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Abstract

Argumentation has played a significant role in understanding and unifying under a
common framework different forms of defeasible reasoning in Artificial Intelligence (AI).
Argumentation is also close to the original inception of logic as a framework for formalizing
human debate and dialogue. The purpose of this paper is to draw a formal connection
between argumentation and classical reasoning, as supported by Propositional Logic. To
this effect, we propose Argumentation Logic and show properties thereof.

1 Introduction

Over the past two decades argumentation has played a significant role in understanding and
unifying under a common framework defeasible Non-Monotonic Reasoning (NMR) in AI [7, 3,
1]. Moreover, a foundational role for argumentation has emerged in the context of problems
requiring human-like commonsense reasoning, e.g. as found in the area of open and dynamic
multi-agent systems to support context-dependent decision making, negotiation and dialogue
between agents (e.g. see [6, 2]). This foundational role of argumentation points back to the
original inception of logic as a framework for formalizing human argumentation.

This paper reexamines the foundations of classical logical reasoning from an argumentation
perspective, by formulating a new logic of arguments, called Argumentation Logic (AL), and
showing how this relates to Propositional Logic (PL). AL is formulated by bringing together
argumentation theory from AI and the syllogistic view of logic in Natural Deduction (ND).
Its definition rests on a re-interpretation of Reductio ad Absurdum (RA) through a suitable
argumentation semantics. One consequence of this is that in AL the implication connective
behaves like a default rule that still allows a form of contrapositive reasoning. The reasoning in
AL is such that the ex-falso rule where everything can be derived from an inconsistent theory
does not apply and hence an inconsistent part of a theory does not necessarily trivialize the
whole reasoning with that theory.

2 Preliminaries on Natural Deduction

Let L be a PL language and ` denote the provability relation of ND in PL.1 Throughout the
paper, theories and sentences will always refer to theories and sentences wrt L. We assume that
⊥ stands for φ ∧ ¬φ, for any φ ∈ L.

Definition 1. Let T be a theory and φ a sentence. A direct derivation for φ (from T ) is a ND
derivation of φ (from T ) without any application of RA. If there is a direct derivation for φ
(from T ) we say that φ is directly derived (or derived modulo RA) from T , denoted T`MRAφ.

1See appendix A for a review of the ND rules we use, including ¬I/Reduction ad Absurdum (RA).
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Definition 2. A theory T is classically inconsistent iff T ` ⊥. A theory T is directly inconsis-
tent iff T `MRA ⊥. A theory T is classically/directly consistent iff it is not classically/directly,
respectively, inconsistent.

Trivially, if a theory is classically consistent then it is directly consistent. However, a directly
consistent theory may be classically inconsistent.

We will use a special kind of ND derivations, that we call Reduction ad Absurdum Natural
Deduction (RAND). These are ND derivations with an outermost application of RA. We will
adopt the following notation:

Notation 1. Given a RAND derivation d and a RAND (sub-)derivation d′ of ¬φ in d (possibly
d′ = d), d′ is denoted by dφ : c(φ1), . . . , c(φk);¬ψ1, . . . ,¬ψl : ⊥c where k, l ≥ 0 and

• φ is the hypothesis of d′;

• ∀i, j = 1, . . . k, if i 6= j then φi 6= φj; φi is the hypothesis of an ancestor RAND (sub-
)derivation of d′ in d; φi is “copied” (c(φi)) in d′;

• ∀i, j = 1, . . . l, if i 6= j then ψi 6= ψj; ψj is the hypothesis of a child RAND sub-derivation
of d′ in d.

3 Argumentation Logic Frameworks

Given a propositional theory we will define a corresponding argumentation framework as follows.

Definition 3. The argumentation logic (AL) framework corresponding to a theory T is the
triple 〈ArgsT , AttT , DefT 〉 defined as follows:

• ArgsT = {T ∪ Σ|Σ ⊆ L} is the set of all extensions of T by sets of sentences in L;

• given a, b ∈ ArgsT , with a = T ∪ ∆, b = T ∪ Γ, such that ∆ 6= {}, (b, a) ∈ AttT iff
a ∪ b `MRA ⊥;

• given a, d ∈ ArgsT , with a = T ∪∆, (d, a) ∈ DefT iff

1. d = T ∪ {¬φ} (d = T ∪ {φ}) for some sentence φ ∈ ∆ (respectively ¬φ ∈ ∆), or

2. d = T ∪ {} and a `MRA ⊥.

In the remainder, b attacks a (wrt T ) stands for (b, a) ∈ AttT and d defends or is a defence
against a (wrt T ) stands for (d, a) ∈ DefT .

Note that, since T is fixed, we will often equate arguments T ∪Σ to sets of sentences Σ. So,
for example, we will refer to T ∪{} = T as the empty argument. Similarly, we will often equate
a defence to a set of sentences. In particular, when d = T ∪ D defends/is a defence against
a = T ∪∆ we will say that D defends/is a defence against ∆ (wrt T ).

The attack relation between arguments is defined in terms of a direct derivation of incon-
sistency. Note that, trivially, for a = T ∪∆, b = T ∪ Γ, (b, a) ∈ AttT iff T ∪∆ ∪ Γ `MRA ⊥.
The following example illustrates our notion of attack:

Example 1. Given T1 = {α→ (β→ γ)}, {α,β} attacks {¬γ} (and vice-versa), {α,¬γ} attacks
{β} (and vice-versa), {α,¬α} attacks {γ} (and vice-versa) as well as any non-empty set of
sentences (and vice-versa).



Note that the attack relation is symmetric except for the case of the empty argument.
Indeed, for a, b both non-empty, it is always the case that a attacks b iff b attacks a. However,
the empty argument cannot be attacked by any argument (as the attacked argument is required
to be non-empty), but the empty argument can attack an argument. Finally, note that our
notion of attack includes the special case of attack between a sentence and its negation, since,
for any theory T , {φ} attacks {¬φ} (and vice-versa), for any φ ∈ L.

The notion of defence is a subset of the attack relation. In the first case of the definition we
defend against an argument by adopting the complement2 of some sentence in the argument,
whereas in the second case we defend against any directly inconsistent set using the empty
argument. Then, in example 1, {¬α} defends against the attack {α, β} and {} defends against
the (directly inconsistent) attack {α,¬α}. Note that the empty argument cannot be defended
against if T is directly consistent.

4 Argumentation Logic

In this section we assume that T is directly consistent. As conventional in argumentation,
we define a notion of acceptability of sets of arguments to determine which conclusions can
be dialectically justified (or not) from a given theory. Our definition of acceptability and
non-acceptability is formalised in terms of the least fix point of (monotonic) operators on the
cartesian product of the set of arguments/sentences in L, as follows:

Definition 4. Let 〈ArgsT , AttT , DefT 〉 be the AL framework corresponding to a directly con-
sistent theory T , and R the set of binary relations over ArgsT .

• The acceptability operator AT :R→R is defined as follows: for any acc ∈ R and a, a0 ∈
ArgsT :

(a, a0) ∈ AT (acc) iff

– a ⊆ a0, or

– for any b ∈ ArgsT such that b attacks a wrt T ,

∗ b 6⊆ a0 ∪ a, and

∗ there exists d ∈ ArgsT that defends against b wrt T such that (d, a0 ∪ a) ∈ acc.

• The non-acceptability operator NT : R → R is defined as follows: for any nacc ∈ R and
a, a0 ∈ ArgsT :

(a, a0) ∈ NT (nacc) iff

– a 6⊆ a0, and

– there exists b ∈ ArgsT such that b attacks a wrt T and

∗ b ⊆ a0 ∪ a, or

∗ for any d ∈ ArgsT that defends against b wrt T , (d, a0 ∪ a) ∈ nacc.

These AT and NT operators are monotonic wrt set inclusion and hence their repeated
application starting from the empty binary relation will have a least fixed point.

2The complement of a sentence φ is ¬φ and the complement of a sentence ¬φ is φ.



{¬β} {α}

{}
(since T∪{¬β}`MRA⊥)

OO

{β}
(since T∪{α}∪{β}`MRA⊥)
OO

{¬β}

KS

{}
(since T∪{¬β}`MRA⊥)
OO

Figure 1: Illustration of NACCT ({¬β}, {}) (left) and NACCT ({α}, {}) (right), for example 2.

Definition 5. ACCT and NACCT denote the least fixed points of AT and NT respectively.
We say that a is acceptable wrt a0 in T iff ACCT (a, a0), and a is not acceptable wrt a0 in T
iff NACCT (a, a0).

Note that the empty argument is always acceptable, wrt any other argument. Note also
that the “canonical” attack of a sentence on its complement (i.e. of T ∪ {φ} on T ∪ {¬φ} and
vice-versa) does not affect the acceptability relation as it can always be defended against by
this complement. The following examples illustrate non-acceptability.

Example 2. Let T ={α∧β→⊥,¬β→⊥}. T is classically and directly consistent, T ∪{¬β} is
classically and directly inconsistent, and T∪{α} is classically inconsistent but directly consistent.
It is easy to see that NACCT ({¬β}, {}) holds, as illustrated in figure 1 (left)3, since {¬β} 6⊆ {},
b = {} attacks {¬β} and {} ⊆ {¬β}. Also, NACCT ({α}, {}) holds, as illustrated in figure 1
(right). Indeed:

• since {α} 6⊆ {}, b = {β} attacks {α} and {¬β} is the only defence against b, to prove that
NACCT ({α}, {}) it suffices to prove that NACCT ({¬β}, {α});

• since {¬β} 6⊆ {α}, b = {} attacks {¬β} and {} ⊆ {α,¬β}, NACCT ({¬β}, {α}) holds as
required.

Note that if an argument a is attacked by the empty argument, then it is acceptable wrt
any a0 iff a ⊆ a0, since there is no defence against the empty argument. This observation is
used in the following example.

Example 3. Given T = {α → ⊥,¬α → ⊥}, NACCT ({α}, {}) and NACCT ({¬α}, {}) both
hold: NACCT ({α}, {}) holds as {α} is attacked by {}; NACCT ({¬α}, {}) holds as {¬α} is
attacked by {}.

The following example illustrates non-acceptability in the case of an empty theory.

Example 4. For T = {}, NACCT ({¬(β∨¬β)}, {}) holds, as illustrated in figure 2. Also,
trivially, NACCT ({β ∧ ¬β}, {}) holds, since it is attacked by the empty argument.

A novel, alternative notion of entailment can be defined for theories that are directly con-
sistent in terms of the (non-) acceptability semantics for AL frameworks, as follows:

Definition 6. Let T be a directly consistent theory and φ ∈ L. Then φ is AL-entailed by T
(denoted T |=AL φ) iff ACCT ({φ}, {}) and NACCT ({¬φ}, {}).

This is motivated by the argumentation perspective, where an argument is held if it can be
successfully defended and it cannot be successfully objected against.

3Here and throughout the paper, ↑ denotes an attack and ⇑ denotes a defence.



{¬(β ∨ ¬β)}

{¬β}
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{β}
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{¬(β ∨ ¬β)}

OO

Figure 2: Illustration of NACCT ({¬(β ∨ ¬β)}, {}) for example 4.

dα dα
d¬β dβ
⊥c c(α)

¬¬β α ∧ β
β ⊥c
α ∧ β ¬β
⊥c ⊥c

¬α ¬α

Figure 3: Two RAND derivations of ¬α in example 2: d1 (left) and d2 (right).

5 Basic Properties of AL

The following result gives a core property of the notion of AL-entailment wrt the notion of
direct derivation in PL, for directly consistent theories.

Proposition 1. Let T be a directly consistent theory and φ ∈ L such that T `MRA φ. Then
T |=AL φ.4

The following theorem shows how the RA rule, deleted from the ND proof system within
`MRA, is brought back through the notion of non-acceptability. This theorem will be used, in
section 6, to prove (one half of) the link between AL and PL.

Theorem 1. Let T be a directly consistent theory and φ ∈ L. If NACCT ({φ}, {}) holds then
there exists a RAND derivation of ¬φ from T .

For example, the RAND derivation corresponding to the proof of NACCT ({α}, {}) in
figure 1 is d1 in figure 3. Here, the inner RAND derivation in d1 corresponds to the non-
acceptability of the defence {¬β} against the attack {β} against {α}. Derivation d2 in figure 1
is an alternative RAND of ¬α, but this cannot be obtained from any proof of NACCT ({α}, {}),
because there is a defence against the attack {β} given by the empty set (in other words, d2 does
not identify a useful attack, that cannot be defenced against, for proving non-acceptability).

6 From AL to PL and back

The following result gives a core property of the notion of non-acceptability for classically
consistent theories.

4The proof of this result as well as all other omitted proofs in the paper can be found in [4] and/or in [5].



Proposition 2. Let T be classically consistent and φ ∈ L. If NACCT ({¬φ}, {}) holds then
ACCT ({φ}, {}) holds.

Thus, in PL, trivially AL-entailment reduces to the notion on non-acceptability:

Corollary 1. Let T be a classically consistent theory and φ ∈ L. Then T |=AL φ iff
NACCT ({¬φ}, {}).

The following property sanctions that AL-entailment implies classical derivability:

Corollary 2. Let T be a classically consistent theory and φ ∈ L. If T |=AL φ then T ` φ.

This corollary gives that consequences of a classically consistent theory under |=AL are
classical consequences too. Although proposition 1 sanctions that all direct consequences are
retrieved by |=AL, in general not all classical consequences are retrieved by |=AL, namely the
converse of corollary 2 does not hold. For example, {¬α} 6|=AL α → β, namely, under |=AL,
implication is not material implication. However, if we restrict attention to theories expressed
using connectives ∧ and ¬ only (without loss of generality), then all classical consequences that
can be derived by a special kind of RAND derivations are retrieved by |=AL (see corollary 3
below). These special kinds of derivations are defined as follows:

Definition 7. Let d = dφ : c(φ1), . . . , c(φk);¬ψ1, . . . ,¬ψl : ⊥c be a RAND (sub-)derivation
from T . Then d satisfies the genuine absurdity property (wrt T ) iff

T ∪ {φ1, . . . , φk} ∪ {¬ψ1, . . . ,¬ψl} 6`MRA ⊥.
d fully satisfies the genuine absurdity property(wrt T ) iff it satisfies the genuine absurdity
property (wrt T ) and all its sub-derivations fully satisfy the genuine absurdity property (wrt T ).

Namely, the genuine absurdity property is satisfied by a (sub-)derivation when its hypothesis
φ is necessary for its direct derivation of ⊥. This property is illustrated by example 2: d1 and
d2 in figure 3 are both RAND derivations of ¬α, but only d1 fully satisfies the genuine absurdity
property (wrt T ). Indeed, in d2, α is not necessary in the outer RAND direct derivation of ⊥.

Theorem 2. Let T be a directly consistent theory and φ ∈ L, both expessed using only ∧ and
¬. If there exists a RAND derivation of ¬φ from T that fully satisfies the genuine absurdity
property (wrt T ) then NACCT ({φ}, {}) holds.

This theorem and corollary 1 imply that all classical consequences obtainable from RAND
derivations fully satisfying the genuine absurdity property are retrieved by |=AL:

Corollary 3. Let T be a directly consistent theory expessed using only ∧ and ¬, and φ ∈ L. If
there exists a RAND derivation of ¬φ from T that fully satisfies the genuine absurdity property
(wrt T ) then T |=AL φ.

7 Conclusions

We have presented Argumentation Logic (AL) and shown how it allows us to understand classi-
cal reasoning in PL in terms of argumentation. Its definition rests on capturing semantically the
Reductio ad Absurdum (RA) rule through a suitable notion of acceptability of arguments. AL
gives an alternative view of RA, in that it does not allow the use of RA when the inconsistency
that it (directly) derives does not depend on the hypothesis posed when we apply the rule. As
such the interpretation of implication in AL is different from that of material implication.



We have given a “weak” correspondence between AL and classical PL. However, in [5],
we give further results on the relationship between AL and PL including how AL completely
captures the entailment of PL (based on the guaranteed existence of a RAND derivations fully
satisfying the genuine absurdity property given any RAND derivation for the same sentence).

A discussion on how to extend AL to capture non-monotonic reasoning can be found in [4].
Further work is needed to explore the extension of AL to capure, within the same unified setting,
both classical and defeasible reasoning. AL incorporates its own mechanism for belief revision,
in the presence of inconsistencies, when reasoning with directly consistent theories, as it isolates
and thus “removes” inconsistencies. Another important direction for future work is the study
of this form of belief revision in the context of AL.

Clearly, there is a link between AL and other logics such as Intuitionistic and Relevance
Logics. We are currently exploring these possible links.

A Appendix: Natural Deduction

We use the following rules, for any φ, ψ, χ ∈ L:

∧I :
φ, ψ

φ ∧ ψ
∧E :

φ ∧ ψ
φ

∧E :
φ ∧ ψ
ψ

∨I :
φ

φ ∨ ψ
∨I :

ψ

φ ∨ ψ
→I :

dφ . . . ψc
φ→ ψ

¬E :
¬¬φ
φ

¬I/RA :
dφ . . .⊥c
¬φ

∨E :
φ ∨ ψ, dφ . . . χc, dψ . . . χc

χ
→ E :

φ, φ→ ψ

ψ
where dζ, . . .c is a (sub-)derivation with ζ referred to as the hypothesis.
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