la

Consider the following spatial program for kernel madd:
SCSVar a=io.input(‘*‘'a’’, SCSFix(32,16));
SCSVar b=io.input ('‘b’’, SCSFix(32,16));
SCSVar fb = newFeedback (SCSFix (32,16));
SCSVar r = fb » a + b;

io.output (‘‘r’’, r, SCSFix(32,16));

Assume the newFeedback call creates a feedback loop for a multiply-add
computation. Write the pseudo CPU code to make this kernel compute a
polynomial:) cix' . Next, please show the minimal modification to the kernel
above and the CPU pseudo code to make the computation about twice as
efficient.

Assume a program with three input variables with dynamic ranges of:

a = [—20,1000], b = [—500,500],c = [1,10] . Write down the OpenSPL
definition for both floating point SCSFloat(total bits, mantissa bits) and fixed
point SCSFix(total bits, fractional bits) for these variables with a minimum
number of bits, to maintain a precision to within an absolute error of 2710,
Explain the term “sensitivity” of outputs to changes in inputs.

The two parts carry equal marks.

(© Imperial College London 2015 Paper C405H Page 1 of 3

2a A two-dimensional set of five coefficients c [] is called a star stencil. Such a star
stencil can be applied to an array of 1,000 by 1,000 single precision floating point
numbers, in a single pass, called a timestep. Ignoring the boundaries, we have:

for i=1 to 998
for j=1 to 998
anext [i,j]l=ali, j-1]*xc[0]l+a[i-1, jl*c[1l]+
ali,jlxcl[2]+ali+l, jlxc[3]+ali, J+1]1*c[4]

How large an FMEM buffer is needed to store a sufficiently large window for
such a pass? Show spatial computing pseudo code using fixed point with 32 bits
with 10 fractional bits and a minimal amount of FMEM, to implement such a
pass. Use a FIFO (a, d) function to delay an SCSVar a by d cycles, and a
DELAY (a) to delay by one cycle.

b Explain how you would parallelize the implementation from part 1 into four
kernels running all in parallel. How would the implementation change? How
would you optimize the implementation to take as little space as possible?

¢ Comparison in Space:

i) Given bidirectional LMEM bandwidth of 10GB per second and a spatial
computing substrate operating at S00MHz, how long would it take to
calculate 10,000 timesteps for the parallel implementation above?

il) What is the optimal number of stencils running in parallel to saturate the
10GB per second bi-directional bandwidth? Assume that a single unit in a
datacenter (called 1U) holds eight dataflow engines, each with the optimal
number of stencils to saturate the bi-directional bandwidth, running in
parallel, and assume that a 1U CPU node with 24 cores running at 2GHz
maintains an effective aggregate 9 GFLOPS at a similar power
consumption as the dataflow engine node. What is the speed and power
efficiency comparing a 1U dataflow node to a 1U CPU node?

The three parts carry, respectively, 30%, 30%, and 40% of the marks.

(© Imperial College London 2015 Paper C405H Page 2 of 3

3a

In this question we compare a modern microprocessor with a dataflow engine in
terms of a new metric called BCAP. BCAP is the product of bandwidth and
capacity of a memory. In the case of multiple memories, BCAP is the sum of the
individual BCAPs of the memories.

i)

ii)

Let us assume a dataflow engine with 3,000 blocks of FMEM memory,
each holding 20Kbits and each with two 40bit ports, allowing simultaneous
accesses at 600MHz. FMEM is fast, returning a result on the cycle
following the receipt of an address. What is the aggregate FMEM capacity
and bi-directional FMEM bandwidth for a 1U dataflow appliance with
eight dataflow engines? What is the BCAP of a 1U dataflow appliance in
[Bytes?persecond)?

Now for the CPU side, calculate the BCAP of a Haswell CPU server with

* 24 cores per 1U server, with each core driving a private L1 and L2
cache. The L1 cache has 128KB and 700GB/s bandwidth, and the L2
has 1MB with 200GB/s

* The server has two CPU chips, each with an L3 cache with 6MB
and 100GB/s access bandwidth.

What is the BCAP difference between the dataflow engine and the CPU
system per 1U enclosure?

We would like to implement a classification application which for a stream
of 13-bit input values in checks their belonging to classes via a table
lookup. Assume that the FMEM blocks are predefined and can be accessed
via an FMEM (mem, port, address) function call, where mem is the
number of the FMEM memory. The result of the table lookup is a simple
yes/no decision bit, stored in a SCSVar vector vec. Write down the
pseudocode for the instantiation of the FMEM blocks.

How many classes can be checked in realtime, absorbing one input on
every cycle? What is the effectively realised memory access bandwidth for
this application?

The two parts carry equal marks.

(© Imperial College London 2015 Paper C405H Page 3 of 3

