Let’s create a spatial implementation of correlation:

\[
\begin{align*}
 r_{xy} &= \frac{\sum x_i y_i - n \bar{xy}}{(n-1)s_x s_y} \\
 &= \frac{n \sum x_i y_i - \sum x_i \sum y_i}{\sqrt{n \sum x_i^2 - (\sum x_i)^2} \sqrt{n \sum y_i^2 - (\sum y_i)^2}}.
\end{align*}
\]

src: http://en.wikipedia.org/wiki/Correlation_and_dependence

\(r \) is the correlation coefficient for a pair of data timeseries \(x, y \) over a window \(n \)

Our example computes correlation for \(N=200-6000 \) data timeseries and returns the top 10 correlations at any point in time.

DFE Input: Interleaved stream of \(N \) timeseries, plus precalculations from the CPU
Pearson product-moment correlation

- Product-moment correlation: Calculate mean (i.e. first moment) of product of mean-adjusted values:

\[\rho_{X,Y} = \frac{E[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y} \]

with

- \(E \): expected value
- \(\mu \): mean value
- \(\sigma \): standard deviation

- For sample data, calculate as:

\[r_{x,y} = \frac{\sum_{i=1}^{n}(x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n}(x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n}(y_i - \bar{y})^2}} \]

\[= \frac{n \sum_{i=1}^{n}x_i y_i - \sum_{i=1}^{n}x_i \sum_{i=1}^{n}y_i}{\sqrt{n \sum_{i=1}^{n}x_i^2 - (\sum_{i=1}^{n}x_i)^2} \sqrt{n \sum_{i=1}^{n}y_i^2 - (\sum_{i=1}^{n}y_i)^2}} \]
How to compute a correlation in practice

- Computation of correlation is based on 5 sums:

\[\text{sumXY: } \sum_{n} x_i y_i \quad \text{sumX: } \sum_{n} x_i \quad \text{sumY: } \sum_{n} y_i \quad \text{sumX2: } \left(\sum_{n} x_i \right)^2 \quad \text{sumY2: } \left(\sum_{n} y_i \right)^2 \]

- Typical application involves continuous correlation of time series: use sliding window approach.

For every time step, complexity of computing sums = O(1) regardless of window size!
Correlation between many time series

- Application in finance requires correlations between 200 to 6000 time series.
 - Complexity arises from number of time series m to be correlated, not from number of data elements n to be summed in sliding window.

$$ r_{x,y} = \frac{n \sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i}{\sqrt{n \sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2} \sqrt{n \sum_{i=1}^{n} y_i^2 - (\sum_{i=1}^{n} y_i)^2}} $$

- $O(m^2)$ correlations
- $O(m^2)$ sums_xy
- $O(m)$ sums
- $O(m)$ sums_sq

- Complexity arising from $O(m^2)$ sums_xy and $O(m)$ sums_sq, not $O(m^2)$ sums.
Original CPU Version for Correlation

```c
for (uint64_t s=0; s<numTimesteps; s++) {
    index_correlation = 0;
    for (uint64_t i=0; i<numTimeseries; i++) {
        double old = (s>=windowSize ? data[i][s-windowSize] : 0);
        double new = data[i][s];
        sums[i] += new - old;
        sums_sq[i] += new*new - old*old; // start and end of window => let's call them data pairs
    }
    for (uint64_t i=0; i<numTimeseries; i++) {
        double old_x = (s>=windowSize ? data[i][s-windowSize] : 0);
        double new_x = data[i][s];
        for (uint64_t j=i+1; j<numTimeseries; j++) {
            double old_y = (s>=windowSize ? data[j][s-windowSize] : 0);
            double new_y = data[j][s];
            sums_xy[index_correlation] += new_x*new_y - old_x*old_y;
            correlations_step[index_correlation] = (windowSize*sums_xy[index_correlation]-sums[i]*sums[j])/
                (sqrt(windowSize*sums_sq[i]*sums[i]*sums[i])*
                    sqrt(windowSize*sums_sq[j]*sums[j]*sums[j]));
            indices_step[2*index_correlation] = j;
            indices_step[2*index_correlation+1] = i;
            index_correlation++;
        }
    }
}
```
for (uint64_t s=0; s<numTimesteps; s++) {
 index_correlation = 0;
 for (uint64_t i=0; i<numTimeseries; i++) {
 double old = (s>=windowSize ? data[i][s-windowSize] : 0);
 double new = data[i][s];
 sums[i] += new - old;
 sums_sq[i] += new*new - old*old;
 }
 for (uint64_t i=0; i<numTimeseries; i++) {
 double old_x = (s>=windowSize ? data[i][s-windowSize] : 0);
 double new_x = data[i][s];
 for (uint64_t j=i+1; j<numTimeseries; j++) {
 double old_y = (s>=windowSize ? data[j][s-windowSize] : 0);
 double new_y = data[j][s];
 sums_xy[index_correlation] += new_x*new_y - old_x*old_y;
 indices_step[2*index_correlation] = j;
 indices_step[2*index_correlation+1] = i;
 index_correlation++;
 }
 }
}
for (uint64_t s=0; s<numTimesteps; s++) {
 index_correlation = 0;
 for (uint64_t i=0; i<numTimeseries; i++) {
 double old = (s>=windowSize ? data[i][s-windowSize] : 0);
 double new = data[i][s];
 sums[i] += new - old;
 sums_sq[i] += new*new - old*old;
 }
 for (uint64_t i=0; i<numTimeseries; i++) {
 double old_x = (s>=windowSize ? data[i][s-windowSize] : 0);
 double new_x = data[i][s];
 for (uint64_t j=i+1; j<numTimeseries; j++) {
 double old_y = (s>=windowSize ? data[j][s-windowSize] : 0);
 double new_y = data[j][s];
 sums_xy[index_correlation] += new_x*new_y - old_x*old_y;
 correlations_step[index_correlation] = (windowSize*sums_xy[index_correlation] - sums[i]*sums[j]) /
 (sqrt(windowSize*sums_sq[i] - sums[i]*sums[i])*sqrt(windowSize*sums_sq[j] - sums[j]*sums[j]));
 indices_step[2*index_correlation] = j;
 indices_step[2*index_correlation+1] = i;
 index_correlation++;
 }
 }
}
Split correlation on CPU and DFE

\[r_{x,y} = \frac{n \sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i}{\sqrt{n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2} \sqrt{n \sum_{i=1}^{n} y_i^2 - \left(\sum_{i=1}^{n} y_i\right)^2}} \]

CPU

- indices \(x, y \)
- correla\(tions \) \(r \)
- precalcula\(tions \)

DFE

- 12 pipes fill the chip
- each pipe has a feedback loop of 12 ticks => 144 calculations running at the same time

Pairs

- old, new
DFE implementation

```c
for (uint64_t s=0; s<numTimesteps; s++) {
    index_correlation = 0;
    for (uint64_t i=0; i<numTimeseries; i++) {
        double old = (s>=windowSize ? data[i][s-windowSize] : 0);
        double new = data[i][s];
        sums[i] += new - old;
        sums_sq[i] += new*new - old*old;
    }
    for (uint64_t i=0; i<numTimeseries; i++) {
        double old_x = (s>=windowSize ? data[i][s-windowSize] : 0);
        double new_x = data[i][s];
        double old_y = (s>=windowSize ? data[j][s-windowSize] : 0);
        double new_y = data[j][s];
        for (uint64_t j=i+1; j<numTimeseries; j++) {
            double old_y = (s>=windowSize ? data[j][s-windowSize] : 0);
            double new_y = data[j][s];
            sums_xy[index_correlation] += new_x*new_y - old_x*old_y;
            indices_step[2*index_correlation] = j;
            indices_step[2*index_correlation+1] = i;
            index_correlation++;
        }
    }
}
```
prepare_data_for_dfe() – The Movie

reordering for data_pairs

first and last element of each window creates a data_pair, then go round robin...
Example: Sum of a Moving Window

keep the window sum by subtracting the top and adding the new entrant

Note: this is a Case 2 Loop (Lecture 9), with a sequential streaming loop (par_loop)

DFEParLoop lp = new DFEParLoop(this, "lp");
DFEVector<DFEVar> data_pairs = io.input("dp", dfeVector(...), lp.ndone);
lp.set_input(sum.getType(), 0.0);
 DFEVar sum = (lp.feedback + data_pairs[0]) - data_pairs[1];
lp.set_output(sum);
io.output("sum", sum, sum.getType(), lp.done);
Correlation .max file plotted in Space

- 12 pipes
- LMEM LOAD
Correlation Pipes: Dataflow Graph
File: correlationCPUCode.c
Purpose: calling correlationSAPI.h for correlation.max

Correlation formula:
scalar r(x,y) = (n*SUM(x,y) - SUM(x)*SUM(y))*SQRT_INVERSE(x)*SQRT_INVERSE(y)
where:
x, y, ... - Time series data to be correlated
n - window for correlation (minimum size of 2)
SUM(x) - sum of all elements inside a window
SQRT_INVERSE(x) - 1/sqrt(n*SUM(x^2) - (SUM(x)^2))

Action 'loadLMem':
[in] memLoad - initializeLMem, used as temporary storage

Action 'default':
[in] precalculations: {SUM(x), SQRT_INVERSE(x)} for all timeseries for every timestep
[in] data_pair: {..., x[i], x[i-n], y[i], y[i-n], ... , x[i+1], x[i-n+1], y[i+1], y[i-n+1], ...} for all timeseries for every timestep

[out] correlation r: numPipes * CorrelationKernel_loopLength * topScores correlations for every timestep
[out] indices x,y: pair of timeseries indices for each result r in the correlation stream
prepare_data_for_dfe() – The Code

// 2 DFE input streams: prec calculations and data pairs
for (uint64_t i=0; i<numTimesteps; i++) {
 old_index = i - (uint64_t)windowSize;

 for (uint64_t j=0; j<numTimeseries; j++) {
 if (old_index<0) old = 0; else old = data [j][old_index];
 new = data [j][i];

 if (i==0) {
 sums [i][j] = new;
 sums_sq [i][j] = new*new;
 }else {
 sums [i][j] = sums [i-1][j] + new - old;
 sums_sq [i][j] = sums_sq [i-1][j] + new*new - old*old;
 }
 }
 inv [i][j] = 1/sqrt((uint64_t)windowSize*sums_sq[i][j] - sums[i][j]*sums[i][j]);

 // precalculations REORDERED in DFE ORDER
 precalculations [2*i*numTimeseries + 2*j] = sums[i][j];
 precalculations [2*i*numTimeseries + 2*j + 1] = inv [i][j];

 // data_pairs REORDERED in DFE ORDER
 data_pairs[2*i*numTimeseries + 2*j] = new;
 data_pairs[2*i*numTimeseries + 2*j + 1] = old;
}
}
DFE Systems Architectures

- **DFEPP**
 - User’s CPU Code
 - User’s MaxJ Code
 - DFE Programmer’s Platform
 - SAPI
 - DFE

- **LLSWP**
 - User’s CPU Code
 - Config Options (reorder data)
 - Low Level SW Platform
 - SAPI
 - DFE

- **HLSWP**
 - User’s CPU Code
 - MAPI
 - High Level SW Platform
 - CPU Code
 - .max Files
 - DFE

EXAMPLES
- Max MPT
 - Video transcoding/processing
- Correlation App
- Risk Analytics Library
 - Video Encoding
Correlation Lab Exercise (due 4 Dec 2015)

- Open correlation project at https://openspl.doc.ic.ac.uk/
- Full exercise specification on CATe
- Four versions of correlation:
 1. **Original**: Original software in C
 2. **Split Control and Data**: C software split into dataflow and controlflow
 3. **Single Pipe**: CPU code + DFE code. Runs in simulation and on DFE.
 4. **Multi Pipe**: CPU code + DFE binary. Runs in simulation and on DFE.

Task 1: Run the Original C code for correlating 256, 512, 1024 and 2048 time series for 10, 100 and 1000 time steps.

Task 2: Run the Split C code, correlating 256, 512, 1024 and 2048 time series for 1000 time steps.

Task 3: Run the Single Pipe and Multi Pipe dataflow designs for correlating 256 time series and 10 time steps in simulation mode (SIM).

Task 4: Run the Single Pipe and Multi Pipe dataflow designs for correlating 265, 512, 1024, 2048, and 4096 time series for 10, 100 and 100 time steps on the DFE.