CO405H

Computing in Space with OpenSPL Topic 11: Numerics I

Oskar Mencer

Georgi Gaydadjiev

Department of Computing Imperial College London

http://www.doc.ic.ac.uk/~oskar/ http://www.doc.ic.ac.uk/~georgig/

CO405H course page:

WebIDE:

OpenSPL consortium page:

http://cc.doc.ic.ac.uk/openspl16/

http://openspl.doc.ic.ac.uk

http://www.openspl.org

o.mencer@imperial.ac.uk

g.gaydadjiev@imperial.ac.uk

Lecture Overview

- Numerics: why we care
- Number representation
- Number types for DFEs
- Rounding, Rounding, Rounding,...
- Arithmetic styles
- Error and other numerical issues

Euclids Elements, Representing a²+b²=c²

without modern representations, the below is very hard:

Richard Feynman on Computation

In theory, a computer system can be constructed which uses no energy.

Energy is only needed when information is lost.

Reordering of **information** does not require energy from a pure physics perspective.

Of course, moving information takes Energy...

Representation of information determines energy consumption for computation!

Why we care about Numerics

- Performance depends on the number of arithmetic units that fit in space on the DFE
 → lower precision → more units → higher performance
- Accuracy and performance may be competing objectives
 - DFE space depends on data representation and bitwidths
- DFEs give us control over number representation, to achieve just-enough accuracy in minimal space

Number Representation

• Microprocessors:

- Integer: unsigned, one's complement, two's complement,
- Floating Point: IEEE single-precision, double-precision

Others:

- Fixed point
- Logarithmic number representation
- Redundant number systems: use more bits, compute faster
 - Signed-digit representation
 - Residue number system (modulo arithmetic)
- Decimal: decimal floating point, binary coded decimal

One's Complement

Two's Complement

Signed N-bit Integers

Sign-magnitude representation for integer x.

Most significant bit (msb) is the sign bit.

Advantages: symmetry around 0, easy access to |x|, simple overflow detection

Disadvantages: complexity of add/sub.

One's complement numbers:

Represent -x by inverting each bit.

Overflow=Sign_Carry_In ^ Sign_Carry_Cout

Advantages: fast negation

Disadvantages: add/sub correction: carry-out of sign bit is added to lsb

• Two's complement:

Represent -x by inverting each bit and adding '1'.

Overflow=same as One's c.

Advantages: fast add/sub

Disadvantages: magnitude computation requires full addition

Fixed Point Numbers

- Generalisation of integers, with a 'radix point'
- Digits to the right of the radix point represent negative powers of 2

- F = number of fractional bits
 - Bits to the right of the 'radix point'
 - For integers, F = 0

Fixed Point Mathematics

- Think of each number as: $(V \times 2^{-F})$
- Addition and subtraction: $(V1 \times 2^{-F1}) + (V2 \times 2^{-F2})$
 - Align radix points and compute the same as for integers

• Multiplication: $(V1 \times 2^{-F1}) \times (V2 \times 2^{-F2}) = V1 \times V2 \times 2^{-(F1+F2)}$

					1	0	1	0			
×			1	0	1	0	0	1	0		
=	0	1	1	0	0	1	1	0	1	0	0

• Division: $(V1 \times 2^{-F1}) / (V2 \times 2^{-F2}) = (V1/V2) \times 2^{-(F1-F2)}$

Floating Point Representation

sign·Imantissa I·base exponent

- regular mantissa = 1.xxxxxx
- denormal numbers get as close to zero as possible: mantissa = 0.xxxxxx with min exponent
- IEEE FP Standard: base=2, single, double, extended widths
- Computing in Space: choose widths of fields + choose base
- Tradeoff:
 - Performance: small widths, larger base, truncation.
 - versus Accuracy: wide, base=2, round to even.
- Disadvantage: Floating Point arithmetic units tend to be very large compared to Integer/Fixed Point units.

Floating Point Maths

- Addition and subtraction:
 - Align exponents:
 shift smaller mantissa to the larger number's exponent
 - Add mantissas
 - Normalize:
 shift mantissa until starts with '1', adjust exponent
- Multiplication:
 - Multiply mantissas, add exponents
- Division:
 - Divide mantissas, subtract exponents

Number Representation for DFEs

- MaxCompiler has in-built support for floating point and fixed point/integer arithmetic
 - Depends on the type of the DFEVar
- Can type inputs, outputs and constants
- Or can cast DFEVars from one type to another
- Types are Java objects, just like DFEVars,

```
// Create an input of type t
DFEVar io.input(String name, DFEType t);

// Create an DFEVar of type t with constant value
DFEVar constant.var(DFEType t, double value);

// Cast DFEVar y to type t
DFEVar x = y.cast(DFEType t);
```

DFE Floating Point - dfeFloat

- Floating point numbers with base 2, flexible exponent and mantissa
- Compatible with IEEE floating point except does not support denormal numbers
 - When Computing in Space you can use a larger exponent

```
DFEType t = dfeFloat(int exponent_bits, int mantissa_bits);
```

Examples:

Including the sign bit

	Exponent bits	Mantissa bits
IEEE single precision	8	24
IEEE double precision	11	53
DFE optimized low precision	7	17

Why dfeFloat(7,17)...?

DFE Fixed Point – dfeFixOffset

- Fixed point numbers
- Flexible integer and fraction bits
- Flexible sign mode
 - SignMode.UNSIGNED or SignMode.TWOSCOMPLEMENT

DFEType t = dfeFixOffset(int num bits, int offset, SignMode sm);

Common cases have useful aliases.

	Integer bits	Fraction bits	Sign mode
dfeInt(N)	N	0	TWOSCOMPLEMENT
dfeUInt(N)	N	0	UNSIGNED
dfeBool()	1	0	UNSIGNED

Mixed Types

- Can mix different types in a MaxCompiler kernel to use the most appropriate type for each operation
 - Type conversions costs area must cast manually
- Types can be parameter to a kernel program
 - Can generate the same kernel with different types

```
class MyKernel extends Kernel {
   public MyKernel(KernelParameters k, DFEType t_in, DFEType t_out)
{
    super(k);

   DFEVar p = io.input("p", dfeFloat(8,24));
   DFEVar q = io.input("q", t_in);

   DFEVar r = p * p;

   DFEVar s = r + q.cast(r.getType());
   io.output("s", s.cast(t_out), t_out);
}
```

Rounding

- When we remove bits from the RHS of a number we may want to perform rounding.
 - Casting / type conversion
 - Inside arithmetic operations
- Different possibilities
 - TRUNCATE: throw away unwanted bits
 - TONEAR: if >=0.5, round up (add 1)
 - TONEAREVEN: if >0.5 round up, if <0.5 round down, if =0.5 then round to the nearest even number
- Lots of less common alternatives:
 - Towards zero, towards positive infinity, towards negative infinity, random....
- Very important in iterative calculations may affect convergence behaviour

Rounding in MaxCompiler

- Floating point arithmetic uses TONEAREVEN
- Fixed point rounding is flexible, controlled by the *RoundingMode*
 - TRUNCATE, TONEAR and TONEAREVEN are in-built

```
DFEVar z;
...
optimization.pushRoundingMode(RoundingMode.TRUNCATE);
z = z.cast(smaller_type);
optimization.popRoundingMode();
```

Arithmetic Styles

Arithmetic in MaxCompiler

- By default uses deeply pipelined arithmetic functions
 - Objective is high operating frequency
- Can reduce pipelining gradually to produce combinatorial functions, controlled by pushing and popping a "pipelining factor"
 - -1.0 = maximum pipelining; 0.0 = no pipelining

```
DFEVar x, y, z; // floating point numbers
...
z = x * y; // fully pipelined
optimization.pushPipeliningFactor(0.5);
z += x; // half pipelined - lower latency
optimization.pushPipeliningFactor(0.0);
z += y; // no pipelining
optimization.popPipeliningFactor();
optimization.popPipeliningFactor();
z = z * 2; // fully pipelined again
```

Arithmetic takes Space on the DFE

- Addition/subtraction:
 - ~1 logic cell/bit for fixed point,
 while it takes hundreds of logic cells per floating point op
- Multiplication: Can use MULT blocks
 - 18x25bit multiply on Maxeler Vectis DFEs
 - Number of MULTs depends on total bits (fixed point) or mantissa bitwidth (floating point)

Approximate space cost models

	Floating point:	dfeFloat(E, M)	Fixed point: dfeFix(I, F, TWOSCMP)				
	MULTs	LUTs	MULTs	LUTs			
Add/subtract	0	$O(M \times \log_2(E))$	0	I+F			
Multiply	O(ceil(M/18) ²)	O(E)	O(ceil((I+F)/18) ²)	0			
Divide	0	O(M ²)	0	O((I+F) ²)			

I = Integer bits, F = Fraction bits. E = Exponent bits, M = Mantissa Bits

MULT usage for N x M multiplication

	M								•											
Ν	Bits	18	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	50	52	54
	18	1	1	1	1	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3
	20	1	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	3
	22	1	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	3
	24	1	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	3
	26	2	2	2	2	4	4	4	4	4	4	4	4	4	6	6	6	6	6	6
	28	2	2	2	2	4	4	4	4	4	4	4	4	4	6	6	6	6	6	6
	30	2	2	2	2	4	4	4	4	4	4	4	4	4	6	6	6	6	6	6
	32	2	2	2	2	4	4	4	4	4	4	4	4	4	6	6	6	6	6	6
	34	2	2	2	2	4	4	4	4	4	4	4	4	4	6	6	6	6	6	6
	36	2	3	3	3	4	4	4	4	4	5	5	5	5	6	6	6	6	6	7
	38	2	3	3	3	4	4	4	4	4	5	5	5	5	6	6	6	6	6	7
4	40	2	3	3	3	4	4	4	4	4	5	5	5	5	6	6	6	6	6	7
	42	2	3	3	3	4	4	4	4	4	5	5	5	5	6	6	6	6	6	7
	44	3	3	3	3	6	6	6	6	6	6	6	6	6	9	9	9	9	9	9
	46	3	3	3	3	6	6	6	6	6	6	6	6	6	9	9	9	9	9	9
	48	3	3	3	3	6	6	6	6	6	6	6	6	6	9	9	9	9	9	9
	50	3	3	3	3	6	6	6	6	6	6	6	6	6	9	9	9	9	9	9
	52	3	3	3	3	6	6	6	6	6	6	6	6	6	9	9	9	9	9	9
	54	3	4	4	4	6	6	6	6	6	7	7	7	7	9	9	9	9	9	10

Logic usage for floating point addition

Example: Quad Precision Floating Point

Quad Precision (112 bit mantissa, 15 bit exponent) One Maxeler Maia DFE = 21.4 GFLOP/s 1U MPC-X2000 with 8 Maias = 171.2 GFLOP/s.

1U server node of Sandybridge 16-core is estimated to run at 1.05 GFLOP/s.

1U to 1U: ~160x.

Benefits of Fixed Point

- Consider fixed point compared to single precision floating point
- If range is tightly confined, we could use 24-bit fixed point
- If data has a wider range, may need 32-bit fixed point

	dfeFloat(8,24)	dfeFixOffset(24,)	dfeFixOffset(32,)			
Add	500 logic cells	24 logic cells	32 logic cells			
Multiply	2 MULTs	2 MULTs	4 MULTs			

Arithmetic is not 100% of the chip. In practice, often see
 ~5x performance boost from fixed point.

Error

- $\forall A,B: \Re. A (op) B = result + error$
- Floating point introduces (dynamic) relative error
 - Error = f(exponent of result) → relative error
- Fixed point introduces (static) absolute error
 - Error = f(rightmost bit position of result) → static error
- Error is minimized by thoughtful rounding

Other numerics issues

Overflow

- Number is too large (positive or negative) to be represented
- Usually catastrophic important data is lost/invalid

Underflow

- Number is too small to be represented and rounds to zero
- With fixed point, happens gradually
- With floating point without denormals, happens suddenly
- Usually underflowing data is not so important (numbers are very small)

Bias

- If errors do not have a mean of zero, they will grow with repeated computation.
- Big issue in iterative calculations
 - → numbers gradually get more and more wrong!
- TONEAREVEN rounding mode minimizes bias

Further Reading on Computer Arithmetic

Recommended reading:

 Goldberg, "What Every Computer Scientist Should Know About Floating-Point Arithmetic", ACM Computing Surveys, March 1991

Textbooks:

- Koren, "Computer Arithmetic Algorithms," 1998.
- Pahrami, "Computer Arithmetic: Algorithms and Hardware Designs,"
 Oxford University Press, 2000.
- Waser, Flynn, "Introduction for Arithmetic for Digital Systems Designers,"
 Holt, Rinehard & Winston, 1982.
- Omondi, "Computer Arithmetic Systems," Prentice Hall, 1994.
- Hwang, "Computer Arithmetic: Principles, Architectures and Design,"
 Wiley, 1978.

Conclusions

- Understand your data requirements
- Know what fixed or floating point you need
- Mind rounding
- Number representations affect the space of computation as well as time!