
The distributed negotiation of
egalitarian resource allocations

Paul-Amaury Matt, Francesca Toni and Dionysis Dionysiou

Abstract

We provide a sound theory for the computation of allocations of indi-
visible resources amongst cooperative agents, maximising the egalitarian
social welfare of the overall multi-agent system, seen as a society. Agents’
preferences over resources are captured by scalar utilities that we sum up
to define the agents’ individual welfare. The egalitarian social welfare is
defined as the minimal individual welfare across the society.
From the proposed theory we derive a mechanism of negotiation dis-
tributed over the agents. This mechanism is defined by means of a public
communication protocol and a private computational policy that have the
advantage of integrating efficient coordination and computational heuris-
tics.

1 Introduction

Equity and fairness [17] are social, economic and philosophical notions that can
be transposed to artificial societies and serve as a basis for the design of complex
agents systems [1].

The problem of reallocating resources amongst agents within a multi-agent
systems can be understood as the problem of identifying socially optimal allo-
cations of resources amongst the agents, by interpreting multi-agent systems as
societies [8]. In this setting, allocations may be understood as fair if they are
egalitarian [8], namely if these allocations render the least “well-off” agents in
the society as “better-off” as possible, in terms of the individual welfare they
obtain from the resources allocated to them.

In this paper, we are concerned with the computation of fair allocations of
indivisible resources amongst cooperative agents in a society, where fairness is
given this egalitarian interpretation. In particular, we provide a distributed
mechanism for computation of egalitarian allocations, whereby agents in a dis-
tributed platform share the burden of the computation.

Maximising the egalitarian social welfare by allocating indivisible resources
is a hard global optimisation problem, characterised by a discrete domain of
exponential size, on which constraints exist and in which a non-linear and non-
derivable function is to be optimised. Well known global optimisation and
constraint satisfaction techniques (see [15] for a recent survey) cannot be ap-
plied.

As Golovin recently put it (see [9] and references therein): ‘little is known
about the computational aspects of finding [...] fair allocations [...] with indi-
visible goods’ and ‘early work in operations research focused on special cases

that are tractable’. The computational aspects of fair allocations of indivisible
goods have been studied by [11], but in that work fairness is achieved by min-
imising envy. Golovin [9] provides approximation algorithms for maximising
the egalitarian social welfare, along with some complexity results (see also [2]).
In the operations research community [12, 21] resources are allocated to activ-
ities instead of agents resulting in a different and simpler problem with fewer
variables (linear instead of quadratic).

Endriss et al [8] prove that any sequence of strongly equitable deals (defined
therein) will eventually result in an egalitarian allocation of indivisible goods.
However, this is a purely theoretical result which provides no indication to
agents designers on how to compute these deals and thus the allocations. Also,
in the Mathematics community, advanced existence results have been provided
[4] concerning fair sharing problems (where additivity of utilities of resources
is not assumed). However, also these results do not address the problem of
constructing optimal allocations.

In this paper we give a new negotiation mechanism for solving distribut-
edly and without approximation the problem of allocating indivisible resources
amongst cooperative agents whose preferences are modeled in terms of semi-
linear utility functions. This mechanism is based upon the algorithm described
in [13], and is defined in terms of a communication protocol, formalised along
the lines of [7], and a communication policy, formalised along the lines of [18].

2 Preliminaries

In this paper, we refer to the agents and resources involved in a resource allo-
cation problem as a1, a2, . . . , an and r1, r2, . . . , rm respectively. The numbers of
agents (n) and resources (m) are assumed to be strictly positive. We also as-
sume that the resources are indivisible, so that each resource may be allocated
to one agent at most. We will thus use the following definition of allocation of
indivisible resources to agents.

Let Ek = {ai1 , . . . , aik
} represent a group of k agents in the society 1. An

allocation of resources to Ek is a Boolean table of k lines and m columns:

A{i1,...,ik} =





i1 : Ai1,1 Ai1,2 . . . Ai1,m

.
ik : Aik,1 Aik,2 . . . Aik,m





such that A contains at most one element=1 per column. Given ai ∈ Ek, we
say that ai gets rj if and only if Ai,j = 1.

In our framework, agents in a multi-agent systems are abstractly charac-
terised by their own preferences concerning the resources. These preferences
are given by means of a utility table, defined as a matrix U = ((Ui,j))n×m with
n lines and m columns of real valued, positive coefficients. For each 1 ≤ i ≤ n
and 1 ≤ j ≤ m, ui,j is referred to as the utility of resource rj for agent ai,

1Note that the entire society is given by En.

measuring the contribution of the resource to the agent’s welfare. Each agent
need only be aware of its own preferences, namely its own line in the utility
table.

A reasonable and convenient assumption is to consider that the welfare of
an agent resulting from an allocation of resources is semi-linearly distributed
over the resources, as given by the following definition: for any 1 ≤ i ≤ n, the
welfare of agent ai resulting from allocation A is given by the equation:

wi(A) = ci +

m
∑

j=1

ui,jAi,j

where ci is a real valued, positive coefficient, representing the welfare of agent
ai prior to any allocation of resources.

Let us now introduce an optimality criterion on allocations, borrowed from
the areas of social choice theories [1, 19, 14] and welfare economics [17, 10, 6]
and having an egalitarian flavour. We are after allocations that maximise the
egalitarian social welfare, defined metaphorically as the welfare of the “unhap-
piest” or least “well-off” agent in the system. Formally, the egalitarian social
welfare of an allocation A to the entire society En is:

swe(A) = Min{wi(A)|i = 1, . . . , n}

An egalitarian allocation is an allocation A∗ maximising the egalitarian social
welfare.

When building an egalitarian allocation, two problems need to be solved
at once: a) finding the value sw∗

e of the optimal egalitarian social welfare and
b) actually finding an egalitarian allocation, with social welfare sw∗

e . To solve
the first problem, one can perform a dichotomous search. To solve the second
problem, the agents will have to reason about sets of allocations, that we encode
using fuzzy allocations, defined below. A fuzzy allocation F to Ek is a table with
k lines, m columns and whose coefficients fi,j belong to {−1, 0, 1}:

F =





i1 : fi1,1 fi1,2 . . . fi1,m

.
ik : fik,1 fik,2 . . . fik,m





A fuzzy allocation F to Ek encodes the set of allocations to Ek according to
which each agent ai in the group gets rj if fi,j = 1 and does not get rj if
fi,j = −1. The coefficients equal to 0 correspond to unspecified information
about the allocation of the corresponding resources, and are the reason why
fuzzy allocation do not simply denote singletons, but really sets.

We also define the signature s(F) of a fuzzy allocation F as the allocation in
the set encoded by F that allocates fewest resources. This allocation is obtained
by replacing in F all the coefficients equal to −1 by 0.

The social welfare corresponding to a fuzzy allocation F , denoted w(F), is
the egalitarian social welfare of the signature of F , defined over Ek.

3 Computational strategy

In this section we revise the method of [13] that a) uses dichotomous search
for finding the value sw∗

e of the optimal egalitarian social welfare and b) uses
frugal reductions of allocations and fuzzy allocations for actually finding an
egalitarian allocation, with social welfare sw∗

e .
Dichotomy is a simple and elegant mechanism guaranteeing arbitrary pre-

cision and enabling fast estimation of the optimal social welfare. In our di-
chotomous search, lower (L) and upper (U) bounds for this optimal value are
updated iteratively. The upper bound corresponds to an allocation where af-
ter the allocation the unhappiest agent is given all the resources and the lower
bound corresponds to an allocation where after the allocation the unhappiest
agent is given no resource. Clearly, the value of the optimal egalitarian social
welfare lies somewhere between those bounds. These are initialised as follows:

L = Min{ci | i = 1 . . . n}, U = Min{ci +
m

∑

j=1

ui,j | i = 1 . . . n}

Assuming agents are endowed with an appropriate mechanism for checking the
non-emptiness of the set of allocations with social welfare higher than an ar-
bitrary value (the mean of the bounds), dichotomous search algorithm 1 can
be used to determine in finite time the exact value of sw∗

e . Our only assump-
tion here is that all agents internally represent their preferences ui,j with d
digits of precision. The optimal egalitarian social welfare is rapidly found after

Algorithm 1 Dichotomous search. Inputs: precision d in digits, lower and
upper bounds for sw∗

e . Output: optimal social welfare sw∗
e .

1: repeat

2: if {A|swe(A) ≥ (L + U)/2} 66= ∅ then

3: L← (L + U)/2
4: else

5: U ← (L + U)/2
6: end if

7: until U − L < 10−d

8: return round (L+U)/2 with d digits

floor(log2
U−L
10−d) + 1 cycles only.

The check at line 2 of the algorithm is highly complex, as the space of
possible allocations is of exponential size (n+1)m. We now discuss how to best
handle this check. Basically, our idea is to use a space reduction operator that
both eliminates inefficient allocations and redundancies. Indeed, after all, given
L and U , all the agents need to do is find out if they can come up with some
allocation A such that swe(A) ≥ (L + U)/2.

The operator’s definition is based on a special binary relation between pairs
of allocations. Let A and B be two allocations to Ek. We say that B minors A

F ({





1 0 1 0
0 1 0 0
0 0 0 1









0 1 0 0
0 0 1 0
0 0 0 1









0 1 0 0
0 0 1 0
1 0 0 0









0 0 1 0
0 1 0 0
1 0 0 0



})

= {





0 1 0 0
0 0 1 0
0 0 0 1









0 1 0 0
0 0 1 0
1 0 0 0



}

Figure 1: The frugal reduction operator F eliminates both redundancies (su-
perfluous agreements) and inefficient allocations (over-consuming resources).
The agents save memory and computational time and the society manages its
resources better (here either resource r1 or r4 can be preserved).

and write B � A if and only if

∀j ∈ {1, ..., m} :
∑

i∈Ek

Bi,j ≤
∑

i∈Ek

Ai,j

The intuitive meaning of B � A is that whatever resource is allocated according
to B, it is also allocated according to A. When considering sets of allocations
for all of which w(A) ≥ (L + U)/2 holds, the agents may perfectly treat non-
minimal allocations as superfluous. Also, when two such allocations minor each
other, one can be eliminated to avoid redundancy. This defines our reduction
operator. Let S be a set of allocations for Ek. A frugal reduction F (S) of S is
a subset of S such that

• any allocation in S is minored by an allocation of F (S)

• no two allocations in F (S) minor each other.

Note that frugal reductions are not guaranteed to be unique, but the frugal
reduction operator has a remarkable property: S 66= ∅ ⇔ F (S) 66= ∅.

Intuitively, we can forsee that F (S) is statistically much smaller than S itself
(cf figure 1), so in a way, using frugal reductions simplifies the search process for
allocations. Moreover, frugal reductions can be computed using an incremental
negotiation mechanism summarised in algorithm 2. At each step k, one new
agent joins a group Ek, forcing a revision of the set of agreements amongst these
prior agents. The newly formed group then eliminates superfluous agreements
using a frugal reduction or abandons the search step when no agreements can
be found (fail).

In order to build the minimal collection of agreements for a group to which
a new agent has just been added, we consider a forest (set of trees). In each
phase, specific leaves (termed positive leaves) of the trees in a forest constitute
a collection (not yet minimal) of agreements for the group. The roots of the
trees constituting the forest of a phase are simply the signatures of the positive
leaves of the forest in the previous phase.

Algorithm 2 Incremental construction of a frugal reduction Fn(x) of
{A|swe(A) ≥ x}. Input: x. Output: Fn(x).

1: E0 ← {}; k← 0; F0(x)← {}
2: repeat

3: k ← k + 1
4: Ek ← Ek−1 ∪ {k}
5: ak tries to find a consensus Extk with the prior agents (Ek−1) of welfare

at least equal to x
6: if Extk 66= ∅ (i.e. a consensus can be found) then

7: Fk(x) = F (Extk) (reduce the set frugally)
8: else

9: return ∅ (failure)
10: end if

11: until k = n
12: return Fn(x)

Suppose an agent ai′ wants to join a group G = {ai1 , ai2 , . . . , aik
} to form

the group G′ = {ai1 , ai2 , . . . , aik
, ai′}. The group G then starts constructing a

new forest whose trees’ nodes N are pairs of the form (F, w(F)) where F is a
fuzzy allocation for G′.

The root of any tree in the constructed forest at iteration k + 1 is a pair
(F, w(F)) where the first k lines of F take their values in Ag(G) (the minimal
collection of agreements for G), where G is the group of agents at iteration k
(consisting of k agents), and all the coefficients in the last line (corresponding
to the newly added agent ai′) are equal to zero. The trees are constructed
top-down from their root and all have a strictly binary structure.

A node (F, w(F)) in a tree is called

• positive iff F is satisfying, i.e. w(F) ≥ (L + U)/2

• open iff it is not positive but the allocation in the set encoded by F in
which all the resources not used by an agent in G are used by the new
agent ai′ is satisfying

• negative iff it is neither positive nor open.

Negative and positive nodes have no children, only open nodes do.
Consider an open node N = (F, w(F)). Let j0 be the index of a resource rj

that ai′ could use, i.e. fi′,j0 = 0. Such an index exists since the node is open.
Then the left and right children of N , denoted (FL, w(FL)) and (FR, w(FR)),
are defined as follows:











fL;i′,j0 = 1,

fR;i′,j0 = −1,

∀j 66= j0 : fL;i′,j = fR;i′,j = fi′,j

The agents build the tree by constructing the descendants of all the open nodes
cf figure 2. The process terminates finitely because their is a finite number of
resources. In fact, the depth of a tree is equal to the number of resources ai′

can use.

(
(

0 0 0
)

, 0)open

(
(

1 0 0
)

, 0.5)+ (
(

−1 0 0
)

, 0)open

(
(

−1 1 0
)

, 0.3)open (
(

−1 −1 0
)

, 0)−

(
(

−1 1 1
)

, 0.4)+ (
(

−1 1 −1
)

, 0.3)−

(

(

1 0 0
0 0 0

)

, 0)open

(

(

1 0 0
0 1 0

)

, 0)open (

(

1 0 0
0 −1 0

)

, 0)open

(

(

1 0 0
0 −1 1

)

, 0)open(

(

1 0 0
0 −1 −1

)

, 0)open

ttttttttt

??
??

??
?

��
��

��
�

JJJJJJJJJ

��
��

��
�

JJJJJJJJJ

tt
tt

t
??

??

��
�� JJ

JJ
J

Figure 2: Agent a1 finds two agreements (top tree). From the first one, agent
a2 derives (bottom tree) two possible agreements that satisfy them both. The
agent pair finds a consensus in which a1 gets r1 and a2 either r2 or r3.

The trees thus constructed have the interesting property that the frugal
reduction of the set of satisfying sub-allocations in a fuzzy sub-allocation F is
included in the set of signatures of the frugal tree whose root is F .

Applying the frugal reduction operator after having collected a tree’s signa-
tures is advocated as it enables the agents to ignore any superfluous agreements.
The reason why we do not loose any useful agreement by working only on the
positive nodes signatures is slightly technical and justified by the following re-
sult, where the role of the signatures set is played by A and the satisfying set
of allocation in the root is played by Σ:

if F (Σ) ⊆ A ⊆ Σ then F (A) = F (Σ) (namely, a frugal reduction of A is also
one of Σ).

The order in which the agents join in the group is an order that coordinates

group negotiations. We have noticed in [13] that social orders, i.e. orders
derived from welfare metrics, can have a strong (positive) impact on the time
complexity of the negotiations. In particular, it is important to order the agents
in increasing level of initial welfare. When the unhappiest agents think first
about the resources they need, the detection of impossibility to find a common
consensus is made earlier thus saving negotiation time. Also, since unhappiest
agents tend to consume more resources than the others, they leave the others
with a more restricted choice, which simplifies their reasoning task. We refer
to this heuristic as LW .

When an agent constructs a search tree, it is important to minimise the
depth of the tree. A good heuristic for that consists in splitting open nodes by
thinking about the most useful resource that remains available to the agent.
Indeed, this increases the probability that the left sub-tree is simply a positive
leaf. When this heuristic (that we refer to as MU) and the earlier LW heuristic
are combined, the total negotiation time is reduced by a factor almost equal to
30 (cf figure 3) in comparison with negotiations where no heuristics are applied
and the agents negotiate in a random order, do not prioritise resources, and
have initial welfare and preferences uniformly distributed in the interval [0, 1].
A precise description of the settings used for the corresponding experiments can
be found in [13].

Figure 3: Negotiation time (in seconds) using the combined LW -MU heuris-
tic (bottom) compared to a random strategy (up). The negotiation speed is
multiplied by 30 when using this heuristic.

4 Protocol and Policy

The resource allocation problem can be solved distributedly by means of ne-
gotiation amongst the agents. The description of this process can be given by
defining a public communication protocol, agreed by all agents, and private
computational policies, held by the individual agents. The protocol defines
what agents are allowed to say and how they should react (by means of their
internal policy) to messages they receive. Giving a protocol is a necessary re-
quirement for the definition of a suitable semantics of an agent communication
language [16, 20]. In order to render the negotiation mechanism unambiguous,
each policy needs to conform to the protocol.

We present here a public communication protocol derived from algorithms 1
and 2, and encapsulating our efficient methods for reasoning about agreements
between groups of agents over resources allocations. The protocol is presented
in the form of a deterministic finite state automaton (DFA) (see figure 4), in
the flavour of [7]. The DFA consists of n + 1 states: one state ak per agent
and a final state f . Each of the states ak is characterised by the values of three
variables: current lower bound L and upper bound U of the optimal egalitarian
social welfare and the set Fk(x) (for x = (L + U)/2) of agreements for the
current group Ek = {a1, ..., ak}. The initial state is a1 with variables assigned
to the values L0, U0, ∅. The empty set means that the first agent does not need
to take into account agreements reached by the other agents. The syntax [3] of
our negotiation protocol is given by the language [18] L consisting of instances
of the tell predicate which has the following five arguments: sender X , receiver
Y , message M , lower bound L and upper bound U of the optimal egalitarian
social welfare. A message M may take three forms, i) a non-empty set A of
agreements, ii) failure due to the absence of possible consensus, iii) success
when a consensus can be found, and iv) solution for publishing an egalitarian
allocation A∗, solution of the problem. The language is then defined as

L = {tell(X, Y, M, L, U)|X ∈ S, Y ∈ S or Y = S, (L, U) ∈ IR2, 0 ≤ L ≤ U},

where M ∈ {agreements(A), failure, success, solution(A∗)} and S stands
for the socially ordered variant of the agent system {a1, a2, . . . an} such that
c1 ≤ c2 ≤ ... ≤ cn.

The DFA’s transition function maps pairs of states and elements of the input
alphabet to states. In the context of communication protocols, elements of the
input alphabet are dialogue moves and states are the possible stages of the
interaction. The transition function consequently gives a clear semantics [3] to
our protocol. We introduce the next function that transforms ai into ai+1 for
i < n and an into a1 so as to enable looping in the negotiations.

The transition function δ is then defined as the union of the following rules
where i ranges from 1 to n:

• δ(aL,U,Fi

i , tell(ai, anext(i), agreements(Fi), L, U)) = a
L,U,Fnext(i)

next(i)

• δ(aL,U,∅
i , tell(ai, a1, failure, L, L+U

2
)) = a

L,
L+U

2
,F1

1

• δ(aL,U,Fn
n , tell(an, a1, success,

L+U

2
, U)) = a

L+U

2
,U,F1

1

• δ(aL,U,Fn
n , tell(an, S, solution(A∗), Round(L+U

2
, d),Round(L+U

2
, d)) = f

In each state ak, agent ak has to revise the set of agreements found by
the prior agents {a1, . . . ak−1} and communicated by ak−1. The graph loops
back to the first agent either when no consensus can be found or when all the
agents have found a consensus and in both cases the lower or upper bounds
are updated accordingly to the dichotomous update, pessimistically in the first
case and optimistically in the second one. The last agent an is responsible for
detecting the final dichotomous step and does so by checking if U − L < 10−d

holds. If it is the case, it chooses arbitrarily an egalitarian allocation and sends
it to them. The negotiation stops and the agents can go and pick up their
resources accordingly to the solution.

a1 a2 ak an−1 an f
agreements

//
agreements

//
agreements

//
agreements

// solution //

success
kk

**

failure

ssssssssss

44

Figure 4: Public communication protocol.

A policy that conforms to the protocol and encapsulates the computational
techniques is now given. Following [18], policies are expressed as dialogue con-
straints of the form pi ∧ C ⇒ pi+1, where pi and pi+1 are dialogue moves.
The dialogue constraints are constructed so as to associate unambiguously to
each agent and message received a (unique) dialogue move 2. Those policies
give a pragmatics [3] that is easy to implement and execute in a distributed
architecture.

• tell(X, Y, agreements(A), L, U)∧ (FY (A) = ∅) ⇒ tell(Y, a1, failure, L, (L +
U)/2)

• tell(X, Y, agreements(A), L, U)∧¬((Y = an)∧ ((U −L) < 10−d))∧ (FY (A) 66=
∅) ⇒ tell(Y, next(Y), agreements(FY (A)), L, U)

• tell(X, Y, agreements(A), L, U) ∧ (Y = an) ∧ ((U − L) ≥ 10−d)) ∧ (FY (A) 66=
∅) ⇒ tell(Y, a1, success, (L + U)/2, U)

• tell(X, Y, agreements(A), L, U)∧(Y = an)∧((U−L) < 10−d)∧(FY (A) 66= ∅) ⇒
tell(Y, S, solution(OneOf(FY (A))),Round((L + U)/2, d),Round((L + U)/2, d)

• tell(X, Y, failure, L, U)∧(FY (∅) 6= ∅) ⇒ tell(Y, next(Y), agreements(F1()),
L, U)

• tell(X, Y, failure, L, U) ∧ (F1(∅) = ∅) ⇒ tell(Y, Y, failure, L, (L + U)/2)

2All variables in the given dialogue constraints are implicitly universally quantified from

the outside.

• tell(X, Y, solution(A∗), sw∗
e , sw∗

e) ⇒ COLLECT RESOURCES

We assume that each agent is equipped with this policy. By definition, a dia-
logue move p is legal with respect to a state s if and only if there exists a state
s′ such that δ(s, p) = s′. In order to make sure that the policy conforms to the
protocol and is well formed, the reader can check that:

• for any (legal) message Msg received by an agent Y , the agent can com-
pute a unique state (L, U, F) (determined by the protocol) and that state
satisfies the constraints of a unique policy rule amongst those whose pi

match Msg (policy rules exhaustivity and independence). Consequently:

• i) agents never utter any illegal move (weak protocol conformance)

• ii) agents utter at least one legal output move for any legal input they
receive (exhaustive protocol conformance)

5 Conclusion

We presented a sound method that guarantees agents to find an allocation that
exactly maximises the egalitarian social welfare of the society they constitute.
The method relies upon a dichotomous search terminating after a small num-
ber of steps. In the search process, agents examine and update the value of
the optimal egalitarian social welfare that can be collectively achieved given
their personal preferences, which can be kept secret. Our method uses binary
search trees and forests of Boolean fuzzy allocations as well as a frugal reduc-
tion operator that simplifies the reasoning process of the agents by eliminating
opportunistically any superfluous agreements they might come up with. The
solutions are efficient as far as they never over-consume resources. We proved
empirically that the agents reason collectively much faster when thinking in
priority about the most useful resources and could efficiently coordinate the
sequence of their negotiations by using the monotonic increasing social order.
Finally, the negotiation mechanism has been distributed over the agents en-
gaged in the allocation process using a protocol and a policy conforming to it
which implements the dichotomous search and encapsulates the efficient con-
sensus search algorithm here-presented. The overall mechanism has been imple-
mented on a JADE platfrom [5]. Part of our future work will be dedicated to a
theoretical and experimental study of the frugal reduction’s efficiency. We will
also propose other ways of modelling an agent’s preferences that will enable to
solve the allocation problem in polynomial time and show how the mechanism
can be used for negotiating the allocation of markets supervised by fair trade
organisations. Finally, we would like to make the mechanism strategy-proof.

Acknowledgements

This work was partially funded by the Sixth Framework IST programme of the
EC, under the 035200 ARGUGRID project. The second author has also been
supported by a UK Royal Academy of Engineering/Leverhulme Trust senior
fellowship.

References

[1] Kenneth J. Arrow. Social Choice and Individual Values. John Wiley and
Sons, New York, 2 edition, 1963.

[2] Sylvain Bouveret, Michel Lemâıtre, Hélène Fargier, and Jérôme Lang. Allo-
cation of indivisible goods: a general model and some complexity results. In
Frank Dignum, Virginia Dignum, Sven Koenig, Sarit Kraus, Munindar P.
Singh, and Michael Wooldridge, editors, 4rd International Joint Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS 2005), July
25-29, 2005, Utrecht, The Netherlands, pages 1309–1310. ACM, 2005.

[3] Ronald J. Brachman and Hector J. Levesque. Knowledge Representation
and Reasoning. Morgan Kaufmann Publishers, 2004.

[4] Marco Dall’Aglio and Fabio Maccheroni. Fair division without additivity.
AMM: The American Mathematical Monthly, 112, 2005.

[5] Dionysis Dionysiou. Egalitarian Resource Allocations in Multi-Agent Sys-
tems. MSc Thesis, Imperial College London, 2006.

[6] Ulrich Endriss, Nicolas Maudet, Fariba Sadri, and Francesca Toni. Re-
source allocation in egalitarian agent societies, 2003.

[7] Ulrich Endriss, Nicolas Maudet, Fariba Sadri, and Francesca Toni. Logic-
based agent communication protocols. 2004.

[8] Ulrich Endriss, Nicolas Maudet, Fariba Sadri, and Francesca Toni. Ne-
gotiating socially optimal allocations of resources. Journal of Artificial
Intelligence Research, 25:315–348, 2006.

[9] Daniel Golovin. Max-min fair allocation of indivisible goods. Technical
Report CMU-CS-05-144, Carnegie Mellon University, 2005.

[10] John C. Harsanyi. Can the maximin principle serve as a basis for morality?
American Political Science Review, 86(2):269–357, 1996.

[11] Richard Lipton, Evangelos Markakis, Elchanan Mossel, and Amin Saberi.
On approximately fair allocations of indivisible goods. In CECOMM: ACM
Conference on Electronic Commerce, 2004.

[12] Hanan Luss. On equitable resource allocation problems: A lexicographic
minimax approach. Operations Research, 47(3):361–378, 1999.

[13] Paul-Amaury Matt and Francesca Toni. Egalitarian allocations of indivisi-
ble resources: Theory and computation. In Cooperative Information Agents
(CIA’06). Lecture Notes in Computer Science, Springer Verlag, 2006.

[14] Hervé Moulin. Axioms of Cooperative Decision Making. Cambridge Uni-
versity Press, 1988.

[15] Arnold Neumaier. Complete search in continuous global optimization and
constraint satisfaction. Acta Numerica, 13:271–369, 2004.

[16] Jeremy Pitt and Abe Mamdani. A protocol-based semantics for an agent
communication language. In Dean Thomas, editor, Proceedings of the 16th
International Joint Conference on Artificial Intelligence (IJCAI-99-Vol1),
pages 486–491, S.F., July 31–August 6 1999. Morgan Kaufmann Publish-
ers.

[17] John Rawls. A Theory of Justice. Harvard University Press, 1971.

[18] Fariba Sadri, Francesca Toni, and Paolo Torroni. An abductive logic pro-
gramming architecture for negotiating agents. Lecture Notes in Computer
Science, 2424, 2002.

[19] Amartya K. Sen. Collective Choice and Social Welfare. Holden Day, 1970.

[20] Munindar P. Singh. Agent communication languages: Rethinking the prin-
ciples. IEEE Computer, 31(12):40–47, 1998.

[21] Gang Yu. On the max-min 0-1 knapsack problem with robust optimization
applications. Operations Research, 44:407–415, 1996.

Paul-Amaury Matt, Francesca Toni and Dionysis Dionysiou
Department of Computing, Imperial College London,
South Kensington Campus, Huxley Building,
London SW7 2AZ, United Kingdom
Email: {pmatt,ft,dd205}@doc.ic.ac.uk

