
		

CO405H
Computing in Space with OpenSPL

Topic 13: The third dimension of Comp. in Space

Oskar	Mencer	 	 									Georgi	Gaydadjiev	
	

					Department	of	Compu:ng	
							Imperial	College	London		

	
h#p://www.doc.ic.ac.uk/~oskar/ 		
h#p://www.doc.ic.ac.uk/~georgig/	
	
CO405H	course	page:	 	 	h#p://cc.doc.ic.ac.uk/openspl16/		
WebIDE:	 	 	 	h#p://openspl.doc.ic.ac.uk		
OpenSPL	consor:um	page:	 	h#p://www.openspl.org	
	
o.mencer@imperial.ac.uk	 	g.gaydadjiev@imperial.ac.uk	

Why Computing in Space?

Applications:
 Long Int. Multiplication
 RSA Cryptography
 Dynamic Programming
 Laplace Heat Equation
 Viterbi Decoder
 Sound Synthesis
 Neural Networks

•  Reducing	costs	
•  Dealing	with	insane	amounts	of	data	(Big	Data)	
•  Increasing	speed	(latency	and	throughput)	
•  SupporGng	growth	at	a	very	large	scale	
•  Increasing	compeGGve	advantage	
•  Doing	something	that	could	not	be	done	before…	

•  Cloud	CompuGng!!!	
	
“In	the	cloud,	nobody	knows	that	you’re	a	DFE…”	

What is Computing in 3D Space

Applications:
 Long Int. Multiplication
 RSA Cryptography
 Dynamic Programming
 Laplace Heat Equation
 Viterbi Decoder
 Sound Synthesis
 Neural Networks

•  First,	fix	the	size	of	the	computer	in	3D	space	
•  Then	program	a	CPU	machine	and	a	SpaGal	Computer	of	
the	same	size,	and	see	the	gain	from	compuGng	in	space	

•  Find	a	large	enough	dataset	to	fill	the	DFE	machine	

Computing in Space (1992)
Digital Equipment Corporation DEC PeRLe-1

Applications:
 Long Int. Multiplication
 RSA Cryptography
 Dynamic Programming
 Laplace Heat Equation
 Viterbi Decoder
 Sound Synthesis
 Neural Networks

Stereo Vision
Hough Transform
High Energy Physics
Image Aquisition
Wireless LAN testbed

5	

MPC-X 2012 Scalable Dataflow Computing

MPC-X	Architecture	
• 	Combine	CPU	and	DFE	nodes	to	handle		
			unique	compute	challenges	efficiently	
• 	Use	low-latency,	high	bandwidth	Infiniband		
			fabric	for	expandable	compute	
• 	MulG-Scale	Cluster	opGmizaGon	balances		
			resources	at	cluster,	rack,	node	and	DFE	level	

MPC-X	Node	
• 	112GB/s	Infiniband	ConnecGvity	provides	
excepGonal		zero-copy	bandwidth	and	latency	
• 	768GB	DRAM	to	contain	massive	datasets	
• 	2GB/s	MaxRing	for	intra-node	
communicaGon	
• 	PSU	redundancy	and	‘lights	out’	
management	

1U	form	“pizza	box”	form	factor	

OpenSPL enabled optimizations

Mul:ple	scales	of	compu:ng	 Important	features	for	op:miza:on	

complete	system	level	 ⇒ balance	compute,	storage	and	IO	

parallel	node	level	 ⇒ maximize	uGlizaGon	of	compute	and	
interconnect	

microarchitecture	level	 ⇒ minimize	data	movement		

arithmeGc	level	 ⇒ tradeoff	range,	precision	and	accuracy	
=	discreGze	in	Gme,	space	and	value	

bit	level	 ⇒ encode	and	add	redundancy	
transistor	level	 =>	create	the	illusion	of	‘0’	and	‘1’	

And	more,	e.g.,	trade	CommunicaGon	(Time)	for	ComputaGon	(Space)	

6	

7	

3D Spatial perspective on OPEX:
Measuring Rack Power at the Socket

•  Measurement	includes:	
–  Cooling,	A/C	
–  Power	supplies	
–  Rack	level	power	distribuGon	
–  Networking	
–  Storage	
– Memory	Chips	
–  Compute	Chips	(CPUs	and	DFEs)	
–  all	the	other	stuff	inside	a	rack	that	needs	electricity	

•  Power	per	rack	is	nice	but	really	we	want	Useful		
Computa-ons	per	Wa2	of	rack	power	consumpGon	

8	

1U definition

A	rack	holds	compuGng	units	of	1U,	2U,	3U,	4U	
	
1U	=	19inch	×	36.5inch	×	1.75inch	
2U	=	19inch	×	36.5inch	×	3.5inch	
	
Each	compute	unit	has	it’s	own	power	supply	
	
1U	CPU	servers	can	have	1-2	mother	boards		
each	with	mulGple	CPU	chips		
each	with	mulGple	cores.	
	
1U	DFE	boxes	can	have	8	DFEs	or		
[6	DFEs	+	2	CPU	chips],	connected	via	Infiniband	
	
Each	1U	DFE	box	has	384GB	of	LMEM		
and	48	independent	memory	channels.	
	

9	

Spatial perspective on OPEX:
Measuring the 3D Space for a program
1.  Need	a	good	reference	point:		

Running	mulGthreaded	programs	on	mulGple	cores,	how	many	
cores	are	there	in	a	1U	box?	How	many	DFEs?		

2.	How	many	SysAdmins	do	you	need	per	rack?	
3.	Do	you	measure	computaGons	per	rack	or	TeraBytes	
processed	per	rack	per	second?	
Evaluate	performance	by	comparing	1U	to	1U!	

10	

?	

11	

Imaging Platform Example: Weather

1U	CPU	Node	
Wall	Clock	Time:	2	hours	

1U	Dataflow	Node	
less	than	2	minutes	

Problem	size:		(Longitude)	13,600	Km	x		(LaGtude)	3330	Km	
SimulaGon	of	baroclinic	instability	aver	500	Gme	steps.	

	
AcceleraGon	of	a	Meteorological	Limited	Area	Model	with	Dataflow	Engines,	D.	Oriato,		
S.	Tilbury	(Maxeler),	M.	Marrocu,	G.	Pusceddu	(CRS4),	SAAHPC	Conference,	May	2012.			

12	

Economics of Computing Space
you got to have a lot of data….

To
ta
l	C
os
t	

Number	of	Runs	

Total		
Cost	
ReducGon	

Sovware		
PorGng	
Cost	

Computing in Space

Total Cost of Ownership = f(HW, SW, maintenance, power, real estate,…)

PosiGon	of	break-even	
point	depends	on	
required	programming	
effort	

Total Cost of Ownership = CAPEX + OPEX
Capital Expenditure + Operating Expenditure

50x	
	

•  50x	Speed-up	per	1U	server	node	
•  32	MPC-X	Node	SoluGon	
•  Equivalent	to	1600	CPU-only	Nodes	
•  $3.2m	OperaGonal	cost	savings	over	

3	years	

	
20x	
	

•  20x	Speed-up	per	1U	server	node	
•  50	MPC-X	Node	SoluGon	
•  Equivalent	to	1000	CPU-only	Nodes	
•  $1.7m	OperaGonal	cost	savings	over	

3	years	

30x	
	

•  30x	Speed-up	per	1U	server	node	
•  40	MPC-X	Node	SoluGon	
•  Equivalent	to	1200	CPU-only	Nodes	
•  $1.8m	OperaGonal	cost	savings	over	

3	years	

	
40x	
	

•  40x	Speed-up	per	1U	server	node	
•  32	MPC-X	Node	SoluGon	
•  Equivalent	to	1280	CPU-only	Nodes	
•  $2.6m	OperaGonal	cost	savings	over	

3	years	

14	

Example of Economics of Computing in Space

15	

On	the	plus	side:	
	
1.  Budget	for	buying	a	new	machine	is	$2.8M	
2.  An	x86	CPU-only	machine	for	$2.8M	has	$1.3M	annual	electricity	cost	
3.  A	DFE	machine	for	$2.8M	creates	$27K	annual	electricity	cost	

Given	that	the	purchase	budget	is	fixed,	the	decision	to	use	DFEs	
saves	$1.27M	per	year.	
	
AND	the	DFE	machine	is	a	lot	faster	than	the	CPU	machine	with	the		
same	purchase	price.		
	
So	by	using	DFEs,	it	is	possible	to	get	the	advantage	of	saving	operaGonal	
costs	AND	at	the	same	Gme	get	a	machine	that	is	a	lot	faster.	
	
On	the	minus	side:	
	
Have	to	port	applicaGons	to	DFEs,	and	operaGonal	savings	might	not	be	a#racGve	to	everyone…	
	
	

•  Resource	UGlizaGon	
–  CPU	bo#leneck	may	mean	no	work	for	DFE	
–  Direct	impact	on	<X>/performance	metrics	

•  Varying	workloads	
–  Some	applicaGons	may	need	many	DFEs,	others	few	or	none	

•  Context	switching	
–  DFEs	are	configured	for	a	parGcular	task	
–  Context	switching	is	expensive	and	should	be	minimized	

16	

System management challenges

Enable	system	to	adapt	to	runGme	workload	

•  ClusterMap	job	
distribuGon	for		
DFE	clusters	

•  OpGmized	for	
distribuGng	large	
numbers	of	small	
compute	jobs	with	
complex	
dependencies	

17	

DFE Cluster Management

MaxelerOS

D
is

tri
bu

tio
n

Sy
st

em
Head Node Running
Distribution System

H
ig

h
Le

ve
l J

ob
 S

cr
ip

t
an

d
D

ep
en

da
nc

y
G

ra
ph

Compute Nodes Running Tasks
(DFE Configuration Matches Task)

1U
 M

PC
-X

 N
od

e
8

 D
FE

s,
 3

84
G

B
 R

A
M

Jo
b1

Jo
b2

Jo
b3

C
P

U
 C

om
pu

te
 N

od
e

(1
6

co
re

s)

DFE

DFE

DFE

DFE

DFE

DFE

DFE

DFE

C
P

U
 C

om
pu

te
 N

od
e

(1
6

co
re

s)

1U
 M

P
C

-X
 N

od
e

8
 D

FE
s,

 3
84

G
B

 R
A

M

DFE

DFE

DFE

DFE

DFE

DFE

DFE

DFE

1U
 M

PC
-X

 N
od

e
8

 D
FE

s,
 3

84
G

B
 R

A
M

DFE

DFE

DFE

DFE

DFE

DFE

DFE

DFE

In
fin

ib
an

d
N

on
-b

lo
ck

in
g

In
te

rc
on

ne
ct

C
P

U
 C

om
pu

te
 N

od
e

16
 c

or
es

)

•  OpGmized	to	balance	
resources	for	parGcular	
applicaGon	challenges	

•  Flexible	at	design-Gme	and	
at	run-Gme	

18	

Rack-level optimization

48U	seismic	
imaging	cluster	

42U	in-memory	
analyGcs	cluster	

•  Simple	Live	CPU	Interface:	
MaxCompiler-generated	+	fixed	sovware	funcGons	for	interacGng	with	DFEs	

//include auto-generated AVG_* prototypes
#include “AVG.h”

// Load .max-file onto any (“*”) available engine
max_file_t *avg_maxfile = AVG_init();
max_engine_t *eng1 = max_load(maxfile, “*”);

// Set-up and execute an “action”
float *x = <relevant	data>, *y = <relevant	data>;
AVG_action_t a;
a.instream_x = x;
a.outstream_y = y;
a.total_items = n;
AVG_run(eng1, &a);

// Shutdown
max_unload(eng1);

19	

Using a single DFE with SLiC

•  Aggregate	zero	or	more	
physical	DFEs	into	virtual	DFEs	

•  MulGple	CPU	clients	can	share	
virtual	DFEs	
– Minimize	reconfiguraGon	
–  Allow	sharing	of	datasets	

•  Every	thread/process	wishing	
to	use	the	same	group	uses	a	
common	“tag”	

•  SLiC	automaGcally	allocates	
DFEs	for	group	

20	

Virtual DFEs

21	

Accessing a Virtual DFE group

max_file_t *maxfile = AVG_init();

// Load a named group of engines that will be shared with other processes.
// All processes in group must make the same call.
int group_size = 10;

max_group_t *grp =

 max_load_group(maxfile, MAXPROP_SHARED, “tag@*”, group_size);

// ... sometime later ...

// Set-up actions as normal and then either
AVG_action_t *act1 = <relevant	data>, *act2 = <relevant	data>;
if (condition) { // Lock DFE to preserve state

 max_engine_t *eng = max_lock_any(grp1);
 AVG_run(eng, &act1);
 AVG_run(eng, &act2);
 max_unlock(eng1);

} else { // DFE run atomically (fast)
 AVG_run_group(grp, &act1);
 AVG_run_group(grp, &act2); // no state preserved between calls

}

Virtual/Physical Resource Balancing

Group	
of	
DFEs	

Type	A	tasks	

M
ul
Gp

le
	p
hy
sic

al
	re

so
ur
ce
s	

be
co
m
e	
on

e	
vi
rt
ua
l	r
es
ou

rc
e	

DFE Scheduling	

DFE DF
E	
M
ig
ra
Go

n	
Gr
ou

p	
to
	G
ro
up

	

Type	A	tasks	

Type	B	tasks	

23	

CPU	

CPU	 MPC-X	chassis	

DFE	

DFE	

DFE	

DFE	

MPC-X	chassis	

DFE	

DFE	

DFE	

DFE	

Lo
ca
l	d
isp

at
ch
er
	

Lo
ca
l	d
isp

at
ch
er
	

CPU	

Di
sp
at
ch
er
	

Di
sp
at
ch
er
	

Di
sp
at
ch
er
	

Global	resource	manager	
Governor	

vDFE	1	 vDFE	2	 vDFE	3	
Request	vDFE	1	

Request	vDFE	2	 DFE	

DFE	

DFE	

DFE	

DFE	

DFE	

Request	vDFE	2	and	3		

DFE	

DFE	

Policies	

•  AcGon	dispatch	is	fast	&	distributed	
•  Three	levels	of	load	balancing:	

–  AcGons	dispatched	to	which	MPC-X	
–  AcGons	dispatched	to	which	DFE	
–  Physical	DFEs	(re)allocated	between	virtual	DFEs	

•  Cluster	configuraGon	can	be	conGnually	adapted	at	
runGme	to	meet	latest	resource	demands	

24	

Architecture key points

•  Original	runs	on	high	end	16-core	x86	servers	
•  Highly	opGmized	producGon	code	

25	

Case Study: Geoscience Application

1..10,000	jobs	

Phase	1	
(400s)	

Phase	2	
(1,800s)	

Temp	data	
(Many	GB)	

Subset	of	B	
~400GB	

StaGc	data	A	
(8GB)	

StaGc	data	B	
(mulG-TB)	

Select		
parGal	state		
to	update	

Only	~50GB	
changes	
per	phase	2	

•  Reload	DFEs	between	phase	1	and	phase	2	

26	

Dataflow Implementation: MPC-C

Phase	1	
(CPU	+	DFE)	

Phase	2	
(CPU	+	DFE)	

Temp	data	
(MulG-GB)	

Subset	of	B	
(~400GB)	

StaGc	data	A	
(8GB)	

StaGc	data	B	
MulG-TB	

Select		
parGal	state		
to	update	
(CPU)	

MPC-C	

DFE	 DFE	 DFE	 DFE	

MPC-C	

DFE	 DFE	 DFE	 DFE	

Runtime impact: MPC-C with 4 DFEs

DFE	Poten:al	 Actually	achieved	

Phase	1	 19x	 10x	

Phase	2	 20x	 15x	

Overall	 ~20x	 11x	

27	

• 	DFEs	are	under-uGlized	
• 	Disk	+	CPU	limited	
• 	17%	of	Gme	in	iniGalizaGon	

194s	

Configure	DFEs	and	
load	phase	1	state:	7s	

Phase	1	computaGon:	40s	

Configure	DFEs	and	load	
all	phase	2	data:	27s	

Phase	2	computaGon:	120s	

•  Increase	CPU	power	per	node?	
–  20%	faster	clock	frequency	possible	but	would	sGll	be	
limiGng	and	costs	a	lot	of	power	

•  Increase	disk	speed	per	node?	
–  Already	using	high	speed	disks,	not	possible	to	add	more	
drives	in	the	form	factor	

•  Switch	to	SSDs	
–  ConGnuous	write-read	cycle	poor	for	SSD	endurance	

•  Decrease	number	of	DFEs	per	node	
–  “Ideal”	number	of	DFEs	differs	for	different	phases	&	
based	on	individual	job	characterisGcs	

28	

DFE under-utilization

29	

Dataflow Implementation: MPC-X
MPC-X	

DFE	 DFE	 DFE	 DFE	 DFE	 DFE	 DFE	 DFE	

MPC-X	

DFE	 DFE	 DFE	 DFE	 DFE	 DFE	 DFE	 DFE	

CPU	node	

CPU	node	

CPU	node	

CPU	node	

Phase	1	

Phase	2	

Many	GB	

Select		
parGal	state		
to	update	

Many	GB	

•  Don’t	reconfigure	DFEs	
•  Allocate	N	DFEs		
per	CPU	node	for	Phase	2	

•  Allocate	M	DFEs		
per	cluster	for	Phase	1	

•  Vary	N,	M	as	workload	
characteris-cs	change	

•  Overlap	Phase	1	of	job	J	with	
Phase	2	of	job	J-1	

•  Performance	set	by	speed	of	
phase	2	computaGon,	phase	1	
requires	only	~0.6	DFE	

•  More	CPUs	accompany	each	
MPC-X,	but	each	node	is	less	
expensive	(less	memory	needed)	

30	

Runtime impact: MPC-X

125s	

No	iniGalizaGon	
per	job	 Phase	1	computaGon	

Update	
phase	2	data:	~5s	

Phase	2	computaGon:	120s	

CPU	nodes	per	MPC-X	 2.2	

Speedup	per	MPC-X	 38.9x	

•  OpGmizing	uGlisaGon	is	key	to	maximizing	performance	
•  Sharing	physical	resources	can	improve	runGme	
•  Intelligent	resource	balancing	can	maximize	overall	
system	output	

•  Intelligent	task	dispatching	should	consider	resource	
heterogeneity		

Summary

31	

