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Lecture Overview

 Recap from Numerics |
* Distribution of Variable Values
 Examples in Seismic Imaging and Weather Simulation

 Representation of Variables in Spatial Computing




Number Representation in OpenSPL

* OpenSPL supports floating point and fixed point/
integer arithmetic

— Depends on the type of the SCSVar
e Can type inputs, outputs and constants
e Or can cast SCSVars from one type to another
 Types are Java objects, just like SCSVars,

// Create an input of type ¢t
SCSVar io.input(String name, SCSType t);

// Create an SCSVar of type t with constant value
SCSVar constant.var (SCSType t, double value);

// Cast SCSVar y to type t
SCSVar x = y.cast(SCSType t);




OpenSPL Floating Point - scsFloat

* Floating point numbers with base 2, flexible
exponent and mantissa

 Compatible with IEEE floating point except does not
support denormal numbers

— In spatial computers choose to use a larger exponent

SCSType t = scsFloat(int exponent bits, int mantissa bits);

 Examples:
| Exponentbits| _ Mantissa bits
IEEE single precision 8 24
IEEE double precision 11 53
DFE optimized low precision 7 17

Why scsFloat(7,17)...?




OpenSPL Fixed Point — scsFixOffset

* Fixed point numbers
* Flexible integer and fraction bits

* Flexible sign mode
— SignMode.UNSIGNED or SignMode. TWOSCOMPLEMENT

SCSType t = scsFixOffset(int num bits, int offset, SignMode sm) ;

e Common cases have useful aliases

| Integerbits| _Fraction bits

scsint(N) TWOSCOMPLEMENT
scsUInt(N) N 0 UNSIGNED
scsBool() 1 0 UNSIGNED




Rounding

When we remove bits from the RHS of a number we may
want to perform rounding.

— Casting / type conversion

— Inside arithmetic operations
Different possibilities

— TRUNCATE: throw away unwanted bits

— TONEAR: if >=0.5, round up (add 1)

— TONEAREVEN: if >0.5 round up, if <0.5 round down, if =0.5 then
round to the nearest even number

Lots of less common alternatives:

— Towards zero, towards positive infinity, towards negative
infinity, random uniform, uniform with distribution....

Very important in iterative calculations — affects
convergence behaviour




Rounding in MaxCompiler

* Floating point arithmetic uses TONEAREVEN

* Fixed point rounding is flexible, controlled by the
RoundingMode
— TRUNCATE, TONEAR and TONEAREVEN are in-built

DFEVar z;

optimization.pushRoundingMode (RoundingMode.TRUNCATE) ;

z = z.cast(smaller type);

optimization.popRoundingMode () ;




Numerics Il: Variables, Values and Distribution

STEP 1: For all variables in the application which are
moving to the DFE, record all values of each particular
variable.

STEP 2: look at histogram, distribution, average, min,
max, variance, etc.

STEP 3: pick representation to match range and
distribution of values for the variable.




Ex 1: Number Representations in Geoscience

Case Study: Complex Exponential in Downward Continued Based Migration

) vk vk
U(w,ks,kg,z+Az)=exp[—zwv(1’1——”+ 1-—)]-U(w,k,,k,,2)
w w

Double Square Root (DSR) condition (the complex exponential step) with frequency w
- a small table holds the vk/w values
- next an approximate value of the square root is looked up

The design consists of three parts:
e square root calculation

* sine/cosine evaluation, and

* complex multiplication.

The above three parts have quite different range of variables = different bit-widths in
each part: SQRT (square root), SINE (sine/cosine evaluation) and WMUL (wave-field

complex multiplication) bit-width.

[H.Fu, W. Osborne, R. G. Clapp, O. Pell, Accelerating Seismic Computations [], 70th EAGE Conference, Italy, 2008]




Difference Indicator Values
of the Generated Images

Fixed-point bit-width exploration
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Different parts are explored
separately, i.e., when we investigate
one part, we keep the bit-widths in
other parts a constant high value
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Similar precision thresholds observed in both synthetic and field results. This behavior enables an
automatic tool to determine the minimum precision that still keeps the result good enough




Floating-point bit-width exploration

floating-point: 5-bit exponent floating-point: 6-bit exponent

2000 3000 4000 5000 6000 7000 8000 2000 3000 4000 5000 6000 7000 8000

We use the Marmousi synthetic
data set as the test data, and
explore different combinations of
exponent and mantissa bit-width
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[H.Fu, W. Osborne, R. G. Clapp, O. Pell, Accelerating Seismic Computations [], 70th EAGE Conference, Italy, 2008]




Acceleration results

O Based on exploration results, we use 12, 16, and 16-bit fixed-point
numbers for the SQRT, SINE and WMUL parts

processing time
size of data set speedup
software DFE
43056 5.32 ms 0.84 ms 6.3
216504 26.1 ms 3.77 ms 6.9

U Implemented on Maxeler Vectis DFE with 192 MULTs

O The design consumes 28% of logic elements, 15% of FMEM,
10% of MULTs. Mapping 6 cores into the card (with additional effort)
would provide up to 40x of node-to-node acceleration.

[H.Fu, W. Osborne, R. G. Clapp, O. Pell, Accelerating Seismic Computations [], 70th EAGE Conference, Italy, 2008]




Tool for adapting number presentations

Partition the program into software and
hardware part

Profile the variables in the hardware part
Map the dataflow part to the DFE
Explore the design space with different
precisions

Fortran Program for Seismic Processing

|

Manual Partition

Fortran Code Fortran Code

Executing on Processors

Profile

A\ 4 A

Range Information
(max/min values)

Yy Distribution Information

Map to a Circuit Design:
arithmetic operation & function evaluation

i Circuit Design Description

Bit-Accurate Simulation Code

Translate Cicuit Design Description into

A 4

Value Simulator
with Reconfigurable Settings

Exploration with Different Configurations:
number representations, bit-width values, etc.

!

Final Design with Customized Number Representation

[H.Fu, W. Osborne, R. G. Clapp, O. Pell, Accelerating Seismic Computations [], 70th EAGE Conference, Italy, 2008]




Example 2: Global Weather Simulation

= Atmospheric equations S =
Navier-Stokes Deep
Euler
Boussinesq
. 2 Hydrostatic
AN (S
RN T, Shallow

= Equations: Shallow Water Equations (SWESs)

00/t +1 /A A(AFT1) /xT +1/A d(AFTL) /3xT2 +5=0

[L. Gan, H. Fu, W. Luk, C. Yang, W. Xue, X. Huang, Y. Zhang, and G. Yang, Accelerating
solvers for global atmospheric equations through mixed-precision data flow engine, FPL2013]




Global Weather Simulation, mesh
= Cubed-sphere mesh

« Mapping inscribed cube to the surface of the earth
= Computational domain

« Six patches covered with rectangular meshes
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[L. Gan, H. Fu, W. Luk, C. Yang, W. Xue, X. Huang, Y. Zhang, and G. Yang, Accelerating
solvers for global atmospheric equations through mixed-precision data flow engine, FPL2013]
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Global Weather Simulation (cont)

= 13-point stencil * |Interp. Across patches
= 1-d linear interpolation

@

o0

» Spatially discretized with a cell- . - @
centred finite volume method

+ Integrated with a second-order \ .
accurate TVD Runge-Kutta method &

<

[L. Gan, H. Fu, W. Luk, C. Yang, W. Xue, X. Huang, Y. Zhang, and é.\Yang, Accelerating
solvers for global atmospheric equations through mixed-precision data flow engine, FP




Hybrid DFE- CPU Implementation

/For each stencil cycle).
DFE side: ;
(DInner-part stencil |
CPU side: ’
(DUpdate halos

2lInterpolate if
necessary

(3)Outer-part
stencils

BARRIER: 1 3

[L. Gan, H. Fu, W. Luk, C. Yang, W. Xue, X. Huang, Y. Zhang, and G. Yang, Accelerating

solvers for global atmospheric equations through mixed-precision data flow eniine| FPii“i‘.




DFE-CPU Workflow

< One stencil cycle >
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CPU Updating

DFE Inner-part stencill
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[L. Gan, H. Fu, W. Luk, C. Yang, W. Xue, X. Huang, Y. Zhang, and G. Yang, Accelerating
solvers for global atmospheric equations through mixed-precision data flow engine, FPL2013]




Always double-precision needed?

= Range analysis to track the absolute values of all variables

fixed-point fixed-point — N
- sqrgrav -

_h — T regrav stay
-20) X0 hy alOh qlOba fixed-point -~ -

1 @ |
_eol reduced-precision |
tm

_80 reduced-precision

log2|X]|

Variable X

[L. Gan, H. Fu, W. Luk, C. Yang, W. Xue, X. Huang, Y. Zhang, and G. Yang, Accelerating
solvers for global atmospheric equations through mixed-precision data flow engine, FPL2013




What about error vs area tradeoffs

» Bit accurate simulations for different bit-width configurations.
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[L. Gan, H. Fu, W. Luk, C. Yang, W. Xue, X. Huang, Y. Zhang, and G. Yang, Accelerating
solvers for global atmospheric equations through mixed-precision data flow engine, FPL2013




Accuracy validation

Figure 15. Surface level distribution of the atmosphere at day
15 in the isolated mountain test. Results are obtained on a
10,240 10,240 6 cubed-sphere mesh using 1,536 nodes of the
Tianhe-1A. The conical mountain is outlined by the dotted circle
in the fieure.

Figure 16. Surface level distribution of the atmosphere at day 15 in
the real-topography test. We compare results at a 40-km resolution
(upper panel) and a 1-km resolution (lower panel).

[Chao Yang, Wei Xue, Haohuan Fu, Lin Gan, et al. ‘A Peta-scalable [] Algorithm
for Global Atmospheric Simulations’, PPoPP’2013]
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And there is also performance gain

Platform Performance Speedup
6-core CPU 4.66K 1
Tianhe-1A node 110.38K 23X
MaxWorkstation 468.1K 100x
1U MaxNode 1.54M
14x

Meshsize: 1024x1024x6
1U MPC-X MaxNode speedup over Tianhe node: 14 times

[Chao Yang, Wei Xue, Haohuan Fu, Lin Gan, et al. ‘A Peta-scalable [] Algorithm

for Global Atmospheric Simulations’, PPoPP’2013] =



Weather model -- power efficiency

Platform Efficiency Power
Advantage
6-core CPU 20.71 1
Tianhe-1A node 306.6 (14.8x >_<-
MaxWorkstation 2.52K 121.6x
1U MaxNode 3K
9 x

Meshsize: 1024x1024x6
1U MaxNode is 9 times more power efficient

Imperial College gg»~ = &
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Example 3: Weather / climate models on DFEs
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Finer grid and higher precision are obviously preferred but the computational
requirements will increase =» Power usage = $S

What about using reduced precision? (15 bits instead of 64 double precision FP)

LTI T I T T A T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
We use only 15 bits for 98% of the computation:
T T T

[P. Diben, T. Palmer, Oxford, OCCAM, “Weather and climate models on dataflow engines,” CeBIT, 2013]
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Weather models precision comparison

40
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[P. Diiben, T. Palmer, Oxford, OCCAM, “Weather and climate models on dataflow engines,” CeBIT, 2013]
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What about 15 days of simulation”?

64 bit double precision 15 bit reduced precision

Longitude NI T 17 [ [ [ Do

97500 98500 99500 100500 101500
[Pa]

Surface pressure after 15 days of simulation for the double precision and the
reduced precision simulations (quality of the simulation hardly reduced)
[P. Diiben, T. Palmer, Oxford, OCCAM, “Weather and climate models on dataflow engines,” CeBIT, 2013]




More Advanced Number Representations

* |Integer: unsigned, signed, one’s/ two’s complement
* Floating Point: single, double precision (also custom)
* Fixed point: (any custom radices / bitwidths)

e Logarithmic number representation

 Redundant number systems: use more bits
— Signed-digit representation
— Residue number systems (modulo arithmetic)
— Decimal: decimal floating point, binary coded decimal

* Decimal: decimal floating point, binary coded decimal
* (any more exotic application specific representation)

e Static and dynamic adaptations

* OpenSPL helps to express these




Advanced Optimisation for Number Representation
Minimise ‘1’s in Polynomial Coeffcients

m;
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Fig. 2. Target format for cos function. Fig. 3. Target format for sin function. Fig. 4. Target format for exp function.

Nicolas Brisebarre, Jean-Michel Muller and Arnaud Tisserand
Sparse Coefficient Polynomial Approximations for Hardware Implementation,

Asilomar Conference, 2004.




Conclusions

* Understand your data requirements
 Know what fixed or floating point you need
* Mind rounding

e Different presentations have their costs in space!




Practice Exercises

1. Write a MaxCompiler kernel that takes one dfeFloat (8, 24) input stream and adds it
toadfeFloat (11, 53)inputstream to produceadfeFloat (11, 53) result.

2. What will be the result of trying to represent X=232 and Y=2"? in each of the following
number types:

dfeFixOffset (32, 0, SignMode.UNSIGNED)

dfeFixOffset (32, 0, SignMode.TWOSCOMPLEMENT)
dfeFixOffset (28, 4, SignMode.UNSIGNED)

dfeFixOffset (32, 4, SignMode.UNSIGNED)

dfeFloat (11, 53)

dfeFloat (8, 24)

dfeFloat (8, 32)

dfeFloat (8, 33)

3. Construct a test to show the difference between rounding modes on a multiplication

operation of two dfeFixOffset (4, 4, SignMode.TWOSCOMPLEMENT) numbers.
Vary the number of fraction bits — what is the impact on the bias difference between
TONEAR and TONEAREVEN and why?




