
		

CO405H
Computing in Space with OpenSPL

Topic 12: Numerics II

Oskar	Mencer	 	 									Georgi	Gaydadjiev	
	

					Department	of	Compu:ng	
							Imperial	College	London		

	
h#p://www.doc.ic.ac.uk/~oskar/ 		
h#p://www.doc.ic.ac.uk/~georgig/	
	
CO405H	course	page:	 	 	h#p://cc.doc.ic.ac.uk/openspl16/		
WebIDE:	 	 	 	h#p://openspl.doc.ic.ac.uk		
OpenSPL	consor:um	page:	 	h#p://www.openspl.org	
	
o.mencer@imperial.ac.uk	 	g.gaydadjiev@imperial.ac.uk	

•  Recap	from	Numerics	I	
•  DistribuEon	of	Variable	Values	
•  Examples	in	Seismic	Imaging	and	Weather	SimulaEon	
•  RepresentaEon	of	Variables	in	SpaEal	CompuEng	

2	

Lecture Overview

•  OpenSPL	supports	floaEng	point	and	fixed	point/
integer	arithmeEc	
–  Depends	on	the	type	of	the	SCSVar	

•  Can	type	inputs,	outputs	and	constants	
•  Or	can	cast	SCSVars	from	one	type	to	another	
•  Types	are	Java	objects,	just	like	SCSVars,		
	

	

3	

Number Representation in OpenSPL

// Create an input of type t
SCSVar io.input(String name, SCSType t);

// Create an SCSVar of type t with constant value
SCSVar constant.var(SCSType t, double value);

// Cast SCSVar y to type t
SCSVar x = y.cast(SCSType t);

•  FloaEng	point	numbers	with	base	2,	flexible	
exponent	and	manEssa	

•  CompaEble	with	IEEE	floaEng	point	except	does	not	
support	denormal	numbers	
–  In	spaEal	computers	choose	to	use	a	larger	exponent	

•  Examples:	

4	

OpenSPL Floating Point - scsFloat

SCSType t = scsFloat(int exponent_bits, int mantissa_bits);

Exponent	bits	 Man:ssa	bits	

IEEE	single	precision	 8	 24	

IEEE	double	precision	 11	 53	

DFE	opEmized	low	precision	 7	 17	

Including	the	sign	bit	

Why	scsFloat(7,17)…?	

•  Fixed	point	numbers	
•  Flexible	integer	and	fracEon	bits	
•  Flexible	sign	mode	

–  SignMode.UNSIGNED	or	SignMode.TWOSCOMPLEMENT	

•  Common	cases	have	useful	aliases	

5	

OpenSPL Fixed Point – scsFixOffset

SCSType t = scsFixOffset(int num_bits, int offset, SignMode sm);

Integer	bits	 Frac:on	bits	 Sign	mode	

scsInt(N)	 N	 0	 TWOSCOMPLEMENT	

scsUInt(N)	 N	 0	 UNSIGNED	

scsBool()	 1	 0	 UNSIGNED	

•  When	we	remove	bits	from	the	RHS	of	a	number	we	may	
want	to	perform	rounding.		
–  CasEng	/	type	conversion	
–  Inside	arithmeEc	operaEons	

•  Different	possibiliEes	
–  TRUNCATE:	throw	away	unwanted	bits	
–  TONEAR:	if	>=0.5,	round	up	(add	1)	
–  TONEAREVEN:	if	>0.5	round	up,	if	<0.5	round	down,	if	=0.5	then	
round	to	the	nearest	even	number	

•  Lots	of	less	common	alternaEves:	
–  Towards	zero,	towards	posiEve	infinity,	towards	negaEve	
infinity,	random	uniform,	uniform	with	distribuEon….		

•  Very	important	in	iteraEve	calculaEons	–	affects	
convergence	behaviour	

6	

Rounding

•  FloaEng	point	arithmeEc	uses	TONEAREVEN	
•  Fixed	point	rounding	is	flexible,	controlled	by	the	
RoundingMode	
–  TRUNCATE,	TONEAR	and	TONEAREVEN	are	in-built	

7	

Rounding in MaxCompiler

DFEVar z;
...
optimization.pushRoundingMode(RoundingMode.TRUNCATE);

z = z.cast(smaller_type);

optimization.popRoundingMode();

8	

Numerics II: Variables, Values and Distribution

STEP	1:	For	all	variables	in	the	applicaEon	which	are	
moving	to	the	DFE,	record	all	values	of	each	parEcular	
variable.	
	
STEP	2:	look	at	histogram,	distribuEon,	average,	min,	
max,	variance,	etc.	
	
STEP	3:	pick	representaEon	to	match	range	and	
distribuEon	of	values	for	the	variable.	

Ex 1: Number Representations in Geoscience
Case	Study:	Complex	ExponenEal	in	Downward	ConEnued	Based	MigraEon		
	

Double	Square	Root	(DSR)	condiEon	(the	complex	exponenEal	step)	with	frequency	w	
-	a	small	table	holds	the	vk/w	values		
-  next	an	approximate	value	of	the	square	root	is	looked	up		

The	design	consists	of	three	parts:		
•  square	root	calcula4on		
•  sine/cosine	evalua4on,	and		
•  complex	mul4plica4on.		
	The	above	three	parts	have	quite	different	range	of	variables	à	different	bit-widths	in	
each	part:	SQRT	(square	root),	SINE	(sine/cosine	evaluaEon)	and	WMUL	(wave-field	
complex	mulEplicaEon)	bit-width.	
	
[H.Fu,	W.	Osborne,	R.	G.	Clapp,	O.	Pell,	AcceleraEng	Seismic	ComputaEons	[],	70th	EAGE	Conference,	Italy,	2008]		

9	

Fixed-point bit-width exploration

‘true’ image: single-precision floating-point

8-bit fixed-point 10-bit fixed-point

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

4 6 8 10 12 14 16 18 20 22

SQRT Bit-width

D
iff

er
en

ce
 In

di
ca

to
r V

al
ue

s
of

 th
e

G
en

er
at

ed
 Im

ag
es

Different	parts	are	explored	
separately,	i.e.,	when	we	invesEgate	
one	part,	we	keep	the	bit-widths	in	
other	parts	a	constant	high	value	

Similarly,	we	observe	a	significant	
drop	of	the	error	when	the	SQRT	
bit-width	increases	from	8	to	10	

Similar	precision	thresholds	observed	in	both	syntheEc	and	field	results.	This	behavior	enables	an	
automaEc	tool	to	determine	the	minimum	precision	that	sEll	keeps	the	result	good	enough		

[H.Fu,	W.	Osborne,	R.	G.	Clapp,	O.	Pell,	AcceleraEng	Seismic	ComputaEons	[],	70th	EAGE	Conference,	Italy,	2008]		

10	

Floating-point bit-width exploration

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

2 4 6 8 10 12

Exponent Bit-width

D
iff

er
en

ce
 In

di
ca

to
r v

al
ue

s
of

 th
e

G
en

er
at

ed
 Im

ag
es

floating-point: 5-bit exponent floating-point: 6-bit exponent

‘true’ image: single-precision floating-point

We	use	the	Marmousi	syntheEc	
data	set	as	the	test	data,	and	
explore	different	combinaEons	of	
exponent	and	manEssa	bit-width		

A	precision	threshold	at	exponent	
width	of	6	bits:	
•  The	error	drops	significantly	when	

we	increase	the	exponent	width	
from	5	bits	to	6	bits	

•  The	image	also	turns	from	nearly	
random	noise	at	5	bits,	to	almost	
idenEcal	to	the	32-bit	image	at	6	bits		

[H.Fu,	W.	Osborne,	R.	G.	Clapp,	O.	Pell,	AcceleraEng	Seismic	ComputaEons	[],	70th	EAGE	Conference,	Italy,	2008]		

11	

Acceleration results

q  Based on exploration results, we use 12, 16, and 16-bit fixed-point
numbers for the SQRT, SINE and WMUL parts

q  Implemented on Maxeler Vectis DFE with 192 MULTs

q  The design consumes 28% of logic elements, 15% of FMEM,
10% of MULTs. Mapping 6 cores into the card (with additional effort)
would provide up to 40x of node-to-node acceleration.

6.9	3.77	ms	26.1	ms	216504	

6.3	0.84	ms	5.32	ms	43056	

DFE	soqware	
speedup	

processing	Eme	
size	of	data	set	

[H.Fu,	W.	Osborne,	R.	G.	Clapp,	O.	Pell,	AcceleraEng	Seismic	ComputaEons	[],	70th	EAGE	Conference,	Italy,	2008]		

12	

Tool for adapting number presentations

Profile

Fortran Code
Targeting an FPGA

Map to a Circuit Design:
arithmetic operation & function evaluation

Range Information
(max/min values)

Distribution Information

Circuit Design Description

Fortran Program for Seismic Processing

Fortran Code
Executing on Processors

Translate Cicuit Design Description into
Bit-Accurate Simulation Code

Value Simulator
with Reconfigurable Settings

Exploration with Different Configurations:
number representations, bit-width values, etc.

Final Design with Customized Number Representation

Manual Partition

•  ParEEon	the	program	into	soqware	and	
hardware	part	

•  Profile	the	variables	in	the	hardware	part	
•  Map	the	dataflow	part	to	the	DFE	
•  Explore	the	design	space	with	different	

precisions	
	

[H.Fu,	W.	Osborne,	R.	G.	Clapp,	O.	Pell,	AcceleraEng	Seismic	ComputaEons	[],	70th	EAGE	Conference,	Italy,	2008]		

13	

§  Equations: Shallow Water Equations (SWEs)

§  Atmospheric equations

​𝜕𝑄/𝜕𝑡 + ​1/Λ ​𝜕(Λ ​𝐹↑1 )/𝜕​𝑥↑1  + ​1/Λ ​𝜕(Λ ​𝐹↑1 )/𝜕​𝑥↑2  +𝑆=0

Example 2: Global Weather Simulation

[L. Gan, H. Fu, W. Luk, C. Yang, W. Xue, X. Huang, Y. Zhang, and G. Yang, Accelerating
solvers for global atmospheric equations through mixed-precision data flow engine, FPL2013]

14	

Global Weather Simulation, mesh
§ Cubed-sphere mesh

•  Mapping inscribed cube to the surface of the earth
§ Computational domain

•  Six patches covered with rectangular meshes

[L. Gan, H. Fu, W. Luk, C. Yang, W. Xue, X. Huang, Y. Zhang, and G. Yang, Accelerating
solvers for global atmospheric equations through mixed-precision data flow engine, FPL2013]

15	

Global Weather Simulation (cont)
§  13-point stencil

•  Spatially discretized with a cell-
centred finite volume method

•  Integrated with a second-order
accurate TVD Runge-Kutta method

§  Interp. Across patches
§  1-d linear interpolation

[L. Gan, H. Fu, W. Luk, C. Yang, W. Xue, X. Huang, Y. Zhang, and G. Yang, Accelerating
solvers for global atmospheric equations through mixed-precision data flow engine, FPL2013]

16	

Hybrid DFE-CPU implementation
halo

ha
lo

ha
lo

halo

For each stencil cycle
DFE side:
① Inner-part stencil

CPU side:
① Update halos
② Interpolate if

necessary
③ Outer-part

stencils
BARRIER:
CPU-DFE exchange

DFE Chip

CPU

Inner part

Outer part

[L. Gan, H. Fu, W. Luk, C. Yang, W. Xue, X. Huang, Y. Zhang, and G. Yang, Accelerating
solvers for global atmospheric equations through mixed-precision data flow engine, FPL2013]

17	

DFE-CPU Workflow

CPU

DFE

Halo
Updating Interpolation Outer-part stencil

One stencil cycle

Inner-part stencil

C2D
D2C

① ② ③ ④ ⑤
BARRIER

[L. Gan, H. Fu, W. Luk, C. Yang, W. Xue, X. Huang, Y. Zhang, and G. Yang, Accelerating
solvers for global atmospheric equations through mixed-precision data flow engine, FPL2013]

18	

Always double-precision needed?
§  Range analysis to track the absolute values of all variables

fixed-point		 fixed-point		

fixed-point		

reduced-precision

reduced-precision

[L. Gan, H. Fu, W. Luk, C. Yang, W. Xue, X. Huang, Y. Zhang, and G. Yang, Accelerating
solvers for global atmospheric equations through mixed-precision data flow engine, FPL2013]

19	

What about error vs area tradeoffs
§  Bit accurate simulations for different bit-width configurations.

[L. Gan, H. Fu, W. Luk, C. Yang, W. Xue, X. Huang, Y. Zhang, and G. Yang, Accelerating
solvers for global atmospheric equations through mixed-precision data flow engine, FPL2013]

20	

Accuracy validation

[Chao Yang, Wei Xue, Haohuan Fu, Lin Gan, et al. ‘A Peta-scalable [] Algorithm
for Global Atmospheric Simulations’, PPoPP’2013]

21	

And there is also performance gain

Platform Performance

Speedup

6-core CPU 4.66K 1
Tianhe-1A node 110.38K 23x
MaxWorkstation 468.1K 100x

1U MaxNode 1.54M 330x
14x

[Chao Yang, Wei Xue, Haohuan Fu, Lin Gan, et al. ‘A Peta-scalable [] Algorithm
for Global Atmospheric Simulations’, PPoPP’2013]

22	

Meshsize: 1024×1024×6
1U MPC-X MaxNode speedup over Tianhe node: 14 times

Meshsize: 1024×1024×6
1U MaxNode is 9 times more power efficient

Weather model -- power efficiency

Platform Efficiency

Power
Advantage

6-core CPU 20.71 1
Tianhe-1A node 306.6 14.8x
MaxWorkstation 2.52K 121.6x

1U MaxNode 3K 144.9x
9 x

24	

Example 3: Weather / climate models on DFEs

Which	one	is	be#er?	

Finer	grid	and	higher	precision	are	obviously	preferred	but	the	computaEonal	
requirements	will	increase	è	Power	usage	à	$$	

What	about	using	reduced	precision?	(15	bits	instead	of	64	double	precision	FP)		

[P.	Düben,	T.	Palmer,	Oxford,	OCCAM,	“Weather	and	climate	models	on	dataflow	engines,”	CeBIT,	2013]		

25	

Weather models precision comparison

[P.	Düben,	T.	Palmer,	Oxford,	OCCAM,	“Weather	and	climate	models	on	dataflow	engines,”	CeBIT,	2013]		

26	

What about 15 days of simulation?

Surface	pressure	aqer	15	days	of	simulaEon	for	the	double	precision	and	the	
reduced	precision	simulaEons	(quality	of	the	simulaEon	hardly	reduced)	

[P.	Düben,	T.	Palmer,	Oxford,	OCCAM,	“Weather	and	climate	models	on	dataflow	engines,”	CeBIT,	2013]		

•  Integer:	unsigned,	signed,	one’s/	two’s	complement	
•  FloaEng	Point:	single,	double	precision	(also	custom)	
•  Fixed	point:	(any	custom	radices	/	bitwidths)			
•  Logarithmic	number	representaEon	
•  Redundant	number	systems:	use	more	bits	

–  Signed-digit	representaEon	
–  Residue	number	systems	(modulo	arithmeEc)	
–  Decimal:	decimal	floaEng	point,	binary	coded	decimal	

•  Decimal:	decimal	floaEng	point,	binary	coded	decimal	
•  (any	more	exo4c	applica4on	specific	representa4on)	
•  StaEc	and	dynamic	adaptaEons	
•  OpenSPL	helps	to	express	these	

	

27	

More Advanced Number Representations

28	

Nicolas	Brisebarre,	Jean-Michel	Muller	and	Arnaud	Tisserand	
Sparse	Coefficient	Polynomial	ApproximaEons	for	Hardware	ImplementaEon,	
Asilomar	Conference,	2004.		

Advanced Optimisation for Number Representation
Minimise ‘1’s in Polynomial Coeffcients

•  Understand	your	data	requirements	
•  Know	what	fixed	or	floaEng	point	you	need	
•  Mind	rounding	
•  Different	presentaEons	have	their	costs	in	space!	

29	

Conclusions

1.  Write	a	MaxCompiler	kernel	that	takes	one	dfeFloat(8,24) input	stream	and	adds	it	
to	a	dfeFloat(11, 53)input	stream	to	produce	a	dfeFloat(11, 53) result.		

2.  What	will	be	the	result	of	trying	to	represent	X=232	and	Y=2-2	in	each	of	the	following	
number	types:	

3.  Construct	a	test	to	show	the	difference	between	rounding	modes	on	a	mulEplicaEon	
operaEon	of	two	dfeFixOffset(4, 4, SignMode.TWOSCOMPLEMENT)	numbers.	
Vary	the	number	of	fracEon	bits	–	what	is	the	impact	on	the	bias	difference	between	
TONEAR	and	TONEAREVEN	and	why?	

	

30	

Practice Exercises

dfeFixOffset(32, 0, SignMode.UNSIGNED)
dfeFixOffset(32, 0, SignMode.TWOSCOMPLEMENT)
dfeFixOffset(28, 4, SignMode.UNSIGNED)
dfeFixOffset(32, 4, SignMode.UNSIGNED)
dfeFloat(11, 53)
dfeFloat(8, 24)
dfeFloat(8, 32)
dfeFloat(8, 33)

