
		

CO405H
Computing in Space with OpenSPL

Topic 15: Porting CPU Software to DFEs

Oskar	Mencer	 	 									Georgi	Gaydadjiev	
	

					Department	of	Compu:ng	
							Imperial	College	London		

	
h#p://www.doc.ic.ac.uk/~oskar/ 		
h#p://www.doc.ic.ac.uk/~georgig/	
	
CO405H	course	page:	 	 	h#p://cc.doc.ic.ac.uk/openspl16/		
WebIDE:	 	 	 	h#p://openspl.doc.ic.ac.uk		
OpenSPL	consor:um	page:	 	h#p://www.openspl.org	
	
o.mencer@imperial.ac.uk	 	g.gaydadjiev@imperial.ac.uk	

2	

	
•  Very	large	N	(~90,000	parDcles)	
•  Brute	force	approach	
•  Look	at	opDons,	find	opDmal	architecture	

Porting N-Body to DFEs

3	

•  Small	code	base	
				for	(int	t	=	0;	t	<	T;	t++)	{	
								memset(a,	0,	N	*	sizeof(coord3d_t));	
								for	(int	q	=	0;	q	<	N;	q++)	{	
												for	(int	j	=	0;	j	<	N;	j++)	{	
																				float	rx	=	p[j].p.x	-	p[q].p.x;	
																				float	ry	=	p[j].p.y	-	p[q].p.y;	
																				float	rz	=	p[j].p.z	-	p[q].p.z;	
																				float	dd	=	rx*rx	+	ry*ry	+	rz*rz	+	EPS;	
																				float	d	=	1/	sqrtf(dd	*	dd	*	dd);	
																				float	s	=	m[j]	*	d;	
																				a[q].x	+=	rx	*	s;	
																				a[q].y	+=	ry	*	s;	
																				a[q].z	+=	rz	*	s;	
												}	
								}	
								for	(int	i	=	0;	i	<	N;	i++)	{	
												p[i].p.x	+=	p[i].v.x;	
												p[i].p.y	+=	p[i].v.y;	
												p[i].p.z	+=	p[i].v.z;	
												p[i].v.x	+=	a[i].x;	
												p[i].v.y	+=	a[i].y;	
												p[i].v.z	+=	a[i].z;	
								}	
				}	
	

•  Very	long	running	Dme:	~85	seconds	per	Dmestep,	
for	90,000	parDcles.	

	

Problem to port to DFE

4	

DFE Porting Process

Analysis	
Architecture	

ImplementaDon	

5	

Slotnick’s law (of effort)

				“The	parallel	approach	to	compuDng	does	require	
that	 some	 original	 thinking	 be	 done	 about	
numerical	analysis	and	data	management	in	order	
to	secure	efficient	use.			

	 	 	 	 	 In	 an	environment	which	has	 represented	 the	
absence	of	the	need	to	think	as	the	highest	virtue	
this	is	a	decided	disadvantage.”	
	
-Daniel	Slotnick,		
		Chief	Architect,	Illiac	IV		
	 	 	 	 		

6	

•  Step 1: Analyse Code
–  Profile code, measure time taken
–  Measure memory requirements and working set size
–  Understand numerical requirements

•  Step 2: Architect Solution
–  Evaluate and model partitioning options
–  Estimate speedup

•  Step 3: Implementation
–  Transform code into partitioned architecture
–  Implement C models
–  Compile DFE (.max file)
–  Optimise and Achieve Speedup

DFE Porting Process Overview

7	

Aim:	Have	a	complete	map	of	all	computa:on	and	
dataflow,	and	:mings	for	each	block	of	
computa:on.	

	
•  Find	out	where	the	computaDon	is	happening	
(Oprofile	can	help)	and	where	the	data	is	going	

•  IdenDfy	major	loops	/	draw	loop	graph	
•  Measure	Dme	spent	inside	major	loops	

Analysis: Step 1 – Dynamic Analysis

8	

Analysis: Step 1 – Dynamic Analysis

Loop	over	Dme	step	

Loop	over	N	parDcles	

Loop	over	N	parDcles	
Update	velociDes	and	posiDons	

Loop	over	N	parDcles	
Compute	forces	and	acceleraDons	

9	

Analysis: Step 1 – Dynamic Analysis

Loop	over	Dme	step	

Loop	over	N	parDcles	

Loop	over	N	parDcles	
Update	velociDes	and	posiDons	

Loop	over	N	parDcles	
Compute	forces	and	acceleraDons	 O(N2)	

O(N)	

10	

Aim:	Understand	amount	of	data	being	moved	around	and	
amount	of	compute	to	perform	on	it	

	
•  Analyse	the	data	flow	between	the	criDcal	loops.	

–  Examine		what	data	structures	are	being	created.	
–  IdenDfy	which	loops		are	going	to	work	with	very	large	arrays.	

•  Analyse	computaDon	inside	the	criDcal	loops.	
–  Count	the	number	of	floaDng	point	operaDons	per	data	point	
–  Analyse	loop	dependencies	

•  Understand	the	mathemaDcal	algorithms	being	used.	
–  RelaDonship	between	input	and	runDme,	memory	use.	
–  Understand	precision	requirements	of	each	part	of	the	
algorithm	

Analysis: Step 2 – Static Analysis

11	

Analysis: Step 2 – Static Analysis

Loop	over	Dme	step	

Loop	over	N	parDcles	

Loop	over	N	parDcles	
Update	velociDes	and	posiDons	
Uses	array	of	size	O(N)	

Loop	over	N	parDcles	
Compute	forces	and	acceleraDons	
Uses	array	of	size	O(N)	

O(N2)	

O(N)	

12	

Analysis: Step 2 – Static Analysis

Loop	over	Dme	step	

Loop	over	N	parDcles	

Loop	over	N	parDcles	
Update	velociDes	and	posiDons	
Use	array	of	size	O(N)	

Loop	over	N	parDcles	
Compute	forces	and	acceleraDons	
Use	array	of	size	O(N)	

O(N2)	

O(N)	

13	

Analysis: Step 2 – Static Analysis

Loop	over	Dme	step	

Loop	over	N	parDcles	

Loop	over	N	parDcles	
Update	velociDes	and	posiDons	
Use	array	of	size	O(N)	
~6	FP	Opera:ons	

Loop	over	N	parDcles	
Compute	forces	and	acceleraDons	
Use	array	of	size	O(N)	
~20	FP	Opera:ons	

O(N2)	

O(N)	

14	

Aim:	Consider	various	architecture	choices	and	
understand	the	pros	and	cons	of	each	choice	

	
•  Examine	volume	of	data	flowing	through	algorithm.	

–  How	large	is	the	working	set,	i.e.	does	it	need	to	be	stored	in	
LMEM	or	FMEM?	

–  Is	data	access	pa#ern	known	staDcally		
or	calculated	dynamically?	

–  How	much	computaDon	would	be	done		
with	each	loaded	data	value?	

–  Consider	the	raDo	of	ComputaDon	to	CommunicaDon!	
	

Analysis: Step 3 – Data Access plan

15	

•  LMEM	access	and	CPUóDFE	transfers	are	transacDons	
•  It’s	like	a	trip	to	NY:	you	need	to	jusDfy	the	flight	
by	visiDng	enough	sights	to	make	the	trip	worthwhile	

	

Computation-to-Communication

16	

Define Your Options:
move data first, then move compute

Data	Access	Plans	 Code	ParDDoning	

So
ur
ce
	c
od

e	
Tr
an
sf
or
m
aD

on
s	

Pareto	OpDmal	OpDons	

RunDme	

De
ve
lo
pm

en
t	T

im
e	

Try	to	minimise	runDme	and	
development	Dme,	while	
maximising	flexibility	and	precision.	

17	

	
•  Examine	volume	of	data	flowing	through	algorithm.	

–  How	large	is	the	working	set,		
i.e.	does	it	need	to	be	stored	in	LMEM	or	FMEM?	

On	a	MAX3	card,	you	have		around	4.5MB	of	available	ultra	
fast	access	(>10TB/s)	of	storage	in	FMEM*.	If	you	need	
more	than	that,	then	you	will	have	to	use	LMEM	which	
offers	12GB,	24GB,	48GB	or	96GB	of	storage	per	DFE.	

	

Analysis: Step 3 – Architecture Options

*	Some	of	this	FMEM	will	be	used	by	MaxCompiler	for	automaDc	buffering	
			(for	example	for	scheduling,	or	in	FIFOs	between	Kernels).	How	much,		
			varies	widely	from	one	design	to	another.	

18	

Analysis: Step 3 – DFE Architecture Options

Loop	over	Dme	step	

Loop	over	N	parDcles	
	
	
	
	
	
	
	
Update	3	floats/par:cle	->	up	to	1MB	

Loop	over	N	parDcles	
Update	velociDes	and	posiDons	
Use	array	of	size	O(N)	
Read	3	floats/par:cle	->	up	to	1MB	
Update	6	floats/par:cle	->	up	to	2.1MB	
~6	FP	OperaDons	

Loop	over	N	parDcles	
Compute	forces	and	acceleraDons	
Use	array	of	size	O(N)	
Read	4	floats/par:cle	->	up	to	1.4MB	
~20	FP	OperaDons	

O(N2)	

O(N)	

19	

•  Examine	volume	of	data	flowing	through	algorithm.	

– 	Is	data	access	pa#ern	known	staDcally?	
If	the	pa#ern	is	staDc	then	you	can	either	use	one	of	the	
command	generators	provided	(LINEAR1D,	...)	or	generate	
commands	on	the	CPU	and	stream	them	in.		
– 	Is	data	access	pa#ern	computed	dynamically?	
If	the	address	of	the	data	you	need	to	read	or	write	needs	
to	be	computed	on	the	Dataflow	Engine,	then	your	access	
pa#ern	is	dynamic	and	you	will	have	to	generate	the	
LMEM	command	inside	a	Kernel.	

	

Analysis: Step 3 – DFE Architecture Options

20	

•  For	N-Body	problem,	access	pa#ern	is	staDc	
and	linear	1D	

for	(int	q	=	0;	q	<	N;	q++)	{	
				for	(int	j	=	0;	j	<	N;	j++)	{	
								...	
				}	
}	

	
	

Analysis: Step 3 – DFE Architecture Options

q=0	
j=0	

21	

Analysis: Step 3 – DFE Architecture Options

q=0	
	

	
j=1	

•  For	N-Body	problem,	access	pa#ern	is	staDc	
and	linear	1D	

for	(int	q	=	0;	q	<	N;	q++)	{	
				for	(int	j	=	0;	j	<	N;	j++)	{	
								...	
				}	
}	

	
	

22	

Analysis: Step 3 – Architecture Options

q=0	
	

	
j=2	

•  For	N-Body	problem,	access	pa#ern	is	staDc	
and	linear	1D	

for	(int	q	=	0;	q	<	N;	q++)	{	
				for	(int	j	=	0;	j	<	N;	j++)	{	
								...	
				}	
}	

	
	

23	

Analysis: Step 3 – Architecture Options

q=0	
	

	
j=N-1	

•  For	N-Body	problem,	access	pa#ern	is	staDc	
and	linear	1D	

for	(int	q	=	0;	q	<	N;	q++)	{	
				for	(int	j	=	0;	j	<	N;	j++)	{	
								...	
				}	
}	

	
	

24	

Analysis: Step 3 – Architecture Options

	
j=0	
	

q=1	

•  For	N-Body	problem,	access	pa#ern	is	staDc	
and	linear	1D	

for	(int	q	=	0;	q	<	N;	q++)	{	
				for	(int	j	=	0;	j	<	N;	j++)	{	
								...	
				}	
}	

	
	

25	

Analysis: Step 3 – Architecture Options

	
	

q=1	
j=1	

•  For	N-Body	problem,	access	pa#ern	is	staDc	
and	linear	1D	

for	(int	q	=	0;	q	<	N;	q++)	{	
				for	(int	j	=	0;	j	<	N;	j++)	{	
								...	
				}	
}	

	
	

26	

•  Examine	volume	of	data	flowing	through	algorithm.	

–  How	much	computaDon	would	be	done		
with	each	loaded	data	value?	

By	carefully	choosing	your	memory	access	pa#ern,	you	can	
increase	data	reuse	and	decrease	memory	bandwidth	
requirement.	LMEM	has	a	limit	which	depends	on	the	plarorm	
and	its	frequency.	For	some	DFE	at	350MHz		
this	is	about		33.5	GB/s.		
	
With	complex	access	pa#erns	and	many	streams,	actual	
bandwidth	could	be	different.	

Analysis: Step 3 – Architecture Options

27	

•  What	needs	to	be	on	the	DFE,		
and	what	can	stay	on	the	CPU?	
–  How	many	funcDons	require	access	to	the	largest	arrays?	
–  Do	the	funcDons	that	use	the	large	arrays	also	have	long	runDme?	
	Moving	the	bulk	of	the	compute	to	the	DFE	might	not	be	the	right	answer.	
	

Analysis: Step 3 – Architecture Options

CPU	

DFE		
FuncDon1	–	5s	

FuncDon2	–	1s	

CPU	

FuncDon1	–	1000s	

FuncDon2	–	1s	

10G	data	
transferred	 Transfer	5s	

CPU	

DFE		

FuncDon1	–	5s	

FuncDon2	–	1s	

Final	result	only	

CPU	Dme	1001s	 OpDon	1	Dme	11s	 OpDon	2	Dme	6s	

28	

•  Examine	what	data	can	be	pre-computed.	
– Which	funcDons	actually	need	to	be	run	inside	the	loops?	
			Consider	the	following	loops:	

for i = 0..99 do
 double a = cos(i*2*PI/100)
 for j = 0..9999
 // do some compute

	
Assume	that	we	wish	to	put	these	loops	onto	a	DFE	and	that	
each	iteraDon	of	j	takes	one	cycle.	Puung	the	computaDon	
of	 a	 onto	 the	 DFE	 as	 well	 means	 that	 we	 will	 be	 using	
hardware	resources	to	compute	a	cosine	that	is	needed	only	
once	 every	 10,000	 cycles.	 This	 is	 very	wasteful.	 Instead,	 it	
would	 be	 be#er	 to	 compute	 the	 100	 different	 values	 of	a	
and	store	them	into	an	FMEM	on	the	DFE.	

Analysis: Step 3 – Architecture Options

29	

	

NOTE:	There	is	a	high	overhead(*)	to	create	a	new	kernel	(each	running	in	
their	own	clock	domain),	so	keep	the	number	of	kernels	low.	

•  Your	design	can	have	one	or	more	kernels.	How	do	you	decide	how	
many	kernels	to	build:	

1.  Your	design	may	have	mulDple	passes.	Each	pass	could	have	a	separate	
kernel.	

2.  You	may	be	able	to	parDDon	your	design	into	pieces	with	dynamic	and/
or	different	input	and	output	bandwidth	requirements	

	
	
(*)	A	Maxeler	architecture	is	a	Globally	Asynchronous	Locally	Synchronous	(GALS)		
architecture	

Analysis: Step 3 – Multiple Kernels

30	

•  NBody	OpDon	1	
											DFE	

Send	posiDons	and	
acceleraDons	

Analysis: Step 3 – Architecture Options

LMEM	
	

PosiDon,	
mass,	

velociDes	

Kernel	1	
	

Compute	forces	and	
acceleraDons	

Kernel	2	
	

Update	posiDons	and	
velociDes	

CPU	

Write	masses,	iniDal	
posiDons	and	velociDes	
only	once	

Send	
updated	
posiDons	

Read	
posiDons,	
masses	

Read	
velociDes	

Write	new	
posiDons	&	
velociDes	

31	

•  NBody	OpDon	2	
											DFE	

Send		
accel-	
eraDons	

Analysis: Step 3 – Architecture Options

LMEM	
	

PosiDon,	
mass	

Kernel	1	
	

Compute	forces	and	
acceleraDons	

CPU	

Write	masses	and	posiDons.	
Do	this	each	Dme	step	

Read	
posiDons	
and	
masses	

32	

•  NBody	OpDon	3	
DFE	

Analysis: Step 3 – Architecture Options

Kernel	1	
	

Compute	forces	
and	

acceleraDons	CPU	

		Write		
masses	&	posiDons.		
			<Only	once>	

FMEM	
	

PosiDon,	
mass	

Send	posiDons	and	acceleraDons	

Kernel	2	
Update	posiDons	

and	
velociDes	Send	updated	

posiDons	

FMEM	
Velocity	

Write	velociDes.		
		Only	once.	

Send	updated	posiDons	

33	

•  NBody	OpDon	4	
DFE	

Send	
acceleraDons	

Analysis: Step 3 – Architecture Options

Kernel	1	
	

Compute	forces	
and	

acceleraDons	

CPU	

Write	masses	
and	posiDons	
each	Dme	step	 FMEM	

	
PosiDon,	
mass	

34	

•  Look	at	OpDons	
•  Process:	Analysis,	Architecture,	ImplementaDon	
•  Carefully	minimise	the	number	of	kernels	needed.	
•  First	move	data	from	CPU	to	DFE	and	then	consider	
which	computaDons	need	to	move	with	the	data	

Conclusions – Porting CPU Software to DFEs

