
		

CO405H
Computing in Space with OpenSPL

Topic 3: OpenSPL
Oskar	Mencer	 	 									Georgi	Gaydadjiev	
	

					Department	of	Compu:ng	
							Imperial	College	London		

	
h#p://www.doc.ic.ac.uk/~oskar/ 		
h#p://www.doc.ic.ac.uk/~georgig/	
	
CO405H	course	page:	 	 	h#p://cc.doc.ic.ac.uk/openspl16/		
WebIDE:	 	 	 	h#p://openspl.doc.ic.ac.uk		
OpenSPL	consor:um	page:	 	h#p://www.openspl.org	
	
o.mencer@imperial.ac.uk	 	g.gaydadjiev@imperial.ac.uk	

Overview
•  Introduc@on	to	the	Basics		
•  Architecture	
•  Spa@al	Substrates	
•  Control	flow	in	Space	

2	

OpenSPL to drive Computing in Space

3	

•  Founding	Corpora@ons:	

	
•  Academic	Partners:	

h#p://www.OpenSPL.org	
launched	on	Dec	9,	2013	

The Combined Control/DataFlow system

SYSTEM	1*	
x86	cores	

SYSTEM	2*	
flexible	memory	

plus	logic	

Low	Latency	
Memory	

High	Throughput	
Memory	Goal is to minimise and optimise data

movements in Control/DataFlow (C/DF)

Customized	
Encoding	

*	System	1	and	System	2	are	based	on	D	Kahneman,		
“Thinking	Fast	Thinking	Slow”,	Nobel	Prize	in	Economics,	2002	

OpenSPL basics

5	

•  Control	and	Data-flows	are	decoupled	
–  Both	are	fully	programmable	

•  Opera@ons	exist	in	space	and	by	default	run	in	parallel	
–  Their	number	is	limited	only	by	the	available	space	

•  All	opera@ons	can	be	customized	at	various	levels		
–  e.g.,	from	algorithm	down	to	the	number	representa@on	

•  Mul@ple	opera@ons	cons@tute	kernels		
•  Data	streams	through	the	opera@ons	/	kernels	
•  The	data	transport	and	processing	can	be	balanced	
•  All	resources	work	all	of	the	@me	for	max	performance	
•  The	In/Out	data	rates	determine	the	opera@ng	frequency	
	

Equally	spread	the	available	“forces”	and	move	no	faster	than	required	by	the	applica@on		

x	

x	

+	

30	

y	

 SCSVar x = io.input("x", scsInt(11));

 SCSVar result = x * x + 30;

 io.output("y", result, scsInt(23));

6	

OpenSPL example: X2 + 30

Syntax Directed Translation

OpenSPL example: Moving Average

7	

class MovingAvgKernel extends Kernel {
 MovingAvgKernel() {
 SCSVar x = io.input(“x”, scsFloat(7,17));
 SCSVar prev = stream.offset(x, -1);
 SCSVar next = stream.offset(x, 1);
 SCSVar sum = prev + x + next;
 SCSVar result = sum / 3;
 io.output(“y”, result, scsFloat(7,17));
 }
}

OpenSPL example: Control in Space
or What do we do with IF statements

8	

x	

+
1	

y	

-	
1	

>
10	

class SimpleKernel extends Kernel {
 SimpleKernel() {
 SCSVar x = io.input(“x”, scsFix(24));
 SCSVar result = (x>10) ? x+1 : x-1;
 io.output(“y”, result, scsFix(25));
 }
}

The Machine Model of Space

9	

•  A	Spa@al	Compu@ng	system	consists	of:	
–  a	Chip:	a	Spa$al	Compu$ng	Substrate	(SCS):			
hardware	technology	with	flexible	arithme@c	units		
																																											and	programmable	interconnect		

–  SCS	specific	compila@on	toolchain	
–  SCS	specific	run@me	system	and	all	low	level	sodware	

•  Three	basic	memory	types:	
–  Scalars	
–  Fast	Memory	(FMEM):	small	and	fast	
–  Large	Memory	(LMEM):	large	and	slow		

Fast and Slow

John	von	Neumann,	1946:		
	
“We	are	forced	to	recognize	the	
possibility	of	construc@ng	a	hierarchy	of	
memories,	each	of	which	has	greater	
capacity	than	the	preceding,	but	which	
is	less	quickly	accessible.”	

The Machine Model of Space

11	

•  Computa@onal	kernels	interconnected	by	data	flow	
streams	to	form	bigger	en@@es	called	ac$ons	

•  Ac@on	is	the	basic	the	Spa@al	Compu@ng	Substrate	
(SCS)	execu@on	unit	and	performs	as	a	single	en@ty			

•  In	a	spa@al	system	one	or	more	SCS	engines	exist,	
each	execu@ng	a	single	ac@on	at	any	moment	in	@me	

Arithmetic in Space

12	

•  Opera@ons	instan@ated	as	separate	arithme@c	units	
•  Units	along	data	paths	use	custom	arithme@c	and	
number	representa@on	(as	long	data	stays	correct)	

•  The	above	may	reduce	individual	unit	sizes		
(and	maximizes	the	number	that	fits	a	given	SCS)			

•  Data	rates	of	memory	and	I/O	communica@on	may	
also	be	maximized	due	to	scaled	down	data	sizes	

Multiscale Arithmetic in Space

13	

•  Arithme@c	op@miza@ons	at	the	bit	level	
–  e.g.,	minimizing	the	number	of	’1’s	in	binary	numbers,	leading	
to	linear	savings	of	both	space	and	power	(the	zeros	are	
omi#ed	in	the	implementa@on)	

•  Higher	level	arithme:c	op@miza@ons	
–  e.g.,	in	matrix	algebra,	the	loca@on	of	all	non-zero	elements	in	
sparse	matrix	computa@ons	is	important		

•  Spa@al	encoding	of	data	structures	can	reduce	transfers		
between	memory	and	computa@onal	units	(boost	
performance	and	improve	efficiency)	
–  In	temporal	compu@ng	encoding	and	decoding	would	take	@me	
and	eventually	can	cancel	out	all	of	the	advantages		

–  In	spa@al	compu@ng,	encoding	and	decoding	just	consume	a	bit	
more	of	addi@onal	space	

Multiscale Optimisations

Mul:ple	scales	of	compu:ng	 Important	features	for	op:miza:on	

complete	system	level	 ⇒ balance	compute,	storage	and	IO	

parallel	node	level	 ⇒ maximize	u@liza@on	of	compute	and	
interconnect	

microarchitecture	level	 ⇒ minimize	data	movement		

arithme@c	level	 ⇒ tradeoff	range,	precision	and	accuracy	
=	discre@ze	in	@me,	space	and	value	

bit	level	 ⇒ encode	and	add	redundancy	
transistor	level	 =>	create	the	illusion	of	‘0’	and	‘1’	

And	more,	e.g.,	trade	Communica@on	(Time)	for	Computa@on	(Space)	

14	

15	

Nicolas	Brisebarre,	Jean-Michel	Muller	and	Arnaud	Tisserand	
Sparse	Coefficient	Polynomial	Approxima@ons	for	Hardware	Implementa@on,	
Asilomar	Conference,	2004.		

Expl: Minimize ‘1’s => Sparse Coefficients

To compute or remember, that is the question. 	
	
		

		Compu@ng	f(x)	in	the	range	[a,b]	with	|E|	≤	2⁻ⁿ	
			Table																			Table+Arithme$c																					Arithme$c	

	and	+,-,×,÷	 +,-,×,÷	

§ 	uniform	vs	non-uniform	
§ 	number	of	table	entries	
§ 	how	many	coefficients	

§ 	polynomial	or	ra@onal	approx	
§ 	con@nued	frac@ons		
§ 	mul@-par@te	tables	

Underlying	hardware/technology	changes	the	op@mum	

16	

•  You	can	use	the	full	power	of	your	language	of	
choice,	e.g.,	Java,	to	write	a	program	that	generates	
the	computa@on	in	space	

•  Variables	can	be	used	as	constants	in	hardware	
(actually	wires)	
–  int	y;	SCSVar	x;	x	=	x	+	y;		

•  Hardware	variables	do	not	“exist”	at	compile	@me!	
–  Cannot	do:	int	y;	SCSVar	x;	y	=	x;	

•  Condi@onals	and	loops	choose	how	to	generate	
hardware	à	not	make	run-@me	decisions	

Meta-programming

17	

Runtime vs Compiletime Variables

What	dataflow	graph	is	generated?	
	
SCSVar x = io.input(“x”, <type>);
SCSVar y;
int CON = 1;

y = x + CON;

io.output(“y”, y, <type>);

x	

+	

1	

y	

18	

Runtime versus Compiletime Variables (cont)
What	dataflow	graph	is	generated?	
	
SCSVar x = io.input(“x”, <type>);
int s = 10;
SCSVar y;

if (s < 100) { y = x + 1; }
else { y = x – 1; }

io.output(“y”, y, <type>);

What	dataflow	graph	is	generated?	
	
SCSVar x = io.input(“x”, <type>);
SCSVar y;

if (x < 10) { y = x + 1; }
else { y = x – 1; }

io.output(“y”, y, <type>);

x	

+	

1	

y	

Compile	error.		
You	can’t	use	the	value	of	stream	

‘x’	in	a	meta	condi@onal	

19	

Loops
What	dataflow	graph	is	generated?	
	
SCSVar x = io.input(“x”, <type>);
SCSVar y = x;
for (int i = 1; i <= 3; i++) {

 y = y + i;
}
io.output(“y”, y, <type>);

x	

+	

1	

y	

+	

2	

+	

3	

Can	make	the	loop	any	size	–	un:l	you	run	out	
of	space	on	the	chip!			
Larger	loops	can	be	par:ally	unrolled	in	space	
and	reused	mul:ple	:mes	in	:me	

20	

•  Data	dependent	condi@onal	statements	are	common	
•  How	can	we	implement	this	in	OpenSPL?	

21	

If-Else Statements

int C = 500;
for (int i = 0; i < N; i++) {
 if (x[i] > y[i])

 result[i] = x[i] – y[i];
 else
 result[i] = C + x[i] + y[i];
}

22	

Control Flow in Space
If-Else = Mux

SCSVar x = io.input("x", <type>);
SCSVar y = io.input("y", <type>);
SCSVar C = io.scalarInput("C", <type>);

SCSVar result = x > y ?

 (x - y) : (C + x + y);

x	

-	

result	

y	

+	

+	

C	

>	

Mux	
Select	

false	 true	

What	is	this	scalar	input?	

•  Consider:	

•  In	fn2,	we	can	change	the	value	of	C	without	recompiling,	
but	it	is	constant	for	the	whole	loop	

•  OpenSPL	equivalent:	
	

23	

Scalar Inputs Connect Space and Time

void fn1(int N, int *q, int *p) {
 for (int i = 0; i < N; i++)
 q[i] = p[i] + 4;

}

void fn2(int N, int *q, int *p, int C) {
 for (int i = 0; i < N; i++)
 q[i] = p[i] + C;

}

d	

+	

q	

SCSVar p = io.input(“p”, scsInt(32));
SCSVar C = io.scalarInput(“C”, scsInt(32));

SCSVar q = p + C;

io.output(“q”, q, scsInt(32));

C	
Wri:en	
by	CPU	

Summary

24	

•  OpenSPL	is	an	open	concept	for	a	language	based	on	
compu@ng	in	space	

	
•  OpenSPL	provides	the	core	constructs	to	map	
computa@on	onto	a	2D	compute	fabric		

•  OpenSPL	concepts	can	be	targe#ed	to	different	chip	
pla{orms,	while	performance	op@misa@ons	are	
highly	algorithm	and	chip	specific	

	

