An overview of argumentation frameworks for decision support

Francesca Toni

Department of Computing, Imperial College London, UK

Eighth Workshop in Decisions, Games and Logic LSE, 17 June 2015

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline

Part I:

- Argumentation frameworks for
 - non-monotonic reasoning/logics
 - (game theory)
 - \blacktriangleright classical propositional reasoning/logic and beyond
- Part II:
 - Argumentation frameworks for decision support:
 - bipolar argumentation frameworks and collaborative Q&A-based decisions
 - value-based argumentation frameworks and collaborative multi-agent decisions
 - assumption-based argumentation fameworks and multi-criteria decisions

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

A person is innocent unless proven guilty

Jo is a person, accused of some crime: should Jo be deemed innocent? $\ensuremath{ Yes}$

New evidence indicates beyond reasonable doubt that Jo committed the crime: should Jo be deemed innocent now? No

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Non-Monotonic Logics

A person is innocent unless proven guilty

Jo is a person, accused of some crime; evidence indicates beyond reasonable doubt that she committed the crime: should Jo be deemed innocent? **No, no matter which Non-Monotonic Logic**:

 Logic Programming with Negation as Failure: Inn(x) ← Acc(x), not Guilty(x), Acc(Jo) ←, Guilty(Jo) ←

Argumentation for NMR: intuition

LP with NAF:

 $Inn(x) \leftarrow Acc(x), not \ Guilty(x), \quad Acc(Jo) \leftarrow, \ Guilty(Jo) \leftarrow$

- there is an argument for Inn(Jo) supported by not Guilty(Jo)
- there is an objection (attack) against this argument, namely an argument for Guilty(Jo)
- there is no objection (attack) against this argument
- (the argument for) Inn(Jo) is thus not "acceptable"
- Default Logic:

$$D: \frac{Acc(Jo): M\neg Guilty(Jo)}{Inn(Jo)}, W: Acc(Jo), Guilty(Jo)$$

- there is an **argument** for Inn(Jo) supported by $M\neg Guilty(Jo)$
- there is an objection (attack) against this argument, namely an argument for Guilty(Jo)
- there is no objection (attack) against this argument
- (the argument for) Inn(Jo) is thus not "acceptable"
- Non-Monotonic Modal Logic: ...

Abstract Argumentation (AA) frameworks¹

- An AA framework is a pair $\langle Args, attacks \rangle$ where
 - Args is a set (the arguments)
 - attacks ⊆ Args × Args is a binary relation over Args ((α, β) ∈ attacks often written as "α attacks β")
- Equivalently, an AA framework is a directed graph
- e.g. argument for $Inn(Jo) \leftarrow$ argument for Guilty(Jo)

Given arguments and attacks between them, what is acceptable?

e.g. (the argument for) *Guilty*(*Jo*) is, (the argument for) *Inn*(*Jo*) is not

Acceptability in AA frameworks

A set of arguments (extension) is

. . .

- conflict-free iff it does not attack itself
- stable iff it is conflict-free and attacks every argument it does not contain
- ► admissible iff it is conflict-free and attacks back each attacking argument; preferred iff it is maximal (wrt ⊆) admissible
- complete iff it is admissible and contains all arguments it defends (by attacking all attacks against them); grounded iff it is minimal (wrt ⊆) complete

e.g. given AA framework $\alpha \longleftrightarrow \beta$ { α } is stable, preferred, complete (and so is { β }); {} is grounded

- Deductions (in some underlying logic) (stable) extensions correspond to entailment in Non-Monotonic Logics
- Pairs of strategies in Games stable extensions correspond to Nash equilibria
- Sets of sentences in classical Propositional Logic (PL) a notion of acceptable arguments corresponds to classical entailment for consistent theories but does not trivialise for inconsistent theories → Argumentation Logic (AL)²

AA for Game Theory

	С	D
С	1,2	0,0
D	0,0	2,1

Nash Equilibria: (C,C) and (D,D)

Stable extensions: $\{(C, C)\}$ and $\{(D, D)\}$

```
 \begin{array}{l} (X, Y) \text{ attacks } (X', Y') \text{ iff} \\ \blacktriangleright X \neq X' \text{ and } Y \neq Y', \text{ or} \\ \blacktriangleright X = X' \text{ and } u_{a_2}(X, Y) \geq u_{a_2}(X, Y'), \text{ or} \\ \blacktriangleright Y = Y' \text{ and } u_{a_1}(X, Y) \geq u_{a_1}(X', Y) \end{array}
```

AL for PL – Preliminaries

Let T be a theory in PL and ϕ a sentence:

- ► a direct derivation for φ (from T) is a Natural Deduction derivation of φ (from T) without any application of Reductio ad Absurdum
- $T \vdash_{MRA} \phi$ denotes a direct derivation for ϕ from T

```
\alpha \wedge \beta from T
E.g. T \vdash_{MRA} \alpha for T = \{\alpha \land \beta\}:
                                                     \alpha \wedge E
but T \not\vdash_{MRA} \gamma for T = \{\alpha, \neg \alpha\}, although T \vdash \gamma:
            \lceil \neg \gamma \rangle hypothesis
            \alpha from T
            \neg \alpha from T
            \perp \land I
  \neg \neg \gamma \neg I (RA)
                     \neg F
  \gamma
   • Directly inconsistent theory: T \vdash_{MRA} \perp
       Directly consistent theory: T \not\vdash_{MRA} \perp (but possibly T \vdash \perp)
```

AL for PL: Frameworks

Let T be a PL theory (over \mathcal{L}). $\langle Args^T, Att^T, Def^T \rangle$ consists of

•
$$Args^T = \{T \cup \Sigma | \Sigma \subseteq \mathcal{L}\}$$

- given a, b ∈ Args^T, with a = T ∪ Δ, b = T ∪ Γ, such that Δ ≠ {}, (b, a) ∈ Att^T iff a ∪ b ⊢_{MRA} ⊥ b attacks a stands for (b, a) ∈ Att^T
- ▶ given $a, d \in Args^T$, with $a = T \cup \Delta$, $(d, a) \in Def^T$ iff
 - 1. $d = T \cup \{\neg\phi\} (d = T \cup \{\phi\})$ for some sentence $\phi \in \Delta$ (respectively $\neg\phi \in \Delta$), or

2. $d = T \cup \{\}$ and $a \vdash_{MRA} \perp$

d defends against a stands for $(d, a) \in Def^T$

AL for PL: Acceptability

For T directly consistent, $a, a_0 \in Args^T$, $NACC^T(a, a_0)$ iff

 \blacktriangleright a $\not\subseteq$ a₀ and • there exists $b \in Args^T$ s.t. b attacks a and ▶ $b \subseteq a_0 \cup a$, or ▶ for all $d \in Args^T$ s.t. d defends against b: $NACC^T(d, a_0 \cup a)$ e.g. $T = \{ \alpha \land \beta \rightarrow \bot, \neg \beta \rightarrow \bot \}$: $\begin{cases} \{\neg\beta\} & \{\alpha\} \\ (\text{since } T \cup \{\neg\beta\} \vdash_{MRA} \bot) \uparrow & \uparrow(\text{since } T \cup \{\alpha\} \cup \{\beta\} \vdash_{MRA} \bot) \\ \{\} & \{\beta\} \end{cases}$ ≙ $\{\neg\beta\}$ $(since T \cup \{\neg \beta\} \vdash_{MRA} \bot)$

i.e. $NACC^{T}(\{\neg\beta\},\{\})$ $NACC^{T}(\{\alpha\},\{\})$

Argumentation Logic

- $ACC^{T}(\{\phi\}, \{\}) = \text{not } NACC^{T}(\{\phi\}, \{\})$
- ► for *T* directly consistent:

 ϕ is *AL-entailed by T* (denoted $T \models_{AL} \phi$) iff $ACC^{T}(\{\phi\}, \{\})$ and $NACC^{T}(\{\neg\phi\}, \{\})$

AL corresponds to classical PL for classically consistent theories:

- for *T* classically consistent (expressed using only \neg and \land): $T \models_{AL} \phi$ iff $T \vdash \phi$

but does not trivialise:

- $T = \{\neg(\alpha \land \beta), \neg(\gamma \land \neg \beta), \alpha, \gamma\}$ is classically inconsistent, but $T \not\models_{AL} \beta$ and $T \not\models_{AL} \neg \beta$ since both $NACC^{T}(\{\beta\}, \{\})$ and $NACC^{T}(\{\neg\beta\}, \{\})$:

$$\begin{cases} \{\beta\} & \{\neg\beta\} \\ (since \ T \cup \{\beta\} \vdash_{MRA} \bot) \uparrow & \uparrow (since \ T \cup \{\neg\beta\} \vdash_{MRA} \bot) \\ \{\} & \{\} \end{cases}$$

Summary (up until now)

- Part I:
 - Abstract Argumentation (AA) frameworks for
 - non-monotonic reasoning/logics
 - (game theory)
 - A variant of an instance of AA frameworks called Argumentation Logic (AL) – for classical propositional reasoning/logic and beyond
- Part II:
 - Argumentation frameworks for decision support:
 - bipolar argumentation frameworks and collaborative Q&A-based decisions
 - value-based argumentation frameworks and collaborative multi-agent decisions
 - assumption-based argumentation fameworks and multi-criteria decisions

Bipolar Argumentation (BA) Frameworks³

► A BA framework is a triple ⟨*Args*, *attacks*, *supports*⟩ where

- ► ⟨*Args*, *attacks*⟩ is an AA framework and
- supports ⊆ Args × Args is a binary relation over Args
 ((α, β) ∈ supports often written as "α supports β")

John: I think we should go and see the new Avengers; the first one was great! (A1) Joe: Please spare me! It's just going to be another big Hollywood production that goes for explosions instead of plot. (A2) Jane: I loved the first one, as well, so I think we should see it! (A3)

³C. Cayrol and M. Lagasquie-Schiex 2005

From Acceptability to Strength

{A1} is not acceptable (under any notion of acceptability) both on the left and on the right

but {A1} is less "strong" on the right!

Strength of arguments⁴

- Consider BA frameworks in the restricted form of trees
- Let arguments have a base score (a real number in [0,1]) e.g. derived from votes
- Strength of arguments computed from leaves to root, e.g.

⁴Baroni et al 2015

Collaborative Q&A-based decisions - 1

Quaestio-it (www.quaestio-it.com) and Desmold

(positive, negative and spam) votes

Collaborative Q&A-based decisions - 2

Arg&Dec (www.arganddec.com) Link to matrix-based decisions, natural language explanations

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Value-based AA⁵: a simple example

► Consider an AA framework a→b where

- a: Let's have dinner at home today
- b: Let's have dinner in a restaurant today
- ▶ Grounded extension {}; two preferred extensions: {*a*} and {*b*}
- Assume arguments promote values
 - v1: Money-saving, *a* promotes v1v2: Time-saving, *b* promotes v2
 - v1 > v2: {a} should be grounded/the only preferred extension;
 - ▶ v2 > v1: {b} should be grounded/the only preferred extension
- Value-based AA uses preferences over values promoted by arguments to obtain a *simplified AA framework*:

if v1 > v2 then $a \rightarrow b$ if v2 > v1 then $a \leftarrow b$

Collaborative Multi-Agent Decisions

Example: Takeaway in Robocup

Agents T1 and T2 (the "takers") need to collaborate to get the ball from K1, K2, K3 (the "keepers")

Value-based AA for Takeaway⁶

- Values:
 - 1. VT: Prevent the ball being held by the keepers;
 - 2. VO: Prevent the ball being passed to an 'open' keeper;
 - 3. VF: Prevent the ball being passed to a 'far' keeper;
 - 4. VA: Ensure that each pass can be quickly intercepted;
 - 5. VC: Ensure that, after each pass, the ball can be tackled.

- Arguments promote values:
 - 1. $T_i \mathbf{TK}$ promotes **VT**
 - 2. $T_i \mathbf{O}(p)$ promotes **VO**
 - 3. $T_i \mathbf{F}(p)$ promotes **VF**
 - 4. $T_i \mathbf{A}(p)$ promotes **VA**
 - 5. $T_i \mathbf{C}(p)$ promotes **VC**
- Ranking over values:

 $\mathbf{VT} > \mathbf{VA} = \mathbf{VC} > \mathbf{VO} > \mathbf{VF}$

Value-based AA for Takeaway: an example

 T_i **TK** promotes **VT**, T_i **O**(p) promotes **VO**, T_i **F**(p) promotes **VF**, T_i **A**(p) promotes **VA**, T_i **C**(p) promotes **VC**

- grounded extension of the simplified AA framework (right) obtained from the Value-based AA (left): {T₁TK, T₂C(3)}
- T_1 should tackle the ball, T_2 should mark K_3

Assumption-Based Argumentation (ABA)⁷

A form of structured argumentation: differently from AA, arguments and attacks are not primitive notions

- An instance of AA
- Admits AA as an instance

ABA frameworks

An ABA framework is a tuple $\langle \mathcal{L}, \mathcal{R}, \mathcal{A}, \mathcal{C} \rangle$ where

- $\langle \mathcal{L}, \mathcal{R} \rangle$ is a deductive system with language \mathcal{L} and rules \mathcal{R} ,
- $\mathcal{A} \subseteq \mathcal{L}$ are assumptions,

▶ — is a total mapping from \mathcal{A} into \mathcal{L} , $\overline{\alpha}$ is the contrary of α .

Arguments are deductions (wrt $\langle \mathcal{L}, \mathcal{R} \rangle$) of claims supported by sets of assumptions.

Attacks are directed at the assumptions in the support of arguments – by deriving their contrary.

e.g. for
$$\mathcal{R} = \{s \leftarrow b, t \leftarrow c\}$$
, $\mathcal{A} = \{a, b, c\}$, $\overline{a} = s, \overline{b} = t, \overline{c} = u$:

$$\{a\} \vdash a \longleftarrow \{b\} \vdash s \longleftarrow \{c\} \vdash t$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- stable, preferred, grounded etc sets of arguments as in AA
- stable, preferred, grounded etc sets of assumptions

The two views (argument view and assumption view) correspond

e.g. for $\mathcal{R} = \{s \leftarrow b, t \leftarrow c\}$, $\mathcal{A} = \{a, b, c\}$, $\overline{a} = s, \overline{b} = t, \overline{c} = u$: {b} attacks {a}, {c} attacks {b}

- {c, a} is a stable etc set of assumptions
- ► the set of all arguments supported by subsets of {c, a} is a stable etc extension

Multi-attributes decision making

Example: Attending a workshop at Imperial: accommodation?

Decisions: jh, ic, ritz Attributes: £50, £70, £200, sk, pic Goals: cheap, near

	£50	£70	£200	sk	pic
jh		\checkmark		\checkmark	
ic	\checkmark			\checkmark	
ritz			\checkmark		\checkmark

	£50	£70	£200	sk	pic
cheap	\checkmark				
near				\checkmark	

ic is strongly dominant: it meets all goals

From Multi-Attribute Decision Making to ABA⁸

d is strongly dominant iff {sDom(d)} ⊢ sDom(d) belongs to an admissible set

⁸Fan, Toni 2013, EPSRC TRaDAr project

- Various types of argumentation fameworks
- supporting various types of decision-making
- and providing explanations for decisions
- while dealing with potentially incomplete and inconsistent information

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Bibliography

- L. Carstens, X. Fan, Y. Gao and F. Toni, An overview of argumentation frameworks for decision support, The Fourth IJCAI International Workshop on Graph Structures for Knowledge Representation and Reasoning (GKR 2015). To appear.
- M. Aurisicchio, P. Baroni, D. Pellegrini, and F. Toni, Comparing and integrating argumentation-based with matrix-based decision support in Arg&Dec, Third International Workshop on Theory and Applications of Formal Argumentation (TAFA-15). To appear
- A. Kakas, F. Toni and P. Mancarella, Argumentation Logic, Fifth International Conference on Computational Models of Argument, COMMA 2014
- X. Fan and F. Toni, Decision making with assumption-based argumentation, Theories and Applications of Formal Argumentation
 Second International Workshop, TAFA 2013, volume 8306 of LNAI, Springer, 2013
- Bibliography of these papers