′  A, so that A  a′′. But evidently support(a′′) ⊆ support(a′) so that A  A. So A cannot be
admissible: contradiction. Thus G 6 G. Suppose that there is G′ such that G′  G, and let a be an
argument represented in G′ such that claim(a) = ā for some a ∈ support(G). Then evidently a  A,
so that A a. But then it follows that G G′. Thus from Theorem 4.19.i, G must be admissible.

ii. Assume A is complete; then it is admissible, and so G is admissible by (i) of the present theorem. In
light of Theorem 4.19.ii, we must show that there is no G′ with G ⊂ G′, such that for all G∗ where
G∗  G′, G  G∗. Thus assume that there is such an argument graph G′. Let a be an argument
represented in G′ but not in G (since G ⊂ G′ there must be such an argument). Suppose b a, and
let Gb be a conversion of b; it must then be that Gb  G′. So by assumption, G  Gb. But this
means that A  b, so that A defends a. But then A cannot be complete—contradiction. So there is
no such G′, and G is complete.

iii. Assume A is grounded. Thus A is the least fixed point of the characteristic function f (see § 2), i.e.,
A=fω(∅). For each s ∈ claims(A), let the least rank of s be the least n ∈ N such that there is a ∈ fn(∅)
with claim(a) = s; this is evidently well-defined. Let R be a rule of least rank for s if there is a ∈ fn(∅)
with s = claim(a), such that R = last(a)15 and n is the least rank of s. Let R′ ⊆ R be minimally
grounding if for each s ∈ claims(A), R′ contains precisely one rule of least rank for s and no other rules.
Let R ⊆ R be grounding if R is maximally rule-consistent and R′ ⊆ R for some minimally grounded
R′. Plainly a grounding R always exists. We claim that fω

R (♦) is a conversion of A and is grounded.
We first prove the following lemma.

Lemma A.6. For all n ∈ N, (I) claims(fn(∅)) = v(fn
R (♦)) and (II) each argument represented in

fn
R (♦) is a member of fn(∅).

Proof. By induction on n.
Base case. Trivial for n = 0 for both (I) and (II).
Induction step. Assume (I) and (II) are true in the case of n = i. We will show they both hold for
n = i+ 1.

I) By inductive hypothesis claims(f i(∅)) = v(f i
R(♦)).

Assume s ∈ claims(f i+1(∅)). If s ∈ claims(f i(∅)) we are done, so suppose not. Let Gs be the
focused argument graph whose claim is s, such that rules(Gs) ⊆ R (this can easily be shown
to exist), and let G+ be Gs ∪ f i

R(♦); G+ is easily shown to be an argument graph. Suppose
that G∗  G+. If (*) G∗  f i

R(♦), then f i
R(♦)  G∗. If (**) G∗  Gs, then the (unique)

argument b represented by G∗ whose claim is claim(G∗) is such that b a where a is the unique

15Here, last(a) stands for the rule (s ← s1, . . . , sm) ∈ R such that s1, . . . , sm are the children of s in a, if m > 1, and > is
the only child of s in a, if m = 0, where s = claim(a).
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argument represented by Gs whose claim is s. Then b  f i+1(∅), so that f i(∅)  b, which by
the inductive hypothesis means that f i

R(♦)  G∗. Therefore in both (*) and (**), f i
R(♦)  G∗,

So Gs ⊆ f i+1(♦), and thus s ∈ v(f i+1
R (♦)).

Assume now that s ∈ v(f i+1
R (♦)), and let a be the (unique) argument represented in f i+1

R (♦) such
that claim(a) = s. Since R is grounding, it must be that a ∈ f i+1(∅), so that s ∈ claims(f i+1(∅)).

II) That this is true is shown by the argumentation for the second half of part I), above.

By induction, we conclude our result. y

Now, where R is grounding, then fω
R (♦) must plainly be a conversion of A. We must show that fω

R (♦)
is grounded. It is plainly conflict-free, given that A is. Take any maximally rule-consistent R′ such
that rules(fω

R (♦)) ⊆ R′. Each such R′ must be a grounding, and it is plain that fn
R′(♦) = fn

R (♦) for all
n ∈ N. Since fω(∅) is the least fixed point of f , fω

R (♦) is the least fixed point of fR, and so too of fn
R′ .

Thus by Definition 4.17, fω
R (♦) is grounded.

A.6. Theorem 5.6
Let ((Pi,Oi,Gi, Di, Ci))n

i=0 be an X-graph-DS for s0. Then for all i such that 0 6 i 6 n (if n is finite), or
all i such that 0 6 i < n (otherwise—i.e., if n = ω):

i. Pi is a potential argument graph, and s0 ∈ v(Pi);
ii. Oi is an argument graph set;
iii. Gi is a directed graph over L;
iv. Di ⊆ A and Ci ⊆ A. y

Proof. The proof proceeds by induction on the length n > 0 of the X-graph-DS. The base case is trivially
true given the constraints on the tuple (P0,O0,G0, D0, C0) in Definition 5.5.

Assume the result holds for n = k. We will show it holds for n = k + 1. Thus let

(P0,O0,G0, D0, C0), . . . , (Pk,Ok,Gk, Dk, Ck), (Pk+1,Ok+1,Gk+1, Dk+1, Ck+1)

be an X-graph-DS for s0 ∈ L.
We must show that for all j, 0 6 j 6 k + 1, the components of the tuples fulfil the properties set

in the theorem. Plainly (P0,O0,G0, D0, C0), . . . , (Pk,Ok,Gk, Dk, Ck) is a k-length X-graph-DS, so all the
properties we want to prove hold for all tuples up to and including the k-th, by the induction hypothesis.
Moreover, if any component in the (k+ 1)-th tuple is the same as in the k-th, the result trivially holds again
by the induction hypothesis. For the remaining case, we take the parts of the theorem in turn.

i. We need to prove that Pk+1 6= Pk is a potential argument graph with s0 ∈ v(Pk+1).
Examination of Definition 5.5 shows that Pk is expanded to Pk+1 according to case 1(ii) or case 2(i)(c).
In case 1(ii), plainly Pk+1 is acyclic because of the acyclicity check in case 1(ii), and v(Pk+1) ⊆ L.
u(Pk) ⊆ sinks(Pk) by the induction hypothesis, and given the definition of updtgrph from Definition 5.4,
it must be that u(Pk+1) ⊆ sinks(Pk+1). Recall conditions (i) and (ii) from Definition 5.1. Plainly, no
edge from an assumption is added, so that (i) remains satisfied. So assume that some s′ ∈ v(Pk+1) is
such that s′ 6∈ A. If s′ ∈ u(Pk+1), we are done; so suppose instead that s′ 6∈ u(Pk+1). Then either s′
was selected for the step to Pk+1, in which case the result follows by the nature of case 1(ii); or else
s′ ∈ (v(Pk) \ u(Pk)) and the result follows by induction hypothesis. Thus Definition 5.1 is satisfied.
In case 2(i)(c), Pk 6= Pk+1 only if Pk+1 is the same as Pk but with a single new (unmarked) node
added, and no new edges. Plainly this means that Definition 5.1 is satisfied.
Thus, Pk+1 is a potential argument graph. Evidently, since s0 ∈ v(Pk) by the induction hypothesis
and members of v(Pk) are not removed, s0 ∈ v(Pk+1).
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ii. We must show that Ok+1 is an argument graph set. By Definition 5.5, Ok+1 6= Ok only if Ok is
extended to Ok+1 according to case 1(i), case 2(i)(a), case 2(i)(b), case 2(i)(c) or case 2(ii). Cases
1(i), 2(i)(a), 2(i)(b) and 2(i)(c) follow easily from Definition 5.4 and Definition 5.5. For case 2(ii), we
must show that each member of (for the selected G and s):

{updtgrph(G, s← R,Ck) | R ∈ RC} ∪ {updtgrph(G, s← R, ∅) | R ∈ R¬C}

is a potential argument graph. This follows similarly to part (i) of the current theorem, above.
iii. We must show that, for Gk+1 6= Gk, Gk+1 is a directed graph. Examination of Definition 5.5 shows that
Gk is extended to Gk ∪g S, where S is a set of pairs of the form (s1, s2), for s1, s2 ∈ L. With X = adm,
Gk ∪g S by definition of ∪g. Therefore, we only need to consider X = grn. Here, the definition of ∪g

makes it clear that Gk+1 must be a directed graph over L.
iv. Finally, the result for Dk+1 and Ck+1 is trivial given Definition 5.5.

Thus, for each part, the result holds for n = k + 1: this concludes the proof by induction.

A.7. Theorem 5.9
For any X-graph-DD (X ∈ {adm,grn}) for s0 with resulting argument graph P, P is admissible and
s0 ∈ v(P).

Proof. That s0 ∈ v(P) follows directly from Theorem 5.6. To prove the rest, let

(P0,O0,G0, D0, C0), . . . , (Pn,On,Gn, Dn, Cn)

be the given X-graph-DD, with n > 0, with P corresponding to Pn. We will make use of the two lemmas
below. Intuitively, the significance of the first lemma is that any attacker of the proponent is an expansion
of some potential argument in On.

Lemma A.7. If a ∈ Dn, then any focused argument graph G such that ā = claim(G) is an expansion of
some G∗ ∈ On.

Proof. Suppose a ∈ Dn, and let G be a focused argument graph such that ā = claim(G). Since a ∈ Dn,
then from case 1(i) of Definition 5.5 we know that the focused potential argument graph Gā = ({ā}, ∅) will
have been added to some Oi. G is necessarily an expansion of Gā. We prove that no step from Oj to Oj+1,
for j > i, removes any argument graphs for ā which are expansions of members of Oj .

Thus suppose G+ is an expansion of some G− ∈ Oj . If the move from Oj to Oj+1 is by case 2(i) of
Definition 5.5, plainly G+ would still be an expansion of some member (since G− would be retained, but
possibly differently marked). If the move is by case 2(ii), then if s 6∈ A from G− ∈ Oj was chosen, it must
be that there were no edges (s, s′) ∈ v(G−). But then since G+ is an expansion of G−, there must be edges
(s, s1), . . . , (s, sn) in that expansion, such that s ← s1, . . . , sn is a rule in R. But then since for all rules of
the form s← R in R, there is GR ∈ Oj+1 such that

v(GR) = v(G−) ∪R,
e(GR) = e(G−) ∪ {(s, s′) | s′ ∈ R}

(by case 2(ii) of Definition 5.5), then there must be some member of Oj+1 of which G+ is an expansion.
Thus G, in particular, must be an expansion of some G∗ ∈ On. y

The second lemma concerns the existence of counter-attacks by the proponent on expansions of opponent
argument graphs.

Lemma A.8. If G is an expansion of a member of On, then P  G.
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Proof. Let G be an expansion of G− ∈ On. G− 6∈ u(On) (since u(On) = ∅) and thus will have been
marked in the transition from some Oi to Oi+1, either in the application, in Definition 5.5, of case 2(i)(b),
case 2(i)(c), or in case 2(ii) as some updtgrph(G−, s′ ← R,Ci) such that R ∈ RC , i.e., R ∩ Ci 6= ∅.

If the case was 2(i)(b), then there is some s ∈ v(G−) such that s ∈ Ci. If the case was 2(i)(c), then
there is some s ∈ v(G−) such that s ∈ Ci+1. If the case was 2(ii) then there must be some s ∈ R, and thus
s ∈ v(updtgrph(G−, s′ ← R,Ci)), such that s ∈ Ci. So in all cases there is s ∈ v(G−) such that s ∈ Cn.

But examination of the cases of Definition 5.5 shows that for any s added to some Cj (only case 2(i)(c)),
then there must be s̄ ∈ v(Pi+1). It is easy to see that v(Pk) ⊆ v(Pk+1) for all 0 6 k 6 n. Then s̄ ∈ v(P),
and thus P  G. y

Now we move to the proof of the theorem. Given Theorem 4.19(i), we must show that (I) P 6 P, and that
(II) for any argument graph G such that G P, then P  G.

I. First assume for contradiction that P  P. Then there must be s, a ∈ v(P) such that ā = s.
Let Gs be the focused argument graph such that Gs ⊆ P and claim(Gs) = s. Since a = s, by
Definition 5.5 case 1(i) the focused potential argument graph ({s}, ∅) was added to some Oi. In this
case support(P) = Dn. Then, by Lemma A.7, any expansion of a member of Oi must also be an
expansion of a member of On; Gs is such an expansion, and let G−s be the member of On of which it
is an expansion. Since G−s 6∈ u(On) (because u(On) = ∅), G−s must have been marked by case 2(i)(b)
or 2(i)(c) of Definition 5.5. But then there is some b ∈ support(G−s ) such that b ∈ Cn, and clearly
b ∈ support(Gs), too. Evidently also P  Gs.
Now, Gs ⊆ P, so clearly support(Gs) ⊆ v(P). If s′ ∈ L is added to some Pi, it is clear from
Definition 5.5 (cases 1(ii), 2(i)(c)) and from Definition 5.7 that if s′ ∈ A, then s′ is simultaneously
added to Di. Thus support(Gs) ⊆ Dn, and so b ∈ Dn ∩ Cn.
Either (A) b was added to Dn first; (B) b was added to Cn first; or (C) b was added to Dn and Cn at
the same time.
If (A), then b is in some Di and was added as a culprit into Ci+1 by case 2(i)(c). This is impossible,
as the preconditions of that case state that b 6∈ Di. If (B), then b is in some Ci and was added as
defence to Di+1, by case 1(ii) or case 2(i)(c). Here, again, the preconditions of both case 1(ii) and
case 2(i)(c) mean this is impossible. Finally, if (C), then it must be that the case is 2(i)(c), with some
G∗ ∈ Oi, and b ∈ G∗, b̄ = b, with b ∈ A. b has not already been added by case 1(ii) to Di. Then
since b̄ = b, b cannot be the claim of G∗. Case 2(i)(c) adds b as unmarked to Pi+1, and since b ∈ A
then for some later j > i, case 1(i) must add ({b}, ∅) to Oj+1. Yet then there will be no sub-case of
case (2)(i) which can apply: cases 2(i)(b) and 2(i)(c) fail on the precondition that b 6∈ Di, and if b is
ignored, i.e. case 2(i)(a), then ({b}, ∅), with b unmarked, will be replaced by ({b}, ∅), with b marked,
which is impossible (as the resulting unmarked potential argument graph cannot be eliminated from
Oi+1 and thus u(On) cannot be empty). Thus none of (A), (B) or (C) is possible, and so P 6 P.

II. Assume G  P. Then by Lemma A.7, G is the expansion of some G− ∈ On. By Lemma A.8, this
means that P  G.

A.8. Theorem 5.10
For any grn-graph-DD with resulting argument graph P, there is some grounded argument graph G such
that P ⊆ G.

Proof. Our strategy will be as follows. First, we define notions of ‘argument graph dispute tree’ (Defini-
tion A.9) and ‘corresponding argument graph dispute tree’ (Definition A.10), which we show to be finite
(Lemma A.11). Secondly, we prove a series of lemmas concerning relations between argument graphs in
general. Thirdly, we present the proof itself, the core of which is by induction.

Definition A.9. An argument graph dispute tree T for s ∈ L is defined as follows:
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i. Every node of T is a proponent node or an opponent node, but not both. The status of a child
node is different from that of its parent. Each node is labelled by a focused argument graph.

ii. The root is a proponent node labelled by an argument graph whose claim is s.
iii. For every proponent node n labelled by G, and for every focused argument graph G′ such that

there is a ∈ support(G) with ā = claim(G′), there is an opponent child n′ of n labelled by G′ (thus,
G′  G).

iv. For every opponent node n labelled by G, there exists exactly one (proponent) child n′ of n, labelled
by a focused argument graph G′ such that there is some a ∈ support(G) and ā = claim(G′) (thus,
G′  G).

v. For any argument graphs G1 and G2 labelling any two proponent nodes, there is some argument
graph G such that G1 ⊆ G and G2 ⊆ G.

vi. There are no other nodes except those given by (i)–(v). y

This definition is intended to mirror the definition of dispute tree in (Dung et al., 2006), given later as
Definition A.20 in the proof of Theorem A.10. Note that point (v) in the above constrains the argument
graphs labelling the proponent nodes to be ‘compatible’, in the sense of Definition A.2. This ensures that
the argument graphs of the proponent nodes can be ‘gathered together’ to form a single argument graph.

Where G is an argument graph and s ∈ v(G), we will let prune(s,G) denote the ⊆-largest focused
argument graph G′ such that G′ ⊆ G and claim(G′) = s. (This is guaranteed to exist and be unique, as is
easy to show.)

Definition A.10. T is defined to be a corresponding argument graph dispute tree for a grn-graph-DD with
resulting P iff:

i. The root of T is a proponent node labelled by prune(s0,P).
ii. For every proponent node n labelled by G such that a ∈ support(G), and for every focused argument

graph G′ such that claim(G′) = ā, there is an opponent child of n labelled by G′.
iii. For every opponent node n labelled by G, there exists a single proponent child n′ of n, such that

there is a ∈ support(G) and n′ is labelled by prune(ā,P).
iv. There are no other nodes except those given by (i)–(iii). y

We must of course show that a corresponding argument graph dispute tree according to Definition A.10,
is an argument graph dispute tree according to Definition A.9. That, and the finiteness of this argument
graph dispute tree, are shown as follows.

Lemma A.11. Let (P0,O0,G0, D0, C0), . . . , (Pn,On,Gn, Dn, Cn) be a grn-graph-DD for s0 ∈ L and T
a corresponding argument graph dispute tree. Then T is an argument graph dispute tree in the sense of
Definition A.9 and T is finite.

Proof. Condition (ii) of Definition A.9 is met, since s0 ∈ Pn and thus prune(s0,Pn) is a focused argument
graph. By Lemmas A.7 and A.8 every opponent node is attacked by some proponent node labelled by
a focused argument graph G s.t. G ⊆ Pn. Thus condition (iv) is met. Conditions (i) and (iii) are met
trivially. Condition (v) is ensured, since the the argument graphs labelling the proponent edges have the
form prune(s′,Pn) for s′ ∈ Pn, and Pn is an argument graph.

Assume for contradiction that T is infinite. It cannot be infinitely branching (i.e., it cannot be that some
node in T has infinitely many children), for this would only happen if there were infinitely many opponent
children of some proponent node; but given the finiteness of L (and thus R), then there are only finitely
many focused argument graphs having a given claim. Therefore there must be an infinite path in T . That
implies, however, that there would be a cycle in Gn, and this is impossible. So T is finite. y

This concludes the preliminaries on argument graph dispute trees.
We move now to the second part, and prove a series of lemmas about argument graphs. Some involve

the following notions.
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Definition A.12. Where G1 and G2 are argument graphs, then G1∪G2 is defined as (v(G1)∪v(G2), e(G1)∪
e(G2)). (Note that, in general, this need not be an argument graph.)

Where G is an argument graph, then G′ is said to be acceptable w.r.t. G iff G ‖ G′ and for all G′′ such
that G′′  G′, then G G′′. y

The next lemma is a straightforward result on admissibility.

Lemma A.13. Let G be an admissible argument graph and let G′ be an argument graph such that G ‖ G′
and G′ is acceptable with respect to G. Then G ∪G′ is admissible.

Proof. We first show G∪G′ is conflict-free. Clearly G 6 G. If G G′ then by acceptability of G′ w.r.t. G,
G  G, which is a contradiction—so G 6 G′. If G′  G′, then G  G′ by acceptability, whence a
contradiction arises as before. So G′ 6 G′. If G′  G then G G′ by admissibility of G, whence the same
contradiction. So G ∪G′ is conflict-free.

Now suppose some argument graph G′′ is such that G′′  (G∪G′). Evidently G′′  G or G′′  G′. In
each case G G′′, so (G ∪G′) G′′. y

The next lemma shows that admissible argument graphs which are subgraphs of a grounded argument graph
can be extended by argument graphs which are acceptable with respect to them; the result is still a subgraph
of a grounded argument graph.

Lemma A.14. Let G− be an admissible argument graph such that G− ⊆ G′ for some grounded argument
graph G′. Let G be an argument graph such that G− ‖ G and G 6⊆ G−. If G is acceptable w.r.t. G−, then
(G− ∪G) ⊆ G∗ for some grounded argument graph G∗.

Proof. Since G′ is grounded, then by Theorem 4.19(iii) there is no complete argument graph G′′ such that
G′′ ⊂ G′. Since G− ⊆ G′, this means there is no complete argument graph G′′ such that G′′ ⊂ G−. Further,
G− is not itself complete, for G is acceptable w.r.t. G− and G− 6= (G− ∪ G) (because G 6⊆ G−). Any G+

such that G− ⊆ G+ ⊂ (G−∪G) will not be complete, since clearly such a (G−∪G) is acceptable w.r.t. such
a G+ (and strictly contains it). Thus there is no complete G′′ such that G′′ ⊂ (G− ∪G).

Since G is acceptable w.r.t. G−, then for some fR such that rules(G−) ⊆ R, we have that (G− ∪ G) ⊆
fR(G−). Thus since there is no complete subset of (G− ∪ G), the least fixed point, GR, of fR must be
such that (G− ∪ G) ⊆ GR. But for any fR, the least fixed point of fR must be included in some grounded
extension. Thus there is a grounded G∗ such that (G− ∪G) ⊆ G∗. y

Our final preliminary lemma shows that combining compatible argument graphs which are subgraphs of
grounded argument graphs produces a result which is itself a subgraph of a grounded argument graph.

Lemma A.15. Let T be a corresponding argument graph dispute tree for a grn-graph-DD with resulting
P, and let T1, . . . , Tn be the argument graphs rooted at the children of the children of the root of T . For
each Ti amongst the T1, . . . , Tn, let Gi be union of the argument graphs labelling the proponent nodes of Ti.
If there there are grounded argument graphs G+

1 , . . . , G
+
n such that G1 ⊆ G+

1 , . . . , Gn ⊆ G+
n , then there is

a grounded argument graph G+ such that (G1 ∪ · · · ∪Gn) ⊆ G+.

Proof. We prove the result for n = 2; the extension to larger n follows easily.
Evidently G1 ‖ G2 by construction, since the argument graphs labelling proponent nodes must be

compatible. Let G1 ⊆ G+
1 and G2 ⊂ G+

2 as stipulated. Since G+
1 and G+

2 are grounded, then where AG+
1
is

the set of arguments represented in G+
1 and AG+

2
is the set of arguments represented in G+

2 , Theorem 4.20(iii)
requires that claims(AG+

1
) = claims(AG+

2
); Theorem 4.3 then requires that v(G+

1 ) = v(G+
2 ). Let G+ be

defined such that v(G+) = v(G+
1 ) and

e(G+) = e(G1) ∪ e(G2) ∪ {(s, s′) ∈ e(G+
1 ) | s 6∈ (v(G1) ∪ v(G2))}

Thus G+ contains precisely the sentences in v(G+
1 )—which are precisely the sentences in v(G+

2 )—as well as
all edges in G1 or G2, but any s which is not in v(G1) or v(G2) has children the same as the children of s
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in G+
1 . (Thus, G+ can be thought of as matching the intersection of G1 and G2, and then being extended

outside that intersection in ways that match G+
1 .)

We must show that G+ is an argument graph. Suppose s ∈ v(G+). Then if s ∈ A, there is plainly
no edge of the form (s, s′). Suppose s 6∈ A; we must show condition (ii) of Definition 4.1 is satisfied. If
s ∈ v(G1) then there is a rule s← R such that for all s′ ∈ R, there is an edge (s, s′) ∈ G+; there are plainly
no other edges of the form (s, s′) ∈ G+, so that condition (ii) is satisfied. If s ∈ v(G2) a similar argument
shows that condition (ii) is satisfied. If s 6∈ (v(G1) ∪ v(G2)) then the definition of e(G+) above shows that
(ii) is satisfied. Thus G+ is an argument graph.

We now show that G+ is grounded. First, we show that it is admissible. If G+ were self-attacking, then
since v(G+) = v(G+

1 ) = v(G+
2 ), it would have to be that both G+

1 and G+
2 were self-attacking; which cannot

be, since they are grounded. If there is G′ such that G′  G+ but G+ 6 G′, then neither G+
1 nor G+

2 would
defend itself from attacks. So, by Theorem 4.19(i) G+ is admissible.

Now, by Definition 4.17, G+ is grounded iff for all maximally rule-consistent R+, G+ is the least fixed
point of fR+ , i.e., for all such R+, fω

R+(♦) = G+. For all such R+, this will be true—given that rules(G+) ⊆
R+—iff v(fω

R+(♦)) = v(G+). We show each set is included in the other.
First, v(fω

R+(♦)) ⊆ v(G+). For contradiction assume this is false, so that v(fω
R+(♦))\v(G+) is non-empty.

Let k be such that v(fk
R+(♦)) ⊆ v(G+) but v(fk+1

R+ (♦)) 6⊆ v(G+), and let a ∈ v(fk+1
R+ (♦)) \ v(G+); a must

be an assumption, for if not then a would be in fk
R+(♦). Since a ∈ v(fk+1

R+ (♦)) then by the definition of
fR+ , where G′ is such that claim(G′) = ā, then fk

R+(♦)  G′. But since fk
R+(♦) ⊆ G+ by hypothesis,

then because v(G+) = v(G+
1 ), it must be that G+

1  G′. Then since G+
1 is grounded, a ∈ v(G+

1 ), so that
a ∈ v(G+). Contradiction. Therefore, v(fω

R+(♦)) ⊆ v(G+).
Secondly, we show v(G+) ⊆ v(fω

R+(♦)). Assume for contradiction that this is false, and thus that
v(G+) \ v(fω

R+(♦)) is non-empty; note further that there can be no assumption a ∈ v(G+) \ v(fω
R+(♦)) such

that fω
R+(♦) attacks all G′ with claim(G′) = ā (for if there were such an a, then evidently a must be in

fω
R+(♦)). Now, since G+ is admissible there must be a cycle of argument graphs P1, O1, P2, O2, . . . , Om, P1,
m > 1, such that P1  O1  P2  O2  · · ·  Om  P1, and for all i such that 1 6 i 6 m, Pi ⊆ G+,
claim(Pi) ∈ (v(G+)\v(fω

R+(♦))), and support(Pi) 6⊆ fω
R+(♦)). Further, for no G′ ⊆ fω

R+(♦)) is it the case that
for some i with 1 6 i 6 m, then G′  Oi. (These conditions are required because v(G+) ⊆ v(fω

R+(♦))).)
Yet this cycle means that there would have to be a cycle in Gn; since Gn must be acyclic, then we have a
contradiction. Thus v(G+) ⊆ v(fω

R+(♦)).
Therefore for any maximally rule-consistent R+, G+ is the least fixed point of fR+—i.e., G+ is grounded.
Evidently (G1 ∪G2) ⊆ G+ by definition: this concludes the proof. y

This concludes the second stage of preliminaries.
We now, thirdly, prove the theorem. Thus let (P0,O0,G0, D0, C0), . . . , (Pn,On,Gn, Dn, Cn) be our grn-

graph-DD for s0 with resulting P and let T be a corresponding argument graph dispute tree (according to
Definition A.10). By Lemma A.11, T is finite. It is easy to see that the height of a finite argument graph
dispute tree T is 2k, for k > 0. Let G1, . . . , Gm be the argument graphs labelling the proponent nodes of
T (m > 1). Evidently, G1 ∪ · · · ∪Gm = P, and thus by Lemma A.7, G1 ∪ · · · ∪Gm is admissible. We can
show the theorem by proving, by induction on k, that there is a grounded argument graph G∗ such that
G1 ∪ · · · ∪Gm ⊆ G∗.

We prove the result .

• Base case. k = 0 corresponds to a dispute tree with a single node labelled by an argument graph
G that has no attackers. Let G′ be an arbitrary grounded argument graph. Now, ♦ is an admissible
argument graph (since it has no attackers), and evidently ♦ ⊆ G′. Clearly, G 6⊆ ♦ (since at least
s0 ∈ v(G)) and ♦ ‖ G (this is just G). Since G is clearly acceptable w.r.t. ♦, Lemmas A.13 and A.14
apply, giving that ♦ ∪ G = G is admissible and G ⊆ G∗ for some grounded G∗. Thus, since here
G = P, we have shown the base case.

• Induction step. First assume the result holds for all finite argument graph dispute trees with height
less than 2k, and let T be a finite argument graph dispute tree with height 2k, whose root is labelled by
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some Gr. Let n1, . . . , nj be the children of children of the root of T . For each such child ni (1 6 i 6 j),
let Ti be the finite argument graph dispute tree rooted at ni (each Ti has height less than 2k). For
each such Ti, let Gi be the union of the argument graphs labelling the proponent nodes of Ti. Then
by the induction hypothesis there is, for each i, some grounded G+

i such that Gi ⊆ G+
i . Then by

Lemma A.15, there is some grounded G+ such that G1 ∪ · · · ∪ Gm ⊆ G+. Then by Lemmas A.13
and A.14, since Gr is acceptable w.r.t. G1 ∪ · · · ∪Gm, it must be that G1 ∪ · · · ∪Gm ∪Gr is admissible
and G1 ∪ · · · ∪Gm ∪Gr ⊆ G∗ for some grounded G∗.

We conclude by induction that the result holds for all k, and this proves the theorem.

A.9. Theorem 5.11
Let L be finite. If G is an admissible argument graph such that s0 ∈ v(G), then there is an adm-graph-DD
for s0 with resulting argument graph some P such that P ⊆ G.

Proof. We proceed as follows. We first show (Lemma A.16) that, since L is finite, there is no infi-
nite (ω-length) adm-graph-DS for s0. We next prove that any finite adm-graph-DS for s0, ending with
(Pn,On,Gn, Dn, Cn) such that Pn ‘matches’ G (a notion we give in Definition A.17) and which satisfies
three additional properties, can always be extended to a longer adm-graph-DS which satisfies the same
properties (Lemma A.19). To prove this, we use an intermediate result (Lemma A.18). Together with the
result on the impossibility of infinite adm-graph-DSs, this is proved to show the theorem.

Lemma A.16. If L be finite, then there is no infinite (ω-length) X-graph-DS (X ∈ {adm,grn}) for s0 ∈ L.

Proof. Suppose that there is an infinite X-graph-DS for s0; call this Sω. There must either be an infinite
subsequence of members of Sω determined by a proponent step in Definition 5.5, or an infinite subsequence
of members of Sω determined by an opponent step in Definition 5.5. Suppose the former. Note that for
each proponent step, some s 6∈ m(Pi) is added to m(Pi), and further that m(Pi) is non-decreasing in
Sω. Thus if there is some infinite subsequence of proponent steps, |

⋃
i<ω(m(Pi)| = ℵ0, contradicting the

finiteness of L.
Suppose now that there is an infinite subsequence of Sω of opponent steps. Since there is no infinite

subsequence of proponent steps, then there must be some j < ω such that for all i > j, the only steps
are opponent. Thus consider the subsequence So of Sω starting from j. Cases 2(i)(b) and 2(i)(c) mark
members of Oi, and case 2(i)(a) marks a member of u(G∗), for some G∗ ∈ Oi; thus if there were only a
finite number of steps in So of case 2(ii), then eventually no other case would be applicable—either because
there would be no member of u(Oi), or because all members G∗ ∈ u(Oi) would be such that u(G∗) = ∅.
Therefore there are an infinite number of steps of case 2(ii) in So. Let us say that some G′ ∈ Oi+1 is a child
of G∗ ∈ Oi, if G∗ ∈ u(Oi) was selected at step i, and G′ was added to form u(Oi+1) by case 2(ii) (i.e.,
G′ expands G∗ at s ∈ v(Gi) using some rule s ← R ∈ R). There must then be an ω-length sequence of
argument graphs G1, . . . , Gn, . . . such that G1 ∈ u(Oj), and Gk+1 is a child of Gk for k = 1, . . . , n, . . .. But
it is not hard to see (as for the proponent case, above), that this is impossible because of the finiteness of
L, given the acyclicity checks in case 2(ii).. Thus there is no infinite subsequence of opponent steps in Sω.

So there is no infinite X-graph-DS. y

Definition A.17. Let P be a potential argument graph, and G an argument graph. Then P is said to
match G if the graph GP obtained by ignoring the marking apparatus of P is such that GP ⊆ G. y

Note that GP is only an argument graph when P is actual; and that, recalling Definition 5.1, any actual
argument graph matches its corresponding argument graph.

Lemma A.18. Let (P0,O0,G0, D0, C0), . . . , (Pn,On,Gn, Dn, Cn) be an X-graph-DS for s0 ∈ L (X ∈
{adm,grn}) which is not an X-graph-DD, and let G be an admissible argument graph such that s0 ∈ v(G).
Further suppose that, for all i such that 0 6 i < n:

a. if the (i+ 1)-th tuple is obtained using case 1(ii) of Definition 5.5 with s ∈ (L \ A) selected such that
s ∈ v(G), then the rule s← {s′ ∈ v(G) | (s, s′) ∈ e(G)} is chosen;
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b. if the (i+1)-th tuple is obtained using case 2(i) of Definition 5.5 with and G′ ∈ u(Oi) and s ∈ (G′∩A)
selected, then s is ignored (case 2(i)(a) of Definition 5.5) iff s̄ 6∈ v(G).

Then for all 0 6 i 6 n:

i. Let i be a proponent step, where s 6∈ A is selected; then s ∈ v(G).
ii. Let i be a proponent step, where a ∈ A is selected; then a ∈ support(G).
iii. Di ⊆ support(G).
iv. For each c ∈ Ci, there is s ∈ v(G) such that c̄ = s.
v. Suppose i is an opponent step where G′ ∈ u(Oi) is selected, such that u(G′) ⊆ A. Then G′ is a

focused potential argument graph such that claim(G′) = ā for some a ∈ support(G).

Proof. First note that we are entitled to suppose (a) and (b). In particular, in the case of (a), since G is
an admissible argument graph, then, where s ∈ v(G), there must be a (unique) rule s← R in R such that
R = {s′ ∈ v(G) | (s, s′) ∈ e(G)}. (b) makes no existential commitments and is therefore trivially permitted.

We take the proof of parts (i)–(v) in turn; that of (i)–(iii) is by induction on n.

i. The base case (n = 0) amounts to s = s0, and is immediate. Assume the result holds for n = k. We
will show it holds for n = k + 1. Thus let s 6∈ A be selected at the transition from step k to k + 1.
Evidently s is in v(Pk) either by some previous case 1(ii) or 2(i)(c). If the case was 1(ii), then by
condition (a) and the induction hypothesis, it must be that s ∈ v(G). If the case was 2(i)(c), then s is
in v(Pk) because s = ā for some a ∈ A which was not ignored in the opponent step; so by condition
(b) and the induction hypothesis, s ∈ support(G), and the result follows. Thus s ∈ v(G) either way,
and so by induction the result holds for all n.

ii. Similar to (i).
iii. The base case (n = 0) is obvious. Suppose the result holds for n = k. For n = k+1, we must show that

Dk+1 ⊆ support(G). Dk ⊆ support(G) through the induction hypothesis. Now, note that assumptions
are added to Dk in, possibly, cases 1(ii) and 2(i)(c). If the case is 1(ii), then condition (a) guarantees
that Dk+1 ⊆ support(G). If the case is 2(i)(c), then it must be that any s̄ added is in support(G), by
condition (b). Thus Dk+1 ⊆ support(G), and by induction we conclude that result holds for all n.

iv. Let c ∈ Ci. Then c must have been added by some previous step of case 2(i)(c). Thus c̄ ∈ v(G) by
condition (b).

v. That G′ is a focused potential argument graph is true by construction. There must be some j < i
such that newgrph(claim(G′)) was added to u(Oj) using 1(i) of Definition 5.5. But then evidently
claim(G′) = ā for some a ∈ v(Pj) ∩ A. Thus a ∈ support(G) from part (ii) of the current lemma. y

Lemma A.19. Let (P0,O0,G0, D0, C0), . . . , (Pn,On,Gn, Dn, Cn) be an adm-graph-DS for s0 ∈ L, which is
not an adm-graph-DD, such that for all i such that 0 6 i < n:

a. if the (i+ 1)-th tuple is obtained using case 1(ii) of Definition 5.5 with s ∈ (L \ A) selected such that
s ∈ v(G), then the rule s← {s′ ∈ v(G) | (s, s′) ∈ e(G)} is chosen;

b. if the (i+1)-th tuple is obtained using case 2(i) of Definition 5.5 with and G′ ∈ u(Oi) and s ∈ (G′∩A)
selected, then s is ignored (case 2(i)(a) of Definition 5.5) iff s̄ 6∈ v(G);

c. Pi matches G (and so does Pn).

Then (P0,O0,G0, D0, C0), . . . , (Pn,On,Gn, Dn, Cn) can be extended to an adm-graph-DS for s0

(P0,O0,G0, D0, C0), . . . , (Pn,On,Gn, Dn, Cn), (Pn+1,On+1,Gn+1, Dn+1, Cn+1)

which also satisfies conditions (a)–(c).
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Proof. Note that conditions (a) and (b) are the same as in Lemma A.18; thus that lemma applies.
We show that one of the cases of Definition 5.5 must apply in such a way to preserve conditions (a)–(c),

and thus that the given adm-graph-DS can be extended. Note first that it cannot be that both u(Pn) and
u(On) are empty, as otherwise the given adm-graph-DS would be an adm-graph-DD.

• If u(Pn) 6= ∅ then either there exists s ∈ u(Pn) ∩ A or there exists s ∈ u(Pn) \ A, one of which is
selected, and thus one of case 1(i) or case 1(ii) is applicable.
Case 1(i) applies. Conditions (a) and (b) are trivially preserved. If condition (c) is violated, it is
because Pn+1 does not match G. Yet this is impossible, since Pn+1 is the same as Pn except for the
marked sentences, and Pn matches G.
Case 1(ii) applies. Condition (b) is trivially preserved. To prove that conditions (a) or (c) are also
preserved, we must show that there is some rule of the form s← {s′ ∈ v(G) | (s, s′) ∈ e(G)} in R such
that {s′ ∈ v(G) | (s, s′) ∈ e(G)}∩Cn = ∅, and Pn+1 = updtgrph(Pn, s← {s′ ∈ v(G) | (s, s′) ∈ e(G)}, ∅)
is acyclic and matches G.
Now, by Lemma A.18(i), we know that s ∈ v(G). Thus there is a rule s← {s′ ∈ v(G) | (s, s′) ∈ e(G)}
in R; let R = {s′ ∈ v(G) | (s, s′) ∈ e(G)}. If there is a ∈ R ∩ Cn, then clearly a ∈ v(G) ∩ Cn, so that
by Lemma A.18(iv), G  G (since Pn matches G, by condition (c)). Then G cannot be admissible.
Contradiction. Thus R ∩ Cn = ∅. Evidently, since Pn matches G and updtgrph(Pn, s← R) only adds
edges and nodes to G, Pn+1 is acyclic by the acyclicity of G, and Pn+1 matches G. Thus in this case
too (a)–(c) are preserved.

• If u(On) 6= ∅ then some G′ ∈ u(On) can be selected. If u(G′) = ∅, then by Lemma A.18(v) G′
is an actual argument graph whose claim is ā, for some a ∈ support(G). By condition (b), there
is no a′ ∈ v(G′) such that ā′ ∈ v(G); for if there were such an a′, then since a′ must have been
selected at some previous step (since u(G′) = ∅), a′ would not have been ignored (because of (b),
above). Therefore G cannot be admissible (since it does not counter-attack G′). Contradiction. Thus
u(G′) 6= ∅, s ∈ u(G′) can be selected and case 2 is applicable.
Case 2 applies. Condition (a) is trivially preserved. We must check that conditions (b) and (c) can
also be preserved.
First, condition (b). Suppose that s ∈ A. Now, either s̄ 6∈ v(G) or s̄ ∈ v(G). If s̄ 6∈ v(G), then it is
clearly safe to ignore s (since there are no additional conditions on when we may apply 2(i)(a)). If
s̄ ∈ v(G), then we must check that s 6∈ Dn—for if s ∈ Dn, cases 2(i)(b) or 2(i)(c) could not be applied,
and the adm-graph-DS could not be extended. But if s ∈ Dn, then by Lemma A.18(iii), s ∈ support(G).
Since s̄ ∈ v(G), this means that G G, and so G could not be admissible. Contradiction. So if s ∈ A
and s̄ ∈ v(G), then s 6∈ Di. Thus condition (b) is satisfied.
Secondly, for condition (c), note that the difference between Pn and Pn+1 would be because of case
2(i)(c), where s̄ is ensured to be a node of Pn+1. But since we have just shown that (b) is satisfied,
then it must be that s̄ ∈ v(G). Thus Pn+1 must match G.
Thus for case 2, (a)–(c) are preserved. y

This concludes the preliminaries. Now note that an adm-graph-DS of length 0, containing just a single
tuple, trivially satisfies conditions (a)–(c) in Lemma A.19. Lemma A.19 states that a finite, n-length adm-
graph-DS satisfying (a)–(c) which is not an adm-graph-DD can always be extended to an (n + 1)-length
adm-graph-DS satisfying (a)–(c). But Lemma A.16 requires that there are no infinite-length X-graph-
DSs. So extending the 0-length adm-graph-DS in accordance with (a)–(c) must eventually result in an
adm-graph-DD.

A.10. Theorem 5.12
Let L be finite. If G is a grounded argument graph such that s0 ∈ v(G), then there is a grn-graph-DD for
s0 with resulting argument graph some P such that P ⊆ G.
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Proof. Our general strategy here is close to that in the proof of Theorem 5.11. We already know that there
is no ω-length grn-graph-DS for s0; we will prove that any finite grn-graph-DS for s0 matching G which
is not a grn-graph-DD can be extended. Elements of the demonstration that the extension is possible are
similar to those for adm-graph-DSs; the added complication in the case of a grn-graph-DS is that extension
might be prevented by the failure of the acyclicity check on Gi. (This was not an issue for adm-graph-DSs,
since the Gi in that case is always the empty argument graph.) We will prove that, where G is grounded,
a grn-graph-DS can be defined in such a way that the Gi component is acyclic. This proof borrows the
structure of a related result for abstract argumentation from Thang et al. (2009).

The first stage of the proof shows that a ‘graph induced’ (see (Thang et al., 2009)) by a ‘dispute tree’
(see (Dung et al., 2006)) must be acyclic. We give these background definitions next.

Definition A.20 (Definition 5.1, (Dung et al., 2006)). A dispute tree T for an argument a0 w.r.t. (Args, )
is a rooted tree such that:

i. Every node of T is labelled by an argument in Args and is either a proponent or opponent node
(but not both). The status of a child node is different from the status of its parent.

ii. The root is a proponent node labelled by a0.
iii. For every proponent node n labelled by a, and every argument b such that b a, there is a child of

n labelled by b.
iv. For every opponent node n labelled by b, there exists precisely one child of n labelled by some a such

that a b.
v. There are no other nodes except those given by (i)–(iv).

Let T be a dispute tree w.r.t. (Args, ). T is said to be admissible if no a ∈ Args labels both a proponent
and opponent node in T . y

For a tree T , we let nodes(T ) denote the set of nodes of T and edges(T ) denote the edges. Where T is a
dispute tree and n ∈ nodes(T ) label(n) is the argument which labels n. (labels(N) lifts this to sets of nodes
N .)

It is proved in (Dung et al., 2006) that if a tree T is admissible, then the set A of all arguments labelling
the tree’s proponent nodes is an admissible extension of (Args, ).

Definition A.21 (Definition 7, (Thang et al., 2009)). Given an admissible dispute tree T , the graph induced
by T , IT , has the set of nodes labels(nodes(T )), and the set of edges

{(b, a) | ∃(n, n′) ∈ edges(T ) such that label(n) = a ∧ label(n′) = b} y

Acyclicity of IT corresponds, for finite (Args, ) to presence in the grounded extension—as given by the
following lemma.

Lemma A.22. Given a finite (Args, ) with grounded extension AG, a0 ∈ AG iff there exists a dispute tree
T for a0 such that IT is acyclic.

Proof. This is a direct consequence of Lemmas 3 and 4 from (Thang et al., 2009). y

Now, in general, the abstract argumentation framework (Args, ) corresponding to our ABA framework
(see (Dung et al., 2007) for a definition of this correspondence) may be infinite. (This is so even where
the ABA framework is restricted to be finite in all its components—for the possibility of non-rule-minimal
arguments introduces the possibility of an infinite Args, as in Example 6, for instance.) We accordingly define
a ‘restricted’ abstract argumentation framework (ArgsG, G), making use of the given grounded argument
graph G. Thus, let (ArgsG, G) ⊆ (Args, ) be such that

• ArgsG is the set of rule-minimal arguments a in Args such that either (i) a is represented in G; or (ii)
there is some b ∈ support(G) with claim(a) = b̄.

65



•  G is the restriction of  to ArgsG.

Then it is clear that, since L is finite, so is (ArgsG, G). For, (i) the set of rule-minimal arguments
represented by G is plainly finite (for G itself is finite if L is); and (ii) for a finite set of rule-minimal
arguments, there can only be finitely many rule-minimal arguments with a given claim. Let AG denote the
set of arguments represented by G (so that AG ⊆ ArgsG). We will prove that AG is the grounded extension
of (ArgsG, G), and given Lemma A.22 this will let us conclude that there is a finite dispute tree for an
argument whose claim is s0.

Thus, it is clear that, for each s ∈ v(G), there is precisely one a ∈ AG such that claim(a) = s. (Existence
of at least one such argument is assured by Theorem 4.3; uniqueness is a consequence of Theorem 4.12.)
Each such argument is rule-minimal, by Theorems 4.4 and 4.9. Further, AG is not bloated, by Theorem 4.12.
Let a0 be the argument represented by G whose claim is s0. Clearly a0 ∈ AG and is unique and rule-minimal.
The following lemma shows that the characteristic function for (ArgsG, G) and any characteristic function
fR such that rules(G) ⊆ R match in an important sense.

Lemma A.23. Let fR be any argument graph characteristic function such that rules(G) ⊆ R, and let f
be the characteristic function of (ArgsG, G). Then for all i with 0 6 i, f i(∅) is the set of arguments
represented in f i

R(♦).

Proof. The proof proceeds by induction on i.
Base case. The base case is trivial: the set of arguments represented by ♦ is plainly ∅.
Inductive step. Assume the result holds for i = j. Evidently f j(∅) ⊆ f j+1(∅) and f j

R(♦) ⊆ f j+1
R (♦).

We must show that (I) if a ∈ (f j+1(∅) \ f j(∅)) then a is represented in f j+1
R (♦); and that (II) if a is

represented in f j+1
R (♦) but not in f j

R(♦), then a ∈ f j+1(∅).

I. First assume a ∈ (f j+1(∅) \ f j(∅)). Then whenever b ∈ ArgsG is such that b a, f j(∅) b. Let G∗
be a graphical conversion of b (since b is rule minimal, G∗ is just a focused argument graph where b
is the largest argument represented in G∗). Let Ga be a graphical conversion of a (again, since a is
rule-minimal, Ga is an argument graph which precisely matches a).
Now, either a ∈ AG or not. We will show that if a 6∈ AG then a contradiction follows. Thus assume
a 6∈ AG; let m 6 j be such that there is some a∗ 6∈ AG with a∗ ∈ (fm+1(∅) \ fm(∅)), and there is no
smaller m′ < m such that this is true. Pick some a∗ ∈ (fm+1(∅)\fm(∅)). We have that fm(∅) defends
a∗, so that if b  a∗, then fm(∅)  b. But since a∗ 6∈ AG, then where Ga∗ is the argument graph
corresponding to a∗, then Ga∗  G, so that G  Ga∗ , and thus there is some argument represented
in G, b, such that b  a∗. Since b ∈ ArgsG, then fm(∅)  b, which means there is some c ∈ fm(∅)
such that c  b; but by the inductive hypothesis, c is represented in G. Thus G  G, contradicting
its admissibility. Thus supposing that a 6∈ AG leads to a contradiction.
It must therefore be the case that a ∈ AG. Then let G+ be the smallest argument graph containing
f j

R(♦) and the focused argument graph corresponding to a as subgraphs. (That there is such a smallest
argument graph can easily be shown.) Suppose G∗  G+, where without loss of generality G∗ is a
focused argument graph; then the argument maximally represented by G∗ being b, we have that
b  a or b  f j(∅). In each case f j(∅) attacks b, so that f j

R(♦)  G∗ by the inductive hypothesis.
So G+ ⊆ f j+1

R (♦), and thus a is represented in f j+1
R (♦).

II. Assume a is represented in f j+1
R (♦) but not in f j

R(♦). Then wherever b  a, for some rule-minimal
b, then if Gb is the focused argument graph corresponding to b, f j

R(♦)  Gb. Thus by the inductive
hypothesis, f j(∅) b, so that a ∈ f j+1(∅) as desired.

By induction, we conclude our result. y

This lets us prove what we desired, that AG is the grounded extension of (ArgsG, G).

Lemma A.24. AG is the grounded extension of (ArgsG, G).
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Proof. G is grounded, so that by Definition 4.17, for all fR such that rules(G) ⊆ R, G is the least fixed
point of fR. Thus G = fω

R (♦). Let f be the characteristic function of (ArgsG, G). Now, by Lemma A.23,
for all n ∈ N we have that fn(∅) is the set of arguments represented in fn

R (♦). Thus fω(∅) is the set of
arguments represented in fω

R (♦), i.e., the set of arguments represented in G, i.e., AG. But fω(∅) is the
grounded extension of (ArgsG, G). Thus AG is this grounded extension. y

This leads to the main result of the first part of the proof.

Lemma A.25. Let G be a grounded argument graph, and suppose s0 ∈ v(G). Let a0 be the argument
represented by G such that claim(a0) = s0. Then there is a dispute tree T for a0 whose induced graph IT
is acyclic, and is such that any argument labelling a proponent node is represented in G.

Proof. Let (ArgsG, G) and AG be defined as above. (ArgsG, G) is finite. By Lemma A.24, AG is the
grounded extension of (ArgsG, G), and clearly a0 ∈ AG. Thus, by Lemma A.22, there is a dispute tree T
for a0 whose induced graph IT is acyclic. That any argument a labelling a proponent node is represented
in G follows from the fact that the grounded extension of (ArgsG, G) is AG. y

The acyclicity of IT will be proved to correspond to the acyclicity of Gi in the grn-graph-DD we will
construct.

In the remainder of the proof, we show that, given a grounded argument graph G, the dispute tree T
shown to exist in Lemma A.25 can be used to construct a grn-graph-DD for s0. We proceed in several
stages. We first show that the tree T can be searched in such a way as to define a sequence (S0, . . . , Sm)
whose members are either proponent nodes of T , or sets of opponent nodes of T labelled by arguments
for the same claim (Algorithm A.2). We then prove properties of the sequence (S0, . . . , Sm), in Lemma A.26.
The sequence (S0, . . . , Sm) can be used to constrain choices in the definition of a grn-graph-DS, in a way
we give in Definition A.27. In Lemma A.29, the main result of the second half of this proof, we then show
that these constraints imply that a finite-length grn-graph-DS which is not a grn-graph-DD can always be
extended in such a way that the constraints of Definition A.27 are preserved.

So, let T be such a tree for G and s0, and n0 be the root of T . We define a modified breadth-first
search for T , as Algorithm A.2.16 If T is a tree as given by Lemma A.25, then we will say that any
(S0, . . . , Sm) such that (S0, . . . , Sm) = prunesearch(T ) is a pruned sequence for T . Where (S0, . . . , Sm)
is a pruned sequence for T , let player : {S0, . . . , Sm} → {proponent,opponent} be such that player(Si)
is proponent if Si ∈ nodes(T ), and player(Si) is opponent otherwise. Thus, player(Si) is proponent iff
Si is a proponent node of T ; and player(Si) is opponent iff Si is a set of opponent nodes labelled by
arguments for the same claim.

Lemma A.26. Let (S0, . . . , Sm) be a pruned sequence for T . For all i such that 0 6 i < m:

i. if player(Si) = proponent and label(Si) = a:

a. if 0 < i, then there is j such that 0 < j < i, with player(Sj) = opponent, and some n ∈ Sj such
that (n, Si) ∈ edges(T );

b. for any b such that b  a, there is n′ ∈ Sj , for some j such that 0 < j < m and player(Sj) =
opponent, such that label(n′) = b;

c. there is no j 6= i such that player(Sj) = proponent and Si = Sj ;

ii. if player(Si) = opponent, then for any n ∈ Si:

a. there is some j such that j < i, and (Sj , n) ∈ edges(T );
b. there is some Sj such that 0 6 j 6 m and player(Sj) = proponent, such that label(n′)  

label(n);

16In the algorithm, Q is a queue (initially empty) with associated operations of push and pop; R is a sequence (initially
empty), where R.push(X) adds X to the end of the sequence. addArg(G, a) takes an argument graph G and returns G ∪ Ga,
where Ga is a graphical conversion of the rule-minimal argument a, and where it is presumed that G ‖ Ga.
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Algorithm A.2 prunesearch(T : tree)
1: Q.push(n0)
2: S.push(n0)
3: P := addArg(♦, label(n0))
4: while Q 6= () do
5: X := Q.pop()
6: if X ∈ nodes(T ) then
7: A := {label(n′) | ∃n′((X,n′) ∈ edges(T ))}
8: for all a ∈ A do
9: if ∀X ′ ∈ S,¬∃n ∈ X ′ s.t. label(n) = a then
10: N := {n′ | (X,n′) ∈ edges(T ) ∧ label(n′) = a}
11: Q.push(N)
12: S.push(N)
13: end if
14: end for
15: else if X 6∈ nodes(T ) then
16: while X 6= ∅ do
17: n := pickOne(X)
18: X := X \ {n}
19: for all n′ s.t. (n, n′) ∈ edges(T ) do
20: if claim(label(n′)) 6∈ v(P ) then
21: Q.push(n′)
22: S.push(n′)
23: P := addArg(P, label(n′))
24: end if
25: end for
26: end while
27: end if
28: end while
29: return S

c. Si is {n′ ∈ nodes(T ) | claim(label(n′)) = claim(label(n))}, and for all Sj , for j 6= i and player(Sj) =
opponent, then Si ∩ Sj = ∅. y

Proof. We prove the result by induction on i.
Base case: i = 0. Since player(S0) = proponent, we just need to check (i)(b). Thus let b a. When

S0 is popped from Q at line 5 of Algorithm A.2, then A (line 7) will contain all b′ s.t. b′  a. Then clearly
b is the label of some n′ ∈ Sj such that 0 < j, and player(Sj) = opponent. Evidently, since from line 3,
claim(label(n0)) ∈ v(G), there can be no Sj with player(Sj) = proponent, and i 6= j, such that Si = Sj ,
since line 23 of the algorithm prevents it.

Induction step. Assume true for i = j; we will show that the result follows for i = j + 1. Thus
suppose j + 1 < m, and first suppose that player(Sj+1) = proponent; then clearly Sj+1 ∈ nodes(T ), and
the only way Sj+1 could have been added was because there is (n′, Sj+1) ∈ edges(T )) such that n′ ∈ Sj′

for j′ < j + 1 and player(Sj′) = opponent; thus condition (i)(a) holds. Further, let label(Sj+1) be a and
b  a. Argumentation as for the base case shows that there is n′ ∈ Sj′ , for some j′ such that 0 < j′ < m
and player(Sj′) = opponent, such that label(n′) = b. Thus (i)(b) holds. Finally, line 23 of Algorithm A.2
evidently ensures that (i)(c) holds.

Suppose instead that player(Sj+1) = opponent and n ∈ Sj+1. Then Sj+1 must have been added at line
12 of Algorithm A.2, and thus there is j′ < j+1 such that player(Sj′) = proponent and (Sj′ , n) ∈ edges(T ),
thus (ii)(a) holds. Further, line 22 guarantees that (ii)(b) is assured. Plainly, lines 9–10 of the algorithm
ensure that condition (ii)(c) is satisfied.
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Thus the inductive step holds, and we conclude the result by induction. y

It is an obvious corollary of Lemma A.26 that, where T − is the graph such that nodes(T −) are

{Si | 0 6 i 6 m, player(Si) = proponent}
∪ {n | ∃Si ∈ {S0, . . . , Sm}, player(Si) = opponent, n ∈ Si}

and whose edges edges(T −) are

{(n, n′) | n, n′ ∈ nodes(T −), (n, n′) ∈ edges(T )}.

then T − is a subtree of T , and T − is acyclic because T is acyclic.
In the following we define a certain sequence of tuples, and associated functions. One of those function

names is player; we trust this will not give rise to any ambiguity (since its use is similar to that described
above).

Definition A.27. Let (S0, . . . , Sm) be a pruned search for T , such that s0 is claim(label(S0)). Any se-
quence (P0,O0,G0, D0, C0), . . . , (PK ,OK ,GK , DK , CK), such that there are functions fS : {0, . . . ,K} →
{S0, . . . , Sm,>0, . . . ,>m,>} and player : {0, . . . ,K} → {proponent,opponent}, and the following holds,
is known as a grn-graph-DS for s0 constrained by (S0, . . . , Sm).

i. fS(0) = S0, player0 = proponent and:

P0 = newgrph(s0)
O0 = ∅

G0 =
{
♦ if X = adm
({s0}, ∅) if X = grn

D0 = A ∩ {s0}
C0 = ∅

ii. The (i + 1)th tuple is defined according to Definition 5.5 (for X = grn) where for all i such that
0 6 i < K, then

• if u(Pi+1) = ∅ and u(Oi+1) = ∅, then playeri+1 = proponent and fS(i+ 1) = >.

iii. For all i such that 0 6 i < K, if playeri = proponent, then fS(i) = Sj for some 0 6 j 6 m such that
Sj ∈ nodes(T ) and s ∈ u(Pi) ∩ labels(nodes(label(Sj)) is selected such that

• if u(Pi) ∩ (L \ A) 6= ∅, then (I) s ∈ (L \ A) and (II) in case 1(ii) of Definition 5.5, the rule
s← {s′ ∈ v(G) | (s, s′) ∈ e(G)} is selected.

Further:

• if u(Pi+1) ∩ labels(nodes(label(Sj))) 6= ∅: playeri+1 = proponent and fS(i+ 1) = fS(i);
• if u(Pi+1) ∩ labels(nodes(label(Sj))) = ∅:
– if u(Pi+1) 6= ∅ then playeri+1 = proponent and fS(i+ 1) = Sj+1;
– if u(Pi+1) = ∅
∗ if there is G ∈ u(Oi+1) such that there is an actual argument graph G+ with G ⊆ G+,

then playeri+1 = opponent, fS(i + 1) = Sj+1, and there is n ∈ Sj+1 such that label(n) is
represented by G+ for such a G+;

∗ if u(Oi+1) 6= ∅ and there is no G ∈ u(Oi+1) such that there is an actual argument graph G+

with G ⊆ G+, then playeri+1 = opponent and fS(i+ 1) = >j .
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iv. For all i such that 0 6 i < K, if playeri = opponent:

• fS(i) = Sj for some 0 < j < m iff there is G ∈ u(Oi) such that [there is an actual argument
graph G′ with G ⊆ G′ and some n ∈ fS(i) with claim(n) = claim(G)]
• if there is G ∈ u(Oi) such that [there is an actual argument graph G′ with G ⊆ G′ and some
n ∈ fS(i) with claim(n) = claim(G)], then such a G is selected;

s ∈ u(G) is selected such that

• (I) if u(G)∩ (L\A) 6= ∅, then s ∈ (L\A), or (II) if u(G)∩ (L\A) = ∅, then there is an argument
a represented by G and some n ∈ fS(i) such that a = label(n), and s ∈ (u(Oi) ∩ A) is selected
such that there is n′ ∈

⋃
06j6m{Sj | player(Sj) = proponent} such that (n, n′) ∈ edges(T ) and

claim(label(n′)) = s̄, and the case is not 2(i)(a) (i.e., s is not ignored).

Further:

• if u(Oi+1) = ∅, u(Pi+1) 6= ∅, and either fS(i) = Sj or fS(i) = >j , then playeri+1 = proponent
and fS(i+ 1) = Sj+1.
• if u(Oi+1) 6= ∅:
– if there is G′ ∈ u(Oi+1) such that [there is some G+ which is actual and G′ ⊆ G+]:
∗ if there is G′ ∈ u(Oi+1) such that [claim(G′) = claim(G) and there is some G+ such that
G+ is actual and G′ ⊆ G+], then playeri+1 = opponent, fS(i + 1) = fS(i), and there is
some n ∈ fS(i+ 1) such that label(n) is represented in G+ for such a G+;

∗ if there is no G′ ∈ u(Oi+1) such that [claim(G′) = claim(G) and there is some G+ such
that G+ is actual and G′ ⊆ G+], and where fS(i) = Sj , then playeri+1 = opponent,
fS(i+ 1) = Sj+1, and there is some n ∈ fS(i+ 1) such that label(n) is represented by G+ for
such a G+;

– if there is no G′ ∈ u(Oi+1) such that [there is some G+ which is actual and G′ ⊆ G+], and
either fS(i) = >j or fS(i) = Sj , then playeri+1 = opponent and fS(i+ 1) = >j . y

That Definition A.27 is sound in that it defines a special case of a grn-graph-DS easily follows.

Lemma A.28. Let (S0, . . . , Sm) be a pruned search for a grounded tree T , and let s0 be claim(label(S0)).
(i) Any grn-graph-DS for s0 constrained by (S0, . . . , Sm) is also a grn-graph-DS for s0. (ii) Each Pi of the
grn-graph-DS (constrained or otherwise) matches G.

Proof.

i. Trivially true, given Definitions A.27 and 5.5. Condition (i) of Definition A.27 specifies the same form
of initial tuple, and condition (ii) of that definition insists that the (i+ 1)th tuple is defined according
to Definition 5.5. Conditions (iii) and (iv) simply constrain that strategy for the various choice-points
in Definition 5.5.

ii. Evidently P0 matches G, since s0 ∈ v(G); and if any Pi matches G, then condition (iii) of Defini-
tion A.27 shows that Pi+1 must match G, too. The result follows by induction. y

Now note that condition (iii) of Definition A.27 evidently implies condition (a) of Lemma A.19. For if
s ∈ (L \ A) is chosen in case 1(ii), then it must be that s ∈ v(G) by construction of T given Lemma A.25.
Further, condition (iv) of Definition A.27 implies condition (b) of Lemma A.19. What is required for
this implication is that if the (i + 1)th tuple is defined using case 2(i) of Definition 5.5, and G′ ∈ u(Oi)
and s ∈ (G′ ∩ A) are selected, then s is ignored iff s̄ 6∈ v(G). Yet if s ∈ (G′ ∩ A) is selected, then
according to condition (iv) of Definition A.27, s is never ignored. We must therefore show that in this
case, s̄ ∈ v(G). Let a be the rule-minimal argument represented by the argument graph matching G′ such
that claim(a) = claim(G′). Then (iv) above insists that there must be n ∈ Si and (n, n′) ∈ edges(T ) such
that claim(label(n′)) = s̄. Yet since player(Si) = proponent, then given the definition of (S0, . . . , Sm),
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claim(label(n′)) = claim(Si) = s̄, so that s̄ is the claim of an argument labelling a proponent node of T .
Thus s̄ ∈ v(G) by Lemma A.25.

Therefore conditions (a) and (b) of Lemma A.19 are satisfied, condition (c) is satisfied by Lemma A.28,
and so Lemma A.19 applies. Given this background, we now move to show that any finite grn-graph-DS
for s0 constrained by (S0, . . . , Sm), which is not a grn-graph-DS, can always be extended. (This result
corresponds to Lemma A.19 in the proof of the completeness for admissible semantics, i.e., the proof of
Theorem 5.11.) Given the fact that are no ω-length grn-graph-DSs, that will give us our result.
Lemma A.29. Let (S0, . . . , Sm) be a pruned search for a grounded tree T , and let s0 be claim(label(S0)).
Let (P0,O0,G0, D0, C0), . . . , (PK ,OK ,GK , DK , CK) be a grn-graph-DS for s0 constrained by (S0, . . . , Sm),
which is not a grn-graph-DD. Then this can be extended to a grn-graph-DS for s0 constrained by
(S0, . . . , Sm) of the form:

(P0,O0,G0, D0, C0), . . . , (PK ,OK ,GK , DK , CK), (PK+1,OK+1,GK+1, DK+1, CK+1).

Proof. There must exist functions player : {0, . . . ,K} → {proponent,opponent} and fS : {0, . . . ,K} →
{S0, . . . , Sm,>0, . . . ,>m,>} with the properties given in Definition A.27. We will show that the tuple
(PK+1,OK+1,GK+1, DK+1, CK+1) and functions player+ : {0, . . . ,K,K + 1} → {proponent,opponent}
and f+

S : {0, . . . ,K,K+1} → {S0, . . . , Sm,>0, . . . ,>m,>} can be given which satisfy Definition A.27. Since
our new functions will match the originals for {0, . . . ,K}, we simply need to define the values player+

K+1
and f+

S (K + 1) (as well as the (K + 1)th tuple).
We proceed by cases.
• Suppose playerK = proponent, and let fS(K) = Sj . Here, it must be that u(PK) 6= ∅. PK matches
G.
We first consider how to define player+

K+1 and f+
S (K + 1).

– If u(PK+1) 6= ∅, then set player+
K+1 = proponent. If u(PK+1) ∩ labels(nodes(label(fS(K)))) = ∅

then set f+
K+1 = Sj+1; or if, alternatively, we have u(PK+1) ∩ labels(nodes(label(fS(K)))) 6= ∅ then

set f+
K+1 = Sj .

– If u(PK+1) = ∅ and u(OK+1) = ∅, then set player+
K+1 = proponent and f+

S (K + 1) = >.
– If u(PK+1) = ∅ and u(OK+1) 6= ∅, then set player+

K+1 = opponent, and if there is G′ ∈ u(OK+1)
such that there is an actual argument graph G+ with G′ ⊆ G+, then set f+

S (K + 1) = Sj+1; or if
there is no such G′, set f+

S (K + 1) = >j .

Now, we must show that the sequence can be extended. This will only be prevented when Gi+1 has a
cycle, so that we must show acyclic(Gi+1). There are now two cases. Either (i) u(PK) ∩ (L \ A) 6= ∅,
or (ii) u(PK)∩ (L \A) = ∅. If (i), then we select some s ∈ u(PK)∩ (L \A), and since PK matches G,
we choose s← R such that R = {s′ | (s, s′) ∈ e(G)} (such an s← R plainly exists). If (ii), we already
know that the s ∈ u(PK) selected must be in v(G). Thus in either case, PK+1 matches G, and so the
only way that the sequence could fail to be extended to the (K + 1)th tuple would be if it were not
the case that acyclic(GK+1).
Thus suppose for contradiction that there is a cycle in Gi+1. Since PK+1 is acyclic (since it matches G,
and G must be acyclic), any cycle in GK+1 must pass through some s1 6∈ v(PK+1); thus let s1, . . . , sr, s1
be a cycle in GK+1, for s1 6∈ v(PK+1). From examination of the construction of GK+1 in Definition 5.5,
we can structure the cycle in the form

[o1][p1
1, . . . , p

k(1)
1 ][o2][p1

2, . . . , p
k(2)
2 ] · · · [p1

l , . . . , p
k(l)
l ][o1]

such that for all i with 1 6 i 6 l, k(i) > 1, and

(o1, p
1
1, . . . , p

k(1)
1 , o2, p

1
2, . . . , p

k(2)
2 , . . . , p1

l , . . . , p
k(l)
l , o1) = (s1, . . . , sr, s1)

and where, for all j such that 1 6 j 6 l, and given that the selection function always chooses non-
assumptions over assumptions where possible—as Definition A.27 shows—the following hold.
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a. Each [p1
j , . . . , p

k(j)
j ] corresponds to the unique argument aj represented by G such that claim(aj) =

p1
j .

The nature of the correspondence is as follows. Evidently p1
j ∈ v(G), so let aj be the argument

aj represented by G such that claim(aj) = p1
j . This is clearly precisely one such aj , since G is an

argument graph—Theorem 4.3 ensures existence of aj and Theorem 4.12 shows uniqueness. The
sequence [p1

j , . . . , p
k(j)
j ] is a path from the claim of the argument to a member of the arguments

support, such that each ph
j for 1 < h 6 k(j) is in the body of rule whose head is ph−1

j .
b. Each oj corresponds to an argument bj not represented by G.

The use of a patient selection function means that there can only be an edge (oj , p
1
j ) ∈ GK+1 if,

at the point this edge was added, the G′ ∈ O selected was such that G′ had the structure of a
focused argument graph (that is: with the marking apparatus removed, G′ is a focused argument
graph). bj is the argument uniquely represented by this argument graph. (For the existence and
uniqueness, see (a), above.)

c. aj  bj , and if j < l, bj+1  aj , and bl  an−1.
The structure of attacks is clear from the nature of Definition 5.5.

Then, it is not hard to see that (c) above means that there is a cycle of attacks of arguments

al  bl  al−1  bl−1  · · · a1  b1  al

in IT . But given Theorem 4.20(iii), this means G cannot be grounded. Contradiction. Therefore
GK+1 is acyclic.
It now remains to show that the extended sequence, together with player+ and f+

S defined as above,
satisfy Definition A.27. Evidently condition (i) is satisfied by hypothesis. Condition (ii) is satisfied by
construction. The first bullet of condition (iii) is satisfied given our way of choosing s ← R in a way
consistent with the structure of G; the remaining bullets are satisfied by construction. Condition (iv)
is trivially satisfied, since player+

K+1 = proponent.
• Suppose instead that playerK = opponent, so that u(OK) 6= ∅. As for the proponent case, we are
at liberty to define player+

K+1 and f+
S (K + 1) in such a way that condition (4) of Definition A.27 is

satisfied. We omit the details, which can be directly copied from the definition.
Now, we must show, as for the proponent case, that the sequence can be extended so as to satisfy:

i. fS(K) = Sj for some 0 < j < m iff there is G ∈ u(OK) such that [there is an actual argument
graph G′ with G ⊆ G′ and some n ∈ fS(K) with claim(n) = claim(G)]

ii. if there is G ∈ u(OK) such that [there is an actual argument graph G′ with G ⊆ G′ and some
n ∈ fS(K) with claim(n) = claim(G)], then such a G is selected;

s ∈ u(G) is selected such that

iii. (a) if u(G)∩ (L\A) 6= ∅, then s ∈ (L\A), or (b) if u(G)∩ (L\A) = ∅, then there is an argument
a represented by G and some n ∈ fS(K) such that a = label(n), and s ∈ (u(OK) ∩A) is selected
such that there is n′ ∈

⋃
06j6m{Sj | player(Sj) = proponent} such that (n, n′) ∈ edges(T ) and

claim(label(n′)) = s̄, and the case is not 2(i)(a) (i.e., s is not ignored).

Conditions (ii) and (iii)(a) may be trivially satisfied (by stipulation of how to define the (K + 1)th
tuple).
First consider (i), and suppose initially that fS(K) = Sj for some 0 < j < m. Since the sequence
(P0,O0,G0, D0, C0), . . . , (PK ,OK ,GK , DK , CK) is a grn-graph-DS for s0 constrained by the sequence
(S0, . . . , Sm), Definition A.27 applies. If playerK−1 = proponent, then case (iii) of that definition
requires that, since playerK = opponent and fS(K) = Sj , then there is G ∈ OK such that there is an
actual argument graph G′ with G ⊆ G′, and some n ∈ fS(K) such that claim(G′) = claim(label(n)),
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so that evidently claim(label(n)) = claim(G), as required. Alternatively suppose that playerK−1 =
opponent. Then an examination of case (iv) of Definition A.27 shows that, whether fS(K − 1) =
fS(K) or not, it must be that there is G ∈ u(OK) such that there is an actual argument graph G′

with G ⊆ G′, and some n ∈ fS(K) such that claim(G′) = claim(label(n)).
Suppose instead that there is some G ∈ u(OK) such that there is an actual argument graph G′ with
G ⊆ G′ and some n ∈ fS(K) with claim(n) = claim(G). A similar argument to that in the previous
paragraph, in the other direction, means that there must be some j with 0 < j < m such that
fS(K) = Sj .
Now consider (iii)(b). Suppose that s ∈ u(G)∩A is selected. Since the selection function for members of
u(G) is patient, it must be that G matches a focused argument graph which represents an argument a,
such that the claim of that focused argument graph and that of a are identical. If |labels(nodes(a))| > 1,
then there would be G′ ∈ u(OJ) for some J < K such that G′ ⊆ G, and case (iv) of Definition A.27
requires that there is fS(J) = fS(K), and some n ∈ fS(K) such that label(n) is a, as required. If a
consists of a single assumption, then similar argumentation based on cases (iii) or (iv) (depending on
whether playerK−1 is proponent or opponent) shows that there is again some n ∈ fS(K) such that
label(n) is a.
Then, since there is such a label(n) in fS(K), Lemma A.26 shows that there must be some Sj with
0 6 j 6 m, with label(Sj)  label(n). Let a ∈ label(n) be such that claim(label(Sj)) = ā; then
evidently a 6∈ DK , thus we are free not to ignore this case, i.e., we need not choose 2(i)(a).
Thus conditions (i) and (iii)(b) may be satisfied; the only barrier to extending the K-length sequence
would then be a cycle in GK+1; but the argument we made above for the case where playerK =
proponent, to show that GK+1, applies in just the same way if playerK = opponent.

Thus, in both cases, if (P0,O0,G0, D0, C0), . . . , (PK ,OK ,GK , DK , CK) is not a grn-graph-DD, and is a
grn-graph-DS for s0 constrained by (S0, . . . , Sm), we can extend it to a grn-graph-DS

(P0,O0,G0, D0, C0), . . . , (PK ,OK ,GK , DK , CK), (PK+1,OK+1,GK+1, DK+1, CK+1)

for s0 also constrained by (S0, . . . , Sm). y

It is now a short step to our result. Since Lemma A.16 gives us that there is no ω-length grn-graph-DS,
it must be, given Lemma A.29, that any grn-graph-DS for s0 constrained by (S0, . . . , Sm) of length 0 (i.e.,
containing only a single tuple) can always be extended to a grn-graph-DD. Yet plainly, a grn-graph-DS
for s0 of length 0 exists: the single tuple of which it consists was defined as item 1 of Definition A.27.
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