
		

CO405H
Computing in Space with OpenSPL

Topic 16: Estimating and Implementing DFEs

Oskar	Mencer	 	 									Georgi	Gaydadjiev	
	

					Department	of	Compu:ng	
							Imperial	College	London		

	
h#p://www.doc.ic.ac.uk/~oskar/ 		
h#p://www.doc.ic.ac.uk/~georgig/	
	
CO405H	course	page:	 	 	h#p://cc.doc.ic.ac.uk/openspl16/		
WebIDE:	 	 	 	h#p://openspl.doc.ic.ac.uk		
OpenSPL	consor:um	page:	 	h#p://www.openspl.org	
	
o.mencer@imperial.ac.uk	 	g.gaydadjiev@imperial.ac.uk	

2	

Since	DFEs	are	staCcally	predictable,	we	can	model	throughput	
and	computaCon	in	a	simple,	staCc	way,	and	predict	with	very	
high	accuracy	how	long	a	DFE	architecture	opCon	will	run	to	
process	a	certain	amount	of	data.	
	
	

Estimating DFE Performance via Modelling

1.  Start	with	Assuming	there	is	infinite	bandwidth		
in&out	of	the	DFE,	and	infinite	compute	capability	

2.  Evaluate	the	case	where	either	bandwidth		
or	compute	capability	are	limited	

3.  Evaluate	the	case	with	both	bandwidth		
and	compute	capability	limited	to	the	actual	case…	

	
							

3	

Estimating DFE Performance

∞	

	P
ar
al
le
l	C
om

pu
ta
Co

n	
[O
PS
]	

CommunicaCon	[BPS]	
0	

0	

×	

×	

Fold	Computa,on	
to	max	P1	
(Computa,onal	Origami	
Alan	Huang,	MIT,	1992)	

Pi
n-
lim

ita
Co

n	

Chip-space-limitaCon	

∞	

minimize		
descrip,on		
of	data,	K(data),	to	max	P2	

P1(x)	

P2(x)	

Performance	P(finite)	=	min(P1,P2)		

×	

tradeoff		
computa,on		
and	memory	

tradeoff	precision	
vs	itera,ons	

Max	Efficiency	=>		
P1==P2	

4	

•  Measure	TOLD	=	CPU	Cme	for	original	implementaCon	
•  Measure	TNON	ACCEL	=	Cme	for	what	is	being	le_	on	the	CPU	
•  EsCmate	speedup	if	IO	bound:	

–  Calculate	volume	of	data	going	over	CPUóDFE	bus	and	LMEM	bus	
–  Calculate	TIO	=	MAX(TLMEM,TPCIE)	

•  EsCmate	speedup	if	compute	bound:	
–  Resources	should	be	roughly:	Overhead	+	NumPipes	x	PipeCost	
–  Calculate	maximum	number	of	pipes	possible	on	DFE	
–  Calculate	TCOMPUTE	=	Ticks	/	(NumPipes	x	Freq)	

•  Compute	total	speedup:	
–  Speedup	=	TOLD	/	(TNON_ACCEL	+	MAX(TCOMPUTE,	TIO))	

Analysis: Step 4 – Modelling Performance

5	

•  TOLD	=	S×85s	
•  TNON	ACCEL	=	0s	
•  EsCmate	speedup	if	IO	bound:	

–  TPCIE	=	0.00045s	
–  TIO	=	TPCIE	=	0.00045s	

•  EsCmate	speedup	if	compute	bound:	
–  Resources	should	be	roughly:	Overhead	+	NumPipes	x	PipeCost	
–  NumPipes	=	30,	Freq	=	175MHz	(for	MAX3,	could	be	100-200MHz)	
–  Calculate	TCOMPUTE	=	Ticks/	(NumPipes	x	Freq)	=	S×1.54s	

•  Compute	total	speedup:	
–  Speedup	=	TOLD	/	(TNON_ACCEL	+	MAX(TCOMPUTE,	TIO))	=	55.1x	

Analysis: Step 4 – Modelling
Performance – Option 3

6	

•  TOLD	=	S×85s	
•  TNON	ACCEL	=	S×0.00045s	
•  EsCmate	speedup	if	IO	bound:	

–  TPCIE	=	S×0.0005s		
–  TIO	=	TPCIE	=	S×0.0005s	

•  EsCmate	speedup	if	compute	bound:	
–  Resources	should	be	roughly:	Overhead	+	NumPipes	x	PipeCost	
–  NumPipes	=	32,	Freq	=	175MHz	
–  Calculate	TCOMPUTE	=	Ticks/	(NumPipes	x	Freq)	=	S×1.44s	

•  Compute	total	speedup:	
–  Speedup	=	TOLD	/	(TNON_ACCEL	+	MAX(TCOMPUTE,	TIO))	=	58.8x	

Analysis: Step 4 – Modelling
Performance – Option 4

7	

ImplementaCon	has	three	dimensions	
1.  Level	
•  C	model	
•  SimulaCon	
•  DFE	

2.  Precision	
•  Full	precision	
•  OpCmal	precision	

3.  Complexity	
•  Single	kernel	
•  All	kernels	

Dimensions of DFE Implementation

8	

•  Aim	for	at	least	two	tests:	quick	and	long	
•  For	compilaCon,	C	model	is	the	fastest,	followed	by	

simulaCon,	while	creaCng	DFE	files	can	take	many	hours!	
•  When	running	tests,	the	C	model	will	be	in	general	faster	than	

simulaCon,	and	DFEs	are	of	course	the	fastest!	
•  Each	level	has	different	preferred	tests	that	will	maximise	

your	development	speed	

•  Developing	and	compilaCon	is	also	the	fastest	in		
the	C	model,	then	in	simulaCon,	and	finally	on	the	DFE.	

DFE Testing

Small	dataset	(quick)	 Large	dataset	(long)	

C	model	 ü	 ü	
SimulaCon	 ü	 û	
DFE	 û	 ü	

9	

DFE	ImplementaCon	has	three	dimensions	
1.  Level	
•  C	model:	A	C	code	implementaCon	of	the	kernel		
•  SimulaCon:	A	maxj		implementaCon,	simulated	on	a	CPU	
•  DFE:	A	.max	file	running	on	a	real	DFE	

2.  Precision	
•  Full	precision:	Typically	double	precision	floaCng	point	
•  OpCmal	precision:	Could	be	reduced	floaCng	point,	enhanced	

floaCng	point	(i.e.	quad-precision),	fixed	point,	or	mixed.	
3.  Complexity	
•  Single	kernel:	each	kernel	implemented	and	tested	separately	
•  All	kernels:	the	enCre	DFE	implementaCon		

Dimensions of DFE Implementation

10	

Three	dimensions	
1.  Level	
•  C	model	
•  SimulaCon	
•  DFE	

2.  Precision	
•  Full	precision	
•  OpCmal	precision	

3.  Complexity	
•  Single	kernel	
•  All	kernels	

Dimensions of DFE Implementation

Use	the	C	model	to	
validate	your	

analysis	and	as	a	
debugging	tool	

11	

Three	dimensions	
1.  Level	
•  C	model	
•  SimulaCon	
•  DFE	

2.  Precision	
•  Full	precision	
•  OpCmal	precision	

3.  Complexity	
•  Single	kernel	
•  All	kernels	

Dimensions of DFE Implementation

NOTE:	C	model	is	not	the	
same	as	C	implementaCon.	

You	will	only	have	a	C	
implementaCon	if	the	app	you	
are	acceleraCng	is	wri#en	in	
C.	You	will	have	a	different	C	

model	for	each	of	your	
kernels	and	they	do	not	need	

to	be	fast.	

12	

Three	dimensions	
1.  Level	
•  C	model	
•  SimulaCon	
•  DFE	

2.  Precision	
•  Full	precision	
•  OpCmal	precision	

3.  Complexity	
•  Single	kernel	
•  All	kernels	

Dimensions of DFE Implementation

SimulaCon	allows	a	
quick	turn	around	
between	DFE	code	
wriCng	and	tesCng	

13	

Three	dimensions	
1.  Level	
•  C	model	
•  SimulaCon	
•  DFE	

2.  Precision	
•  Full	precision	
•  OpCmal	precision	

3.  Complexity	
•  Single	kernel	
•  All	kernels	

Dimensions of DFE Implementation

DFE	execuCon	is	the	
ulCmate	goal.	This	could	

come	later	in	the	
acceleraCon	process.	

14	

Three	dimensions	
1.  Level	
•  C	model	
•  SimulaCon	
•  DFE	

2.  Precision	
•  Full	precision	
•  OpCmal	precision	

3.  Complexity	
•  Single	kernel	
•  All	kernels	

Dimensions of DFE Implementation

Use	full	precision	to	test	
funcConality.	Full	

precision	on	the	DFE	might		
mean	that	fewer	pipes	can	

be	used.	

15	

Three	dimensions	
1.  Level	
•  C	model	
•  SimulaCon	
•  DFE	

2.  Precision	
•  Full	precision	
•  OpCmal	precision	

3.  Complexity	
•  Single	kernel	
•  All	kernels	

Dimensions of DFE Implementation

Remember	that	on	a	DFE	
you	are	not	restricted	to	
32-	and	64-bit	numbers.	
You	could	for	example	

compute	in	
dfeFloat(7,	41)	!	

16	

Three	dimensions	
1.  Level	
•  C	model	
•  SimulaCon	
•  DFE	

2.  Precision	
•  Full	precision	
•  OpCmal	precision	

3.  Complexity	
•  Single	kernel	
•  All	kernels	

Dimensions of DFE Implementation

Finding	the	opCmal	
precision	might	mean	
that	you	can	increase	

the	number	of	kernels	or	
pipes	in	your	algorithm	

17	

Three	dimensions	
1.  Level	
•  C	model	
•  SimulaCon	
•  DFE	

2.  Precision	
•  Full	precision	
•  OpCmal	precision	

3.  Complexity	
•  Single	kernel	
•  All	kernels	

Dimensions of DFE Implementation

TesCng	your	kernels	
separately	makes	it	
simpler	to	debug	and	
decide	on	the	opCmal	

precision.	

18	

Three	dimensions	
1.  Level	
•  C	model	
•  SimulaCon	
•  DFE	

2.  Precision	
•  Full	precision	
•  OpCmal	precision	

3.  Complexity	
•  Single	kernel	
•  All	kernels	

Dimensions of DFE Implementation

Test	comes	last:		
first	in	your	C	model,	
then	in	simulaCon,	and	
finally	on	the	DFE.	

19	

Three	dimensions	
1.  Level	
•  C	model	
•  SimulaCon	
•  Hardware	

2.  Precision	
•  Full	precision	
•  OpCmal	precision	

3.  Complexity	
•  Single	kernel	
•  All	kernels	

Dimensions of DFE Implementation

Important	rule:	follow	the	“Gray	code	rule”	during	
development.	That	is,	change	only	one	of	the	dimensions	at	
a	Cme.	
For	example:	
• 	Do	not	go	from	SimulaCon/Full	Precision/Single	Kernel	to		
			DFE/Op:mal	precision/Single	Kernel	

• 	Instead,	for	example,	go	from		
		SimulaCon/FullPrecision/SingleKernel	to		
		SimulaCon/Op:mal	Precision/SingleKernel	to		
		DFE/Op:mal	Precision/Single	Kernel	

20	

•  Aim	for	at	least	two	tests:	quick	and	long	
•  For	compilaCon,	C	model	is	the	fastest,	followed	by	

simulaCon,	while	creaCng	DFE	files	can	take	many	hours!	
•  When	running	tests,	the	C	model	will	be	in	general	faster	than	

simulaCon,	and	DFEs	are	of	course	the	fastest!	
•  Each	level	has	different	preferred	tests	that	will	maximise	

your	development	speed	

•  Developing	and	compilaCon	is	also	the	fastest	in		
the	C	model,	then	in	simulaCon,	and	finally	on	the	DFE.	

…remember DFE Testing

Small	dataset	(quick)	 Large	dataset	(slow)	

C	model	 ü	 ü	
SimulaCon	 ü	 û	
DFE	 û	 ü	

21	

•  For	the	N-Body	problem	
–  Do	a	1000	parCcle	run	and	a	90,000	parCcles	run	with	the	
C	model	and	store	results!	

–  Test	low	number	of	parCcles	(~1000)	in	SimulaCon	
	

–  Test	1000	and	90,000	parCcles	on	the	DFE		
and	compare	1000	parCcles	to	simulaCon	and	9000	
parCcles	to	the	stored	results	of	the	C	model…	

Testing the N-body Problem

22	

•  Once	the	DFE	is	working	with	all	kernels,	we	
opCmise	DFE	performance	

•  Goals	of	opCmisaCons:	
– Fit	more	compute	on	DFE	
– Increase	frequency	of	kernels	
– Reduce	expensive	data	movements		
(e.g.	back	and	forth	between	CPU	and	LMEM)	

DFE Optimisation

23	

•  The	four	dimensions	of	OpCmisaCon:	
–  Parallelism	
InstanCate	mulCple	kernels	and	mulC-pipe	inside	the	kernel	

–  Bandwidth	
							How	much	data	can	you	afford	to	move	between	DFE/CPU/LMEM?		
							Use	encoding,	compression	etc	to	increase	effecCve	bandwidth.	
– Area	

Resource	usage	as	shown	by	the	IDE	and	build	logs.	Approaching	100%		
for	each	of	the	resources	increases	compile	Cmes		

– UClisaCon	
							Actual	compute.	Need	to	make	sure	that	there	are	no	bubbles	in	the		
							pipelines	and	all	stages	of	computaCon	are	used	for	real	computaCons		
							with	real	data.	
–  Frequency:		

Each	Kernel	can	have	it’s	own	clock	frequency.	
							Higher	frequency	means	higher	throughput.	

DFE Optimisation

24	

•  These	four	dimensions	affect	each	other,		
for	example:	
–  Increasing	uClisaCon		
makes	it	harder	to	build	at	high	frequency	

–  Increasing	frequency	brings	your	bandwidth	
uClisaCon	closer	to	the	DFE	limit	since	you	
consume	data	at	a	faster	rate	

– Higher	UClisaCon	means	more	data	is	required	to	
feed	the	compute	unit	

DFE Optimisation

25	

•  Move	the	compute	intensive	part	to	the	DFE,	as	well	as	
any	other	part	that	requires	access	to	large	amount	of	
data	created	by	the	compute	intensive	part	

•  Develop	first	in	your	C	model,	
then	in	SimulaCon	and	finally	on	the	DFE	

•  Run	small	fast	tests	in	simulaCons,		
and	long	tests	on	the	DFE	

•  Fill	the	space	on	the	chip	to		
maximise	compute	per	cycle	

•  Do	not	forget	the	“Gray	code	rule”:		
only	change	one	thing	at	a	:me	

Conclusions – Estimating and Implementing DFEs

26	

For	the	quesCons	below,	assume	the	accelerator	chip	runs	at	100MHz	and	can	sustain	30GB/s	
bandwidth	from	DRAM	and	2GB/s	in	each	direcCon	from	PCIe.	

1.  A	kernel	has	two	inputs	from	DRAM	(a	and	b)	and	one	output	(c)	to	DRAM.	Input	a	reads	8GB,	
input	b	reads	20GB	and	output	c	writes	25GB.	The	kernel	runs	for	100M	cycles.	How	long	does	
the	computaCon	take	to	complete?	

2.  A	kernel	performs	an	iteraCve	calculaCon.	It	iterates	on	a	set	of	40,000	data	values.	Each	value	is	
32	bytes.	The	kernel	has	a	single	input	a	and	output	b	to/from	PCI	Express.	The	kernel	iniCally	
reads	the	starCng	values	for	the	data	set	over	40,000	cycles,	then	computes	over	the	enCre	set	
(1	value	per	cycle)	for	10	iteraCons,	then	spends	40,000	cycles	wriCng	the	results	back	to	PCI	
Express.	How	long	does	the	enCre	computaCon	take	to	complete?	

3.  Design	a	kernel	to	implement	the	so_ware	loop	below,	model	its	performance	assuming	the	
array	M	is	held	in	DRAM	and	the	arrays	p	and	q	are	stored	in	host	memory	(accessed	via	PCIe).	

	

Exercises

for (int i = 0; i < 1000000; i++) {
 q[i] += p[i] * ((M[i+1] + M[i] + M[i-1])/2);

}

