From logic programming and monotonic reasoning to computational argumentation and beyond

Francesca Toni

Department of Computing, Imperial College London, UK Computational Logic and Argumentation Group

LPNMR 2017, 4 July 2017

イロト 不得 とくほ とくほ とうほう

Computational Argumentation (aka Argumentation in AI)

Non-Monotonic Reasoning (NMR) and Logic Programming (LP)

from late 1980s (e.g. Lin, Shoham, Dung, Kowalski, Kakas, Toni): \Rightarrow abstract argumentation, ABA

Defeasible Reasoning as studied in philosophy

from late 1980s (e.g. Pollock, Nute): \Rightarrow DeLP, ASPIC, ASPIC+

Decision making

from early 1990s (e.g. Fox, Krause, Ambler): \Rightarrow Amgoud and Prade (2009), ...

Resolving inconsistencies (paraconsistent reasoning)

from mid 1990s (e.g. Cayrol, Amgoud, Hunter):

 \Rightarrow logic-based argumentation

Outline

- LP with negation as failure (NAF) and several NMR formalisms can be understood in terms of:
 - abstract argumentation (AA) [Dung 95]
 - assumption-based argumentation (ABA) [Bondarenko et al 97]
- computational argumentation tools generalise/use LP tools:
 - (top-down) dispute trees/derivations [Dung et al 06,07, Toni 13] vs SLD-based computation in LP
 - (bottom-up) computation of AA extensions via ASP [Toni, Sergot 11 - survey]
- computational argumentation for
 - explanations, e.g. of (non-)membership in answer sets, decisions, outcomes of case-based reasoning
 - collaborative decision-making

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Example

 $p \leftarrow not q$

all LP semantics agree: *p* holds (because) *q* doesn't

Example

 $p \leftarrow \textit{not } q$

 $q \leftarrow \textit{not } r$

all LP semantics agree: *p* doesn't hold (because) *q* does (because) *r* doesn't

< □ > < □ > < □ > < □ > < □ > = □ = □

LP for NMR: "controversial" examples

Example (two-loop: $p \leftarrow not q, q \leftarrow not p$)

two answer sets:either p or q"empty" well-founded model:neither p nor q

Example (one-loop: $r \leftarrow not r, p \leftarrow not q$)

no answer set well-founded model: *p* one partial stable model: *p*

Example (two-loop+one-loop: $p \leftarrow not q, q \leftarrow not p, r \leftarrow not r$)

no answer set "empty" well-founded model two partial stable models: either *p* or *q*, neither *r* nor *not r*

<ロ> < 母> < 豆> < 豆> < 豆> < 豆 > シュの 5/30

Presumption of innocence: *a person is innocent unless proven guilty*. Mary is a person (accused of some crime): should Mary be deemed innocent? **yes, no matter which formalism** e.g.¹

LP: <i>i(mary</i>) holds given:	
$i(X) \leftarrow p(X), not \ g(X)$	$p(mary) \leftarrow$
Default Logic: <i>i</i> (<i>mary</i>) holds given:	
$D: \frac{p(mary): M \neg g(mary)}{i(mary)}$	W : p(mary)

Non-Monotonic Modal Logic: *i*(*mary*) holds given:

 $p(mary) \land \neg Lg(mary) \rightarrow i(mary) \qquad p(mary)$

¹*i*=innocent, g=guilty, p=person

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ()

Argumentation for LP and NMR: intuition

$\mathsf{LP}: \quad i(X) \leftarrow p(X), \, \textit{not } g(X), \qquad p(\textit{mary}) \leftarrow$

- there is an **argument** for *i*(*mary*) supported by *not g*(*mary*)
- there is no objection (attack) against this argument
- the argument is thus "acceptable"

An AA framework is a pair $\langle Args, attacks \rangle$ where

- Args is a set (the arguments)
- $attacks \subseteq Args \times Args$ is a binary relation over Args

 $(\alpha, \beta) \in attacks$ is written/read as " α attacks β "

An AA framework can be represented as a directed graph

Example (attacks represented by directed edges)

 $i \longleftarrow g_{as}$ reliable.witness $\leftarrow \neg$ reliable.witness_{as} drunk

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Given a program *P*, let $\langle Args, attacks \rangle$ be the AA framework where

- arguments (in Args) are deductions from P (Modus Ponens with ←) and NAF literals (treated as abducibles)
- $P \cup \Delta \vdash x$ attacks $P \cup \Gamma \vdash y$ iff not $x \in \Gamma$

$Example\ (P:\ p \leftarrow not\ q, q \leftarrow not\ r)$				
Arguments include	$P \cup \{ not \ q \} \vdash p,$			
	$P \cup \{ not \ r \} \vdash q$,			
	$P \cup \{\textit{not } p\} \vdash \textit{not } p$			
attacks includes	$P \cup \{ not \ r \} \vdash q \ attacks \ P \cup \{ not \ q \} \vdash p$			
	$P \cup \{not \ q\} \vdash p \ attacks \ P \cup \{not \ p\} \vdash not \ p$			
$\arg(not \ p) \longleftarrow \arg(p) \longleftarrow \arg(q)$				

イロン 不得 とくほ とくほ とうほう

9/30

Semantics for AA

Recipes for "acceptable" sets of arguments (extensions)²

$A \subseteq Args$ is

- conflict-free iff it does not attack itself
- stable iff it is conflict-free and attacks every $\alpha \in Args \setminus A$
- *admissible* iff it is conflict-free and attacks back each attacking argument; *preferred* iff it is maximal (wrt ⊆) admissible
- complete iff it is admissible and contains all arguments it defends (by attacking all attacks against them); grounded iff it is minimal (wrt ⊆) complete

Example ($\langle Args, attacks \rangle$ is $\gamma \rightarrow \beta \rightarrow \alpha$)

 $\{\alpha,\gamma\}$ is stable, preferred, complete, grounded

² $A \subseteq Args$ attacks $B \subseteq Args$ iff $\alpha \in A$ attacks $\beta \in B$;

Semantics for AA

Recipes for "acceptable" sets of arguments (extensions)³

$A \subseteq Args$ is

- conflict-free iff it does not attack itself
- stable iff it is conflict-free and attacks every $\alpha \in Args \setminus A$
- admissible iff it is conflict-free and attacks back each attacking argument; preferred iff it is maximal (wrt ⊆) admissible
- complete iff it is admissible and contains all arguments it defends (by attacking all attacks against them); grounded iff it is minimal (wrt ⊆) complete

Example ($\langle Args, attacks \rangle$ is $\alpha \leftrightarrow \beta$)

 $\{\alpha\}$ is stable, preferred, complete (and so is $\{\beta\}$) {} is grounded

 ${}^{3}A \subseteq Args$ attacks $B \subseteq Args$ iff $\alpha \in A$ attacks $\beta \in B$;

Given P, let AA_P be the AA framework correponding to P:

- stable extensions of AA_P correspond to **answer sets** of P:
 - S is a stable extension of AA_P iff {x|P ∪ _ ⊢ x ∈ S} is an answer set of P
 - given interpretation M of P, let Δ_M = {not x | x ∉ M}: M is an answer set of P iff {P ∪ Δ ⊢ x | Δ ⊆ Δ_M} is a stable extension of AA_P
- preferred extensions of AA_P correpond to (Saccà and Zaniolo's) **partial stable models** of *P*
- complete extensions of AA_P correspond to (Przymusinski's)
 3-value stable models of P
- the grounded extension corresponds to the **well-founded model** of *P*

AA for LP: Some Examples

Example $(P : p \leftarrow not q, q \leftarrow not p)$

- {P ∪ Δ ⊢ x | not q ∈ Δ} is stable/preferred (e.g. Δ = {not q}, x = not q)
- {P ∪ Δ ⊢ x | not p ∈ Δ} is stable/preferred (e.g. Δ = {not p}, x = q)
- $\{\}$ is grounded

Example $(P : p \leftarrow not q, r \leftarrow not r)$

- no stable extension $(P \cup \{not r\} \vdash r \text{ can be neither in nor out})$
- one preferred/grounded extension: {P ∪ Δ ⊢ x | not q ∈ Δ} (e.g. Δ = {not q}, x = p)

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ の < ℃ 13/30

Assumption-Based Argumentation (ABA)

An ABA framework is a tuple $\langle \mathcal{L}, \mathcal{R}, \mathcal{A}, \overline{} \rangle$ where

- $\langle {\cal L}, {\cal R} \rangle$ is a deductive system with language ${\cal L}$ and rules ${\cal R}$
- $\mathcal{A} \subseteq \mathcal{L}$ are assumptions
- — is a total mapping from ${\cal A}$ into ${\cal L}$, $\overline{\alpha}$ is the *contrary* of α

Arguments are trees - deductions (wrt $\langle \mathcal{L}, \mathcal{R} \rangle$) of claims supported by sets of assumptions. **Attacks** are directed at the assumptions in the support of arguments – by deriving their contrary.

Example (
$$\mathcal{R} = \{s \leftarrow b, t \leftarrow c\}$$
, $\mathcal{A} = \{a, b, c\}$, $\overline{a} = s, \overline{b} = t, \overline{c} = u$)
arguments include $\{a\} \vdash a$
 $\{b\} \vdash s$
 $\{c\} \vdash t$
 $a \leftarrow s$
 b
 b
 c

ABA semantics

Flat ABA (\approx no assumption is the head of a rule):

- stable, preferred, grounded etc sets of arguments as in AA
- stable, preferred, grounded etc sets of assumptions

The two views (argument view and assumption view) correspond

Example
$$(\mathcal{R} = \{s \leftarrow b, t \leftarrow c\}, \mathcal{A} = \{a, b, c\}, \overline{a} = s, \overline{b} = t, \overline{c} = u)$$

- $\{c, a\}$ is a stable etc set of assumptions
- the set of all arguments supported by subsets of {*c*, *a*} is a stable etc extension

Note: flat ABA is an instance of AA; AA is an instance of flat ABA

ABA for LP

Given *P*, *ABA_P* is the ABA framework $\langle \mathcal{L}, \mathcal{R}, \mathcal{A}, - \rangle$ where

- \mathcal{R} is P
- $\mathcal{L} = HB_P \cup HB_P^{NAF}$ where HB_P is the Herbrand Base of Pand HB_P^{NAF} is the set of all NAF literals over HB_P

•
$$\mathcal{A} = HB_P^{NAF}$$
, $\overline{not x} = x$

Example $(P: p \leftarrow not q, q \leftarrow not r)$

•
$$\mathcal{R} = \{p \leftarrow \text{not } q, q \leftarrow \text{not } r\}$$

• $\mathcal{L} = \{p, q, r, \text{not } p, \text{ not } q, \text{ not } r\}$

•
$$\mathcal{A} = \{ not p, not q, not r \}, \overline{not p} = p, \overline{not q} = q, \overline{not r} = r$$

$$not \ p \longleftarrow p \qquad q$$

$$| \qquad | \qquad |$$

$$not \ q \qquad not \ r$$

AA/ABA for other NMR formalisms

- Different kinds of arguments and attacks
- same semantics (stable extensions)

Example (Default Logic, presumption of innocence)

$$D: \quad \frac{p(mary) : M \neg g(mary)}{i(mary)}, \\ \frac{witness_against(john, mary) : Mreliable(john)}{g(mary)} \\ W: \quad p(mary), witness_against(john, mary)$$

- AA: $D \cup W \cup \{Mreliable(john)\} \vdash_{FOL+D} g(mary) \text{ attacks}$ $D \cup W \cup \{M \neg g(mary)\} \vdash_{FOL+D} i(mary)$
- ABA: {*Mreliable(john)*} attacks {*M*¬*g(mary)*}

・ロト ・ 同ト ・ ヨト ・ ヨト - ヨー

Based on

- dispute trees and dispute derivations (vs SLD-based computation in LP: proxdd, grapharg)
- mapping of computation of extensions onto (meta-)logic programs (vs ASP: ASPARTIX)
- (constraint solving: Conarg)

イロト 不得 トイヨト イヨト ニヨー

Dispute trees

Given $\langle Args, attacks \rangle$, a dispute tree for $\alpha \in Args$ is a tree T s.t.

- each node of *T* is labelled by some *\(\chi \in Args\)* and is by the *proponent* ^{\$} or the *opponent* ^{\$}
- **2** the root of \mathcal{T} is a **a** node labelled by α ;
- § for each [▲] node n, labelled by some β ∈ Args, and for every (γ, β) ∈ attacks there is a [▲] child of n labelled by γ
- Gor each ³/₄ node *n*, labelled by some β∈ Args, there is at most one child of *n* which is by ³/₄ and labelled by some γ s.t. (γ, β) ∈ attacks
- ${f 5}$ there are no other nodes in ${\cal T}$

The *defence set* of \mathcal{T} is the set of all its \clubsuit arguments

A dispute tree is

admissible iff (i) every A node has exactly one child, and (ii) no argument labels both A and nodes.
grounded iff (i) every node has exactly one child, and (ii) it is finite

Theorem

The defence set of an admissible/grounded dispute tree is admissible/contained in the grounded extension

Dispute derivations to compute (different types of) dispute trees

Example of X-dispute derivation (X=admissible/grounded)

Given $\mathcal{R} = \{p \leftarrow not q, q \leftarrow not r\}$, $\mathcal{A} = \{not p, not q, not r\}$, $\overline{not x} = x$:

Left: the computed *dialectical tree* (of *potential* arguments) Right: the computed *dispute tree* (of *actual* arguments)

∽<℃ 21/30

X-dispute derivation (X=admissible/grounded) vs SLDNF/EK abductive proof procedure

	2	å	Defences	Culprits
0	$\{\{\} \vdash_{\{not p\}} not p\}$	{}	{ <i>not p</i> }	{}
1	{}	$\{\{\} \vdash_{\{p\}} p\}$	{not p}	{}
2	{}	$\{\{\} \vdash_{\{not q\}} p\}$	{not p}	{}
3	$\{\{\} \vdash_{\{q\}} q\}$	{}	{not p}	{ <i>not q</i> }
4	$\{\{\} \vdash_{\{not r\}} q\}$	{}	{not p, not r}	{not q}
5	{}	$\{\{\} \vdash_{\{r\}} r\}$	$\{not \ p, not \ r\}$	$\{not q\}$
6	{}	{}	$\{not \ p, not \ r\}$	$\{not q\}$

Computation of extensions via ASP

- ⟨Args, attacks⟩ is mapped onto a logic program, e.g.
 P_{⟨Args,attacks⟩} with clauses
 - $arg(\alpha) \leftarrow for all \ \alpha \in Args$ and
 - $att(\alpha,\beta) \leftarrow for all (\alpha,\beta) \in attacks$
- semantics correspond to answer sets of logic programs, e.g. in ASPARTIX [Egly et al 08] let

$$P_{cf}: \leftarrow in(X), in(Y), att(X, Y),$$

$$in(X) \leftarrow not out(X), arg(X),$$

$$out(X) \leftarrow not in(X), arg(X)$$

A is a conflict-free extension of $\langle Args, attacks \rangle$ iff $A = \{ \alpha | in(\alpha) \in S \}$ for some answer set S of $P_{\langle Args, attacks \rangle} \cup P_{cf}$

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の Q @ 23/30

- explanation
- collaborative decision-making

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ の Q @ 24/30

Why is a literal in an answer set of a (consistent) logic program? IDEA: literal / in answer set iff argument with conclusion / in stable extension \Rightarrow use admissible dispute tree for argument with conclusion / to explain /

Two types of justifications:

- argument view Attack Tree (cf admissible dispute tree)
- literal view LABAS Justification (Labelled ABA-Based Answer Set Justification) - extracted from Attack Tree
 Why is a literal not in an answer set of a (consistent) logic program? Also two types of justifications ...

Explaining decisions [Fan et al 14, Zhong et al 14]

d2 is "best" as it meets goals g1 and g2 and, moreover, d8, that also meets g1 and g2, unnecessarily has attribute a9 $\,$

< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ Ξ · ⑦ < ♡ 26/30

AA-CBR [Cyras et al 16]

Case-based Reasoning (CBR)

- Given past cases (S, o) (S features, o ∈ {+, -} outcome)
 e.g. ({ensuite, wireless}, +), ({small}, -)
- \bullet a default outcome $d \in \{+,-\}\;$ e.g. d=+
- Determine the outcome of new case N e.g. $N = \{ensuite, small\}$

AA-CBR=CBR by mapping onto AA:

- Arguments: past cases, (N,?), (∅, d)
 e.g. ({ensuite, wireless}, +), ({small}, -), ({ensuite, small},?), (∅, +)
- Attack by ≠outcome&specificity&coincision/irrelevance:
 e.g. ({small}, -) attacks (Ø, +), ({ensuite, small}, ?) attacks ({ensuite, wireless}, +)
- outcome of N is $d(\overline{d})$ if (\emptyset, d) is (not) in grounded extension e.g. the outcome for $N = \{ensuite, small\}$ is –
- dispute trees as explanations of outcomes

Decisions in collaborative MAS [Gao et al 16]

Information sharing, conflict resolution and privacy preservation.

Example (Variant of "Battle of the sexes")			
<u>A:Football</u> ← Wea ← Sun	B:Football		
<u>A:Ballet</u> ← Ex? ← C:Hiking	B:Ballet C:Facebook		
Alice's (internal) AAF	Bob's (internal) AAF		

private practical, **private epistemic**, *disclosable epistemic* arguments restrictions on attacks: practical args do not attack epistemic args, ... there may be attacks across, e.g. *C: Facebook* attacks *C: Hiking*

 distributed constraint satisfaction algorithm (with backtracking), incorporating variant of TPI-dispute to exchange (disclosable!) "compact reasons" drawn from explanations

A: C says she will be hiking with your ex-wife today ({*C: Hiking*,<u>A:Ballet</u>} is the only explanation for <u>A:Ballet</u>)

B: . . .

Value-based AA +Reinforcement Learning for RoboCup [Gao&Toni 2014]

イロト 不得 とくき とくき とうせい

- AA and ABA have their roots in (abductive) logic programming/non-monotonic reasoning
- dispute trees for AA/ABA can serve as the basis for explanation
- Argumentation could still "learn" from logic programming
 - non-ground engines?
- Argumentation could help LP
 - e.g. explain inconsistent logic programs under ASP?
 - e.g. explain decisions (in human-machine interactions and multi-agent systems)?

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ…

30/30