CO405H

Computing in Space with OpenSPL
Topic 11: Numerics |

Oskar Mencer Georgi Gaydadjiev

Department of Computing
Imperial College London

http://www.doc.ic.ac.uk/~oskar/
http://www.doc. .ac.uk ~georgig/

CO405H course page: \ http://cc.doc.ic.ac.uk/openspl16/
WebIDE: http://openspl.doc.ic.ac.uk
OpenSPL consortium page: http://www.openspl.org

o.mencer@imperial.ac.uk g.gaydadjiev@imperie

Lecture Overview

 Numerics: why we care

* Number representation

* Number types for DFEs
 Rounding, Rounding, Rounding,...
* Arithmetic styles

* Error and other numerical issues

Euclids Elements, Representing a*+b?*=c?
without modern representations, the below is very hard:

e A 3 ,‘5‘ 'e_‘,'f.‘ b Tl ety =
SERIERIEA Y Tt

Richard Feynman on Computation

In theory, a computer system
can be constructed which uses no energy.

ICHARD P. FEYNMAN

Energy is only needed when information is lost. |21\

LECTURES ON
Reordering of information does not require energy [W0 UYL

from a pure physics perspective.
Of course, moving information takes Energy...

Representation of information determines
energy consumption for computation!

—

Why we care about Numerics

 Performance depends on the number of

arithmetic units that fit in space on the DFE
— lower precision = more units =2 higher performance

e Accuracy and performance may be competing objectives
— DFE space depends on data representation and bitwidths

* DFEs give us control over number representation,
to achieve just-enough accuracy in minimal space

Number Representation

Microprocessors:
- Integer: unsigned, one’s complement, two’s complement,
- Floating Point: IEEE single-precision, double-precision

Others:

— Fixed point

— Logarithmic number representation

— Redundant number systems: use more bits, compute faster
* Signed-digit representation
e Residue number system (modulo arithmetic)

— Decimal: decimal floating point, binary coded decimal

One’s Complement

Unsigned
1111 OO(?O 0001 ©

Representations
0010

Signed Values
(1’s Complement) +4| 4 0100

Two’'s Complement

Unsigned
1111 OO(?O 0001 ©

Representations
0010

Signed Values
(2’s Complement) +4| 4 0100

Signed N-bit Integers

e Sign-magnitude representation for integer x.
Most significant bit (msb) is the sign bit.
Advantages: symmetry around 0, easy access to | x|, simple overflow detection
Disadvantages: complexity of add/sub.

* One’s complement numbers:

Represent -x by inverting each bit.
Overflow=Sign_Carry_In ~ Sign_Carry_Cout

Advantages: fast negation
Disadvantages: add/sub correction: carry-out of sign bit is added to Isb

* Two’s complement:

Represent -x by inverting each bit and adding ‘1.
Overflow=same as One’s c.

Advantages: fast add/sub
Disadvantages: magnitude computation requires full addition

Fixed Point Numbers

* Generalisation of integers, with a ‘radix point’

* Digits to the right of the radix point represent
negative powers of 2

Digit weights: 24 23 2?2 21 20 + 21 | 22 | 23 | 24 | 27
(unsigned) \ [\ Y }

| bits F bits

 F=number of fractional bits
— Bits to the right of the ‘radix point’

— Forintegers, F=0

Fixed Point Mathematics

* Think of each number as: (V x 2°F)

e Addition and subtraction: (V1 x 2-F1) + (V2 x 2-F?)
— Align radix points and compute the same as for integers

1 | o[0o | 1| 0o®@1 |0 | 0] 1|0
* 1 o1 |10 1]0o]of1]o0
= 1 |11]o] 181]1]of1]1]o
e Multiplication: (V1 x 2°F1) x (V2 x 2-F2) = V1xV2 x 2-(F1+F2)
1 | 0@ 1 | 0
1 o] 1| o0 | 1] o0
= o | 1| 1| 0| o 11| 0/| 1|0/ o0

Floating Point Representation

sign- | mantissa | -base”"™
e regular mantissa = 1.XXXXXX

 denormal numbers get as close to zero as possible:
mantissa = 0.xxxxxx with min exponent

 |EEE FP Standard:
base=2, single, double, extended widths

* Computing in Space:
choose widths of fields + choose base

 Tradeoff:

— Performance: small widths, larger base, truncation.

— versus Accuracy: wide, base=2, round to even.

* Disadvantage: Floating Point arithmetic units tend to be
very large compared to Integer/Fixed Point units.

Floating Point Maths

 Addition and subtraction:

— Align exponents:
shift smaller mantissa to the larger number’s exponent

— Add mantissas

— Normalize:
shift mantissa until starts with ‘1’, adjust exponent

* Multiplication:
— Multiply mantissas, add exponents

e Division:

— Divide mantissas, subtract exponents

Number Representation for DFEs

 MaxCompiler has in-built support for floating point
and fixed point/integer arithmetic

— Depends on the type of the DFEVar
* Can type inputs, outputs and constants
* Or can cast DFEVars from one type to another
* Types are Java objects, just like DFEVars,

// Create an input of type ¢t
DFEVar io.input(String name, DFEType t);

// Create an DFEVar of type t with constant value
DFEVar constant.var (DFEType t, double value);

// Cast DFEVar y to type t
DFEVar x = y.cast(DFEType t);

_

DFE Floating Point - dfeFloat

* Floating point numbers with base 2, flexible
exponent and mantissa

 Compatible with IEEE floating point
except does not support denormal numbers

— When Computing in Space you can use a larger exponent

DFEType t = dfeFloat(int exponent bits, int mantissa bits);

 Examples:
| Exponentbits| _ Mantissa bits
IEEE single precision 8 24
IEEE double precision 11 53
DFE optimized low precision 7 17

Why dfeFloat(7,17)...?

DFE Fixed Point — dfeFixOffset

* Fixed point numbers
* Flexible integer and fraction bits

* Flexible sign mode
— SignMode.UNSIGNED or SignMode. TWOSCOMPLEMENT

DFEType t = dfeFixOffset(int num bits, int offset, SignMode sm);

e Common cases have useful aliases

| Integerbits| _Fraction bits

dfelnt(N) TWOSCOMPLEMENT
dfeUlnt(N) N 0 UNSIGNED
dfeBool() 1 0 UNSIGNED

Mixed Types

e Can mix different types in a MaxCompiler kernel to
use the most appropriate type for each operation

— Type conversions costs area — must cast manually

* Types can be parameter to a kernel program

— Can generate the same kernel with different types

class MyKernel extends Kernel {
public MyKernel (KernelParameters k, DFEType t in, DFEType t out)

{

super (k) ;

DFEVar p = 1o.input (“p”, dfeFloat(8,24));
DFEVar g = io.input(“g”, t in);

DFEVar r = p * p

DFEVar s = r + g.cast(r.getType())
lo.output (“s”, s.cast(t out), t out);

Rounding

When we remove bits from the RHS of a number we may
want to perform rounding.

— Casting / type conversion

— Inside arithmetic operations
Different possibilities

— TRUNCATE: throw away unwanted bits

— TONEAR: if >=0.5, round up (add 1)

— TONEAREVEN: if >0.5 round up, if <0.5 round down, if =0.5 then
round to the nearest even number

Lots of less common alternatives:

— Towards zero, towards positive infinity, towards negative
infinity, random....

Very important in iterative calculations — may affect
convergence behaviour

Rounding in MaxCompiler

* Floating point arithmetic uses TONEAREVEN

* Fixed point rounding is flexible,
controlled by the RoundingMode

— TRUNCATE, TONEAR and TONEAREVEN are in-built

DFEVar z;
optimization.pushRoundingMode (RoundingMode.TRUNCATE) ;

z = z.cast (smaller type);

optimization.popRoundingMode () ;

Arithmetic Styles

Digit-Serial | Digit-Parallel
Sequential @
-loop x times | ==
Pipelined 5 :>.....=>:> _
-loop unrolled | |

Combinational
- loop unrolled
- no registers

- logic min

Arithmetic in MaxCompiler

* By default uses deeply pipelined arithmetic functions
— Objective is high operating frequency

* Canreduce pipelining gradually to produce
combinatorial functions, controlled by pushing and

popping a “pipelining factor”
— 1.0 = maximum pipelining ; 0.0 = no pipelining

DFEVar x, vy, z; // floating point numbers

z = x * vy; // fully pipelined
optimization.pushPipeliningFactor (0.5) ;

z += x; // half pipelined - lower latency
optimization.pushPipeliningFactor (0.0) ;

z += y; // no pipelining
optimization.popPipeliningFactor () ;
optimization.popPipeliningFactor () ;
z =z * 2; // fully pipelined again

Arithmetic takes Space on the DFE

* Addition/subtraction:
— ~1 logic cell/bit for fixed point,
while it takes hundreds of logic cells per floating point op
* Multiplication: Can use MULT blocks

— 18x25bit multiply on Maxeler Vectis DFEs

— Number of MULTs depends on total bits (fixed point) or
mantissa bitwidth (floating point)

Approximate space cost models

_ Floating point: dfeFloat(E, M) Fixed point: dfeFix(l, F, TWOSCMP)

MULTs LUTs MULTs LUTs
Add/subtract 0 O(Mxlog,(E)) 0 |+F
Multiply O(ceil(M/18)?) O(E) O(ceil((1+F)/18)?) 0
Divide 0 O(M?) 0 O((1+F)?)

| = Integer bits, F = Fraction bits. E = Exponent bits, M = Mantissa Bits

M

18 20| 22 24 26| 28 30 32 34 36 38 40 42 44 46| 48 50 52 54

MULT usage for N x M multiplication

Bits

Logic usage for floating point addition

600
—4—8 Exponent bits
-#-7 Exponent bits
500 :
~4=6 Exponent bits
=<5 Exponent bits
400
£ 300
(1]
Q
=
S~
(8}
s 200 -
o
—
100
O | 1

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Mantissa bits -

Example: Quad Precision Floating Point

Quad Precision (112 bit mantissa, 15 bit exponent)
One Maxeler Maia DFE = 21.4 GFLOP/s
1U MPC-X2000 with 8 Maias =171.2 GFLOP/s.

1U server node of Sandybridge 16-core is
estimated to run at 1.05 GFLOP/s.

1U to 1U: ~160x.

Benefits of Fixed Point

e Consider fixed point
compared to single precision floating point

e If range is tightly confined,
we could use 24-bit fixed point

If data has a wider range, may need 32-bit fixed point

dfeFIoat(8 24) | dfeFixOffset(24,..) | dfeFixOffset(32,..

500 logic cells 24 logic cells 32 logic cells
Multiply 2 MULTs 2 MULTs 4 MULTSs

* Arithmetic is not 100% of the chip. In practice, often see
~5x performance boost from fixed point.

_

Error

« VA,B: R. A(op) B=result +error

« Floating point introduces (dynamic) relative error
— Error = f(exponent of result) = relative error

 Fixed point introduces (static) absolute error
— Error = f(rightmost bit position of result) = static error

Error is minimized by thoughtful rounding

Other numerics issues

 Overflow
— Number is too large (positive or negative) to be represented

— Usually catastrophic — important data is lost/invalid

* Underflow
— Number is too small to be represented and rounds to zero
— With fixed point, happens gradually
— With floating point without denormals, happens suddenly
— Usually underflowing data is not so important (numbers are very small)

e Bias

— If errors do not have a mean of zero, they will grow with repeated
computation.

— Bigissue in iterative calculations
- numbers gradually get more and more wrong!

— TONEAREVEN rounding mode minimizes bias

Further Reading on Computer Arithmetic

e Recommended reading:

Goldberg, “What Every Computer Scientist Should Know About Floating-
Point Arithmetic”, ACM Computing Surveys, March 1991

e Textbooks:

Koren, “Computer Arithmetic Algorithms,” 1998.

Pahrami, "Computer Arithmetic: Algorithms and Hardware Designs,”
Oxford University Press, 2000.

Waser, Flynn, “Introduction for Arithmetic for Digital Systems Designers,’
Holt, Rinehard & Winston, 1982.

Omondi, “Computer Arithmetic Systems,” Prentice Hall, 1994.

U

Hwang, “Computer Arithmetic: Principles, Architectures and Design,”
Wiley, 1978.

Conclusions

* Understand your data requirements
 Know what fixed or floating point you need
* Mind rounding

* Number representations affect the space of
computation as well as time!

