CO405H

Computing in Space with OpenSPL
Topic 16: Estimating and Implementing DFEs

Oskar Mencer Georgi Gaydadjiev

_ | Department of Computing

" Imperial College London

http://www.doc.ic.ac.uk/~oskar/
http://www.doc. .ac.uk ~georgig/

CO405H course page: \ http://cc.doc.ic.ac.uk/openspl16/
WebIDE: http://openspl.doc.ic.ac.uk
OpenSPL consortium page: http://www.openspl.org

o.mencer@imperial.ac.uk g.gaydadjiev@imperie

Estimating DFE Performance via Modelling

Since DFEs are statically predictable, we can model throughput
and computation in a simple, static way, and predict with very
high accuracy how long a DFE architecture option will run to
process a certain amount of data.

1. Start with Assuming there is infinite bandwidth
in&out of the DFE, and infinite compute capability
2. Evaluate the case where either bandwidth
or compute capability are limited
3. Evaluate the case with both bandwidth

and compute capability limited to the actual case...

stimating DFE Performance

-

Performance P(finite) = min(P1,P2)

Chip-space-limitation

tradeoff precision
vs iterations

Max Efficiency =>

Fold Computation P1==pP2
to max Plp tradeoff
(Computational Origami computation

Alan Huang, MIT, 1992) and memory

minimize
description
of data, K(data), to max P2 P2(x)

Parallel Computation [OPS] ITI

Pin-limitation

>0
Communication [BPS .

Analysis: Step 4 - Modelling Performance

* Measure T,,,=CPU time for original implementation
* Measure Ty acce = time for what is being left on the CPU

* Estimate speedup if IO bound:
— Calculate volume of data going over CPU<>DFE bus and LMEM bus
— Calculate T,, = MAX(T, vienn Tocie)
* Estimate speedup if compute bound:
— Resources should be roughly: Overhead + NumPipes x PipeCost
— Calculate maximum number of pipes possible on DFE

— Calculate T o py7e = Ticks / (NumPipes x Freq)

 Compute total speedup:
— Speedup =T,/ (TNON_ACCEL + MAX(T compurer Tio))

Analysis: Step 4 - Modelling

Performance — Option 3
Top=S%85s

Tnow accer = 0s

* Estimate speedup if IO bound:
— Tpee = 0.00045s

— T,o = Tpge = 0.00045s

Estimate speedup if compute bound:

— Resources should be roughly: Overhead + NumPipes x PipeCost
— NumPipes = 30, Freq = 175MHz (for MAX3, could be 100-200MHz)
— Calculate T oppyre = Ticks/ (NumPipes x Freq) = Sx1.54s

 Compute total speedup:
— Speedup =Ty, / (Tyon_accer + MAX(Teompurer Tio)) = 55.1x

Analysis: Step 4 — Modelling
Performance - Option 4

TOLD = Sx85s
TNON ACCEL - Sx0-000455
Estimate speedup if 10 bound:

— Tpee = 5%0.0005s
— T, = Tpqe = 5%0.0005s

Estimate speedup if compute bound:

— Resources should be roughly: Overhead + NumPipes x PipeCost
— NumPipes = 32, Freq = 175MHz
— Calculate T oppyre = Ticks/ (NumPipes x Freq) = Sx1.44s

Compute total speedup:
— Speedup =Ty, / (Tyon_accer + MAX(Teompurer Tio)) = 58.8x

Dimensions of DFE Implementation

Implementation has three dimensions
1. Level
e Cmodel
 Simulation
* DFE
2. Precision
* Full precision
Optimal precision
3. Complexity

 Single kernel

e All kernels

DFE Testing

 Aim for at least two tests: quick and long

* For compilation, C model is the fastest, followed by
simulation, while creating DFE files can take many hours!

* When running tests, the C model will be in general faster than
simulation, and DFEs are of course the fastest!

* Each level has different preferred tests that will maximise
your development speed

_ Small dataset (quick) Large dataset (long)

C model v v
Simulation v x
DFE X v

* Developing and compilation is also the fastest in
the C model, then in simulation, and finally on the DFE.

Dimensions of DFE Implementation

DFE Implementation has three dimensions
1. Level

e Cmodel: A Ccode implementation of the kernel
 Simulation: A maxj implementation, simulated on a CPU
* DFE: A .max file running on a real DFE

2. Precision

Full precision: Typically double precision floating point

e Optimal precision: Could be reduced floating point, enhanced
floating point (i.e. quad-precision), fixed point, or mixed.

3. Complexity

 Single kernel: each kernel implemented and tested separately

 All kernels: the entire DFE implementation

Dimensions of DFE Implementation

Three dimensions
1. Level

e Cmodel

* Simulation Use the C model to

* DFE validate your
2. Precision analysis and as a
e Full precision debugging tool

Optimal precision
3. Complexity

 Single kernel

e All kernels

Dimensions of DFE Implementation

Three dimensions

1. Level
Cmodel NOTE: C model is not the
e Simulation same as C implementation.
e DFE You will only have a C

implementation if the app you
are accelerating is written in
C. You will have a different C

2. Precision

* Full precision

* Optimal precision model for each of your
3. Complexity kernels and they do not need
* Single kernel to be fast.

e All kernels

Dimensions of DFE Implementation

Three dimensions
1. Level
. C model

. Simulation

« DFE Simulation allows a
2. Precision quick turn around
between DFE code
writing and testing

* Full precision

Optimal precision
3. Complexity

 Single kernel

e All kernels

Dimensions of DFE Implementation

Three dimensions
1. Level
e Cmodel
Simulation

. DFE
2. Precision

DFE execution is the
ultimate goal. This could
come later in the

* Full precision acceleration process.
Optimal precision

3. Complexity
 Single kernel

e All kernels

_

Dimensions of DFE Implementation

Three dimensions
1. Level
. C model

. Simulation

. DFE

2. Precision
* Full precision Use full precision to test
* Optimal precision functionality. Full

3. Complexity precision on the DFE might

mean that fewer pipes can
 Single kernel

be used.
e All kernels

Dimensions of DFE Implementation

Three dimensions

1. Level
e Cmodel
* Simulation Remember that on a DFE
« DFE you are not restricted to

2 Precision 32- and 64-bit numbers.

You could for example
compute in
dfeFloat(7, 41) !

* Full precision
Optimal precision

3. Complexity
 Single kernel

e All kernels

_

Dimensions of DFE Implementation

Three dimensions
1. Level

e Cmodel

 Simulation
e DFE Finding the optimal
precision might mean

2. Precision :
that you can increase

the number of kernels or
* Optimal precision pipes in your algorithm
3. Complexity

 Single kernel

* Full precision

e All kernels

Dimensions of DFE Implementation

Three dimensions
1. Level
. C model

e Simulation
. DFE

2. Precision :
Testing your kernels

| N separately makes it
* Optimal precision simpler to debug and
3. Complexity decide on the optimal

* Single kernel precision.

e All kernels

* Full precision

Dimensions of DFE Implementation

Three dimensions
1. Level
e Cmodel
Simulation

. DFE
2. Precision

* Full precision
Test comes last:

first in your C model,
then in simulation, and

* Single kernel finally on the DFE.
* Allkernels

Optimal precision

3. Complexity

Dimensions of DFE Implementation

Three dimensions

Important rule: follow the “Gray code rule” during
development. That is, change only one of the dimensions at

a time.

For example:
* Do not go from Simulation/Full Precision/Single Kernel to
DFE/Optimal precision/Single Kernel

* Instead, for example, go from
Simulation/FullPrecision/SingleKernel to
Simulation/Optimal Precision/SingleKernel to
DFE/Optimal Precision/Single Kernel

...remember DFE Testing

 Aim for at least two tests: quick and long

* For compilation, C model is the fastest, followed by
simulation, while creating DFE files can take many hours!

* When running tests, the C model will be in general faster than
simulation, and DFEs are of course the fastest!

* Each level has different preferred tests that will maximise
your development speed

_ Small dataset (quick) Large dataset (slow)

C model v v
Simulation v x
DFE X v

* Developing and compilation is also the fastest in
the C model, then in simulation, and finally on the DFE.

Testing the N-body Problem

* For the N-Body problem

— Do a 1000 particle run and a 90,000 particles run with the
C model and store results!

— Test low number of particles (~1000) in Simulation

— Test 1000 and 90,000 particles on the DFE
and compare 1000 particles to simulation and 9000
particles to the stored results of the C model...

DFE Optimisation

* Once the DFE is working with all kernels, we
optimise DFE performance

* Goals of optimisations:
— Fit more compute on DFE
—Increase frequency of kernels

—Reduce expensive data movements
(e.g. back and forth between CPU and LMEM)

DFE Optimisation

* The four dimensions of Optimisation:

— Parallelism
Instantiate multiple kernels and multi-pipe inside the kernel

— Bandwidth

How much data can you afford to move between DFE/CPU/LMEM?
Use encoding, compression etc to increase effective bandwidth.

— Area
Resource usage as shown by the IDE and build logs. Approaching 100%
for each of the resources increases compile times

— Utilisation
Actual compute. Need to make sure that there are no bubbles in the

pipelines and all stages of computation are used for real computations
with real data.

— Frequency:
Each Kernel can have it’s own clock frequency.
Higher frequency means higher throughput.

DFE Optimisation

 These four dimensions affect each other,
for example:

— Increasing utilisation
makes it harder to build at high frequency

— Increasing frequency brings your bandwidth
utilisation closer to the DFE limit since you
consume data at a faster rate

— Higher Utilisation means more data is required to
feed the compute unit

Conclusions — Estimating and Implementing DFEs

* Move the compute intensive part to the DFE, as well as
any other part that requires access to large amount of
data created by the compute intensive part

e Develop first in your C model,
then in Simulation and finally on the DFE

 Run small fast tests in simulations,
and long tests on the DFE

* Fill the space on the chip to
maximise compute per cycle

* Do not forget the “Gray code rule”:
only change one thing at a time

Exercises

For the questions below, assume the accelerator chip runs at 100MHz and can sustain 30GB/s
bandwidth from DRAM and 2GB/s in each direction from PCle.

1. A kernel has two inputs from DRAM (a and b) and one output (c) to DRAM. Input a reads 8GB,
input b reads 20GB and output ¢ writes 25GB. The kernel runs for 100M cycles. How long does
the computation take to complete?

2. A kernel performs an iterative calculation. It iterates on a set of 40,000 data values. Each value is
32 bytes. The kernel has a single input a and output b to/from PCl Express. The kernel initially
reads the starting values for the data set over 40,000 cycles, then computes over the entire set
(1 value per cycle) for 10 iterations, then spends 40,000 cycles writing the results back to PCl
Express. How long does the entire computation take to complete?

3. Design a kernel to implement the software loop below, model its performance assuming the
array M is held in DRAM and the arrays p and g are stored in host memory (accessed via PCle).

for (int 1 = 0; 1 < 1000000; i++) {
qli] += pli] * ((M[i+1] + M[i] + M[1i-1])/2);

