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•  Recap	from	Numerics	I	
•  DistribuEon	of	Variable	Values	
•  Examples	in	Seismic	Imaging	and	Weather	SimulaEon	
•  RepresentaEon	of	Variables	in	SpaEal	CompuEng	
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Lecture Overview 



•  OpenSPL	supports	floaEng	point	and	fixed	point/
integer	arithmeEc	
–  Depends	on	the	type	of	the	SCSVar	

•  Can	type	inputs,	outputs	and	constants	
•  Or	can	cast	SCSVars	from	one	type	to	another	
•  Types	are	Java	objects,	just	like	SCSVars,		
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Number Representation in OpenSPL 

// Create an input of type t 
SCSVar io.input(String name, SCSType t);  
 
// Create an SCSVar of type t with constant value 
SCSVar constant.var(SCSType t, double value); 
 
// Cast SCSVar y to type t 
SCSVar x = y.cast(SCSType t); 



•  FloaEng	point	numbers	with	base	2,	flexible	
exponent	and	manEssa	

•  CompaEble	with	IEEE	floaEng	point	except	does	not	
support	denormal	numbers	
–  In	spaEal	computers	choose	to	use	a	larger	exponent	

•  Examples:	
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OpenSPL Floating Point - scsFloat 

SCSType t = scsFloat(int exponent_bits, int mantissa_bits); 

Exponent	bits	 Man:ssa	bits	

IEEE	single	precision	 8	 24	

IEEE	double	precision	 11	 53	

DFE	opEmized	low	precision	 7	 17	

Including	the	sign	bit	

Why	scsFloat(7,17)…?	



•  Fixed	point	numbers	
•  Flexible	integer	and	fracEon	bits	
•  Flexible	sign	mode	

–  SignMode.UNSIGNED	or	SignMode.TWOSCOMPLEMENT	

•  Common	cases	have	useful	aliases	
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OpenSPL Fixed Point – scsFixOffset 

SCSType t = scsFixOffset(int num_bits, int offset, SignMode sm); 

Integer	bits	 Frac:on	bits	 Sign	mode	

scsInt(N)	 N	 0	 TWOSCOMPLEMENT	

scsUInt(N)	 N	 0	 UNSIGNED	

scsBool()	 1	 0	 UNSIGNED	



•  When	we	remove	bits	from	the	RHS	of	a	number	we	may	
want	to	perform	rounding.		
–  CasEng	/	type	conversion	
–  Inside	arithmeEc	operaEons	

•  Different	possibiliEes	
–  TRUNCATE:	throw	away	unwanted	bits	
–  TONEAR:	if	>=0.5,	round	up	(add	1)	
–  TONEAREVEN:	if	>0.5	round	up,	if	<0.5	round	down,	if	=0.5	then	
round	to	the	nearest	even	number	

•  Lots	of	less	common	alternaEves:	
–  Towards	zero,	towards	posiEve	infinity,	towards	negaEve	
infinity,	random	uniform,	uniform	with	distribuEon….		

•  Very	important	in	iteraEve	calculaEons	–	affects	
convergence	behaviour	
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Rounding 



•  FloaEng	point	arithmeEc	uses	TONEAREVEN	
•  Fixed	point	rounding	is	flexible,	controlled	by	the	
RoundingMode	
–  TRUNCATE,	TONEAR	and	TONEAREVEN	are	in-built	
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Rounding in MaxCompiler 

DFEVar z; 
... 
optimization.pushRoundingMode(RoundingMode.TRUNCATE); 
 
z = z.cast(smaller_type); 
 
optimization.popRoundingMode(); 
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Numerics II: Variables, Values and Distribution 

STEP	1:	For	all	variables	in	the	applicaEon	which	are	
moving	to	the	DFE,	record	all	values	of	each	parEcular	
variable.	
	
STEP	2:	look	at	histogram,	distribuEon,	average,	min,	
max,	variance,	etc.	
	
STEP	3:	pick	representaEon	to	match	range	and	
distribuEon	of	values	for	the	variable.	



Ex 1: Number Representations in Geoscience 
Case	Study:	Complex	ExponenEal	in	Downward	ConEnued	Based	MigraEon		
	

Double	Square	Root	(DSR)	condiEon	(the	complex	exponenEal	step)	with	frequency	w	
-	a	small	table	holds	the	vk/w	values		
-  next	an	approximate	value	of	the	square	root	is	looked	up		

The	design	consists	of	three	parts:		
•  square	root	calcula4on		
•  sine/cosine	evalua4on,	and		
•  complex	mul4plica4on.		
	The	above	three	parts	have	quite	different	range	of	variables	à	different	bit-widths	in	
each	part:	SQRT	(square	root),	SINE	(sine/cosine	evaluaEon)	and	WMUL	(wave-field	
complex	mulEplicaEon)	bit-width.	
	
[H.Fu,	W.	Osborne,	R.	G.	Clapp,	O.	Pell,	AcceleraEng	Seismic	ComputaEons	[],	70th	EAGE	Conference,	Italy,	2008]		
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Fixed-point bit-width exploration  

‘true’ image: single-precision floating-point
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Different	parts	are	explored	
separately,	i.e.,	when	we	invesEgate	
one	part,	we	keep	the	bit-widths	in	
other	parts	a	constant	high	value	

Similarly,	we	observe	a	significant	
drop	of	the	error	when	the	SQRT	
bit-width	increases	from	8	to	10	

Similar	precision	thresholds	observed	in	both	syntheEc	and	field	results.	This	behavior	enables	an	
automaEc	tool	to	determine	the	minimum	precision	that	sEll	keeps	the	result	good	enough		

[H.Fu,	W.	Osborne,	R.	G.	Clapp,	O.	Pell,	AcceleraEng	Seismic	ComputaEons	[],	70th	EAGE	Conference,	Italy,	2008]		
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Floating-point bit-width exploration  
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floating-point: 5-bit exponent floating-point: 6-bit exponent 

‘true’ image: single-precision floating-point

We	use	the	Marmousi	syntheEc	
data	set	as	the	test	data,	and	
explore	different	combinaEons	of	
exponent	and	manEssa	bit-width		

A	precision	threshold	at	exponent	
width	of	6	bits:	
•  The	error	drops	significantly	when	

we	increase	the	exponent	width	
from	5	bits	to	6	bits	

•  The	image	also	turns	from	nearly	
random	noise	at	5	bits,	to	almost	
idenEcal	to	the	32-bit	image	at	6	bits		

[H.Fu,	W.	Osborne,	R.	G.	Clapp,	O.	Pell,	AcceleraEng	Seismic	ComputaEons	[],	70th	EAGE	Conference,	Italy,	2008]		
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Acceleration results 
 

q  Based on exploration results, we use 12, 16, and 16-bit fixed-point 
numbers for the SQRT, SINE and WMUL parts 

q  Implemented on Maxeler Vectis DFE with 192 MULTs 

q  The design consumes 28% of logic elements, 15% of FMEM,  
10% of MULTs. Mapping 6 cores into the card (with additional effort)  
would provide up to 40x of node-to-node acceleration.   

6.9	3.77	ms	26.1	ms	216504	

6.3	0.84	ms	5.32	ms	43056	

DFE	soqware	
speedup	

processing	Eme	
size	of	data	set	

[H.Fu,	W.	Osborne,	R.	G.	Clapp,	O.	Pell,	AcceleraEng	Seismic	ComputaEons	[],	70th	EAGE	Conference,	Italy,	2008]		
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Tool for adapting number presentations  

Profile

Fortran Code 
Targeting an FPGA

Map to a Circuit Design:
arithmetic operation & function evaluation

Range  Information 
(max/min values)

Distribution Information

Circuit Design Description

Fortran Program for Seismic Processing

Fortran Code 
Executing on Processors

Translate Cicuit Design Description into 
Bit-Accurate Simulation Code

Value Simulator 
with Reconfigurable Settings

Exploration with Different Configurations:
number representations, bit-width values, etc.

Final Design with Customized Number Representation

Manual Partition

•  ParEEon	the	program	into	soqware	and	
hardware	part	

•  Profile	the	variables	in	the	hardware	part	
•  Map	the	dataflow	part	to	the	DFE	
•  Explore	the	design	space	with	different	

precisions	
	

[H.Fu,	W.	Osborne,	R.	G.	Clapp,	O.	Pell,	AcceleraEng	Seismic	ComputaEons	[],	70th	EAGE	Conference,	Italy,	2008]		
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§  Equations: Shallow Water Equations (SWEs) 

§  Atmospheric equations 

​𝜕𝑄/𝜕𝑡 + ​1/Λ ​𝜕(Λ ​𝐹↑1 )/𝜕​𝑥↑1  + ​1/Λ ​𝜕(Λ ​𝐹↑1 )/𝜕​𝑥↑2  +𝑆=0 

Example 2: Global Weather Simulation 

[L. Gan, H. Fu, W. Luk, C. Yang, W. Xue, X. Huang, Y. Zhang, and G. Yang, Accelerating 
solvers for global atmospheric equations through mixed-precision data flow engine, FPL2013] 
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Global Weather Simulation, mesh 
§ Cubed-sphere mesh 

•  Mapping inscribed cube to the surface of the earth 
§ Computational domain 

•  Six patches covered with rectangular meshes 

[L. Gan, H. Fu, W. Luk, C. Yang, W. Xue, X. Huang, Y. Zhang, and G. Yang, Accelerating 
solvers for global atmospheric equations through mixed-precision data flow engine, FPL2013] 
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Global Weather Simulation (cont) 
§  13-point stencil 

•  Spatially discretized with a cell-
centred finite volume method 

•  Integrated with a second-order 
accurate TVD Runge-Kutta method  

§  Interp. Across patches 
§  1-d linear interpolation    

[L. Gan, H. Fu, W. Luk, C. Yang, W. Xue, X. Huang, Y. Zhang, and G. Yang, Accelerating 
solvers for global atmospheric equations through mixed-precision data flow engine, FPL2013] 
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Hybrid DFE-CPU implementation 
halo 

ha
lo

 

ha
lo

 

halo 

For each stencil cycle 
DFE side: 
① Inner-part stencil 

CPU side: 
① Update halos 
② Interpolate if 

necessary 
③ Outer-part 

stencils 
BARRIER: 
CPU-DFE exchange   

DFE Chip 

CPU 

Inner part 

Outer part 

[L. Gan, H. Fu, W. Luk, C. Yang, W. Xue, X. Huang, Y. Zhang, and G. Yang, Accelerating 
solvers for global atmospheric equations through mixed-precision data flow engine, FPL2013] 
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DFE-CPU Workflow 

CPU 

DFE 

Halo  
Updating Interpolation Outer-part stencil 

One stencil cycle 

Inner-part stencil 

C2D 
D2C 

① ② ③ ④ ⑤ 
BARRIER 

[L. Gan, H. Fu, W. Luk, C. Yang, W. Xue, X. Huang, Y. Zhang, and G. Yang, Accelerating 
solvers for global atmospheric equations through mixed-precision data flow engine, FPL2013] 
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Always double-precision needed? 
§  Range analysis to track the absolute values of all variables    

fixed-point		 fixed-point		

fixed-point		

reduced-precision 

reduced-precision 

[L. Gan, H. Fu, W. Luk, C. Yang, W. Xue, X. Huang, Y. Zhang, and G. Yang, Accelerating 
solvers for global atmospheric equations through mixed-precision data flow engine, FPL2013] 
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What about error vs area tradeoffs 
§  Bit accurate simulations for different bit-width configurations.  

[L. Gan, H. Fu, W. Luk, C. Yang, W. Xue, X. Huang, Y. Zhang, and G. Yang, Accelerating 
solvers for global atmospheric equations through mixed-precision data flow engine, FPL2013] 
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Accuracy validation 

[Chao Yang, Wei Xue, Haohuan Fu, Lin Gan, et al.  ‘A Peta-scalable [] Algorithm 
for Global Atmospheric Simulations’, PPoPP’2013] 

21	



And there is also performance gain 

Platform Performance 
 

Speedup 

6-core CPU 4.66K 1 
Tianhe-1A node 110.38K 23x 
MaxWorkstation 468.1K 100x 

1U MaxNode 1.54M 330x 
14x 

[Chao Yang, Wei Xue, Haohuan Fu, Lin Gan, et al.  ‘A Peta-scalable [] Algorithm 
for Global Atmospheric Simulations’, PPoPP’2013] 
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Meshsize: 1024×1024×6 
1U MPC-X MaxNode speedup over Tianhe node: 14 times 



Meshsize: 1024×1024×6 
1U MaxNode is 9 times more power efficient 

Weather model -- power efficiency  

Platform Efficiency 
 

Power 
Advantage 

6-core CPU 20.71 1 
Tianhe-1A node 306.6 14.8x 
MaxWorkstation 2.52K 121.6x 

1U MaxNode 3K 144.9x 
9 x 
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Example 3: Weather / climate models on DFEs 

Which	one	is	be#er?	

Finer	grid	and	higher	precision	are	obviously	preferred	but	the	computaEonal	
requirements	will	increase	è	Power	usage	à	$$	

What	about	using	reduced	precision?	(15	bits	instead	of	64	double	precision	FP)		

[P.	Düben,	T.	Palmer,	Oxford,	OCCAM,	“Weather	and	climate	models	on	dataflow	engines,”	CeBIT,	2013]		
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Weather models precision comparison 

[P.	Düben,	T.	Palmer,	Oxford,	OCCAM,	“Weather	and	climate	models	on	dataflow	engines,”	CeBIT,	2013]		



26	

What about 15 days of simulation? 

Surface	pressure	aqer	15	days	of	simulaEon	for	the	double	precision	and	the	
reduced	precision	simulaEons	(quality	of	the	simulaEon	hardly	reduced)	

[P.	Düben,	T.	Palmer,	Oxford,	OCCAM,	“Weather	and	climate	models	on	dataflow	engines,”	CeBIT,	2013]		



•  Integer:	unsigned,	signed,	one’s/	two’s	complement	
•  FloaEng	Point:	single,	double	precision	(also	custom)	
•  Fixed	point:	(any	custom	radices	/	bitwidths)			
•  Logarithmic	number	representaEon	
•  Redundant	number	systems:	use	more	bits	

–  Signed-digit	representaEon	
–  Residue	number	systems	(modulo	arithmeEc)	
–  Decimal:	decimal	floaEng	point,	binary	coded	decimal	

•  Decimal:	decimal	floaEng	point,	binary	coded	decimal	
•  (any	more	exo4c	applica4on	specific	representa4on)	
•  StaEc	and	dynamic	adaptaEons	
•  OpenSPL	helps	to	express	these	
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More Advanced Number Representations 
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Nicolas	Brisebarre,	Jean-Michel	Muller	and	Arnaud	Tisserand	
Sparse	Coefficient	Polynomial	ApproximaEons	for	Hardware	ImplementaEon,	
Asilomar	Conference,	2004.		

Advanced Optimisation for Number Representation 
Minimise ‘1’s in Polynomial Coeffcients 



•  Understand	your	data	requirements	
•  Know	what	fixed	or	floaEng	point	you	need	
•  Mind	rounding	
•  Different	presentaEons	have	their	costs	in	space!	
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Conclusions 



1.  Write	a	MaxCompiler	kernel	that	takes	one	dfeFloat(8,24) input	stream	and	adds	it	
to	a	dfeFloat(11, 53)input	stream	to	produce	a	dfeFloat(11, 53) result.		

2.  What	will	be	the	result	of	trying	to	represent	X=232	and	Y=2-2	in	each	of	the	following	
number	types:	

3.  Construct	a	test	to	show	the	difference	between	rounding	modes	on	a	mulEplicaEon	
operaEon	of	two	dfeFixOffset(4, 4, SignMode.TWOSCOMPLEMENT)	numbers.	
Vary	the	number	of	fracEon	bits	–	what	is	the	impact	on	the	bias	difference	between	
TONEAR	and	TONEAREVEN	and	why?	
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Practice Exercises 

dfeFixOffset(32, 0, SignMode.UNSIGNED) 
dfeFixOffset(32, 0, SignMode.TWOSCOMPLEMENT) 
dfeFixOffset(28, 4, SignMode.UNSIGNED) 
dfeFixOffset(32, 4, SignMode.UNSIGNED) 
dfeFloat(11, 53) 
dfeFloat(8, 24) 
dfeFloat(8, 32) 
dfeFloat(8, 33) 


