CO405H

Computing in Space with OpenSPL
Topic 3: OpenSPL

Oskar Mencer Georgi Gaydadjiev

Department of Computing
Imperial College London

http://www.dog.i
http://www.doc |

< k/~oskar/
eorgig/

-

CO405H course page: 9://cc.doc.ic.ac.uk/
WebIDE: /openspl.doc.ic.ac

OpenSPL consortium page: ‘ vWW.openspl.c

o]

o.mencer@imperial.ac.uk g.gaydadjiev@impe

Overview

 |ntroduction to the Basics
e Architecture
e Spatial Substrates

e Control flow in Space

OpenSPL to drive Computing in Space

Dec 10, 2013. London. OpenSPL is being announced at the Bloomberg Enterprise Technology Summit in London. CME, Juniper, Chevron
and Maxeler are forming the founding team of companies to drive OpenSPL in their respective markets. Founding academic members are
Stanford, Imperial College London, Tsinghua University in Beijing and the University of Tokyo.

Dec 10, 2013. London. The OpenSPL consortium is announcing the first OpenSPL Summer School in July 2014, at Imperial College
London. The Summer School will bring together researchers, students, and members of OpenSPL to share experiences, application
development, and continue to develop the science behind computing in space.

Dec 9, 2013. Chicago. Ari Studnitzer at CME Group has published a blog on OpenMarket about the announcement of OpenSPL and
OpenSPL-compliant technology from the CME. “Our new, patent-pending iLink Market Segment gateway will provide inline pre-trade
credit controls, unparalleled predictability, advanced market controls, as well as increased capacity and throughput.”

* Founding Corporations:

E - ocmecww unper MW

e Academic Partners:

Imperial College . 'Stanford

0{
>

) > O S PI http://www.OpenSPL.org
> >

2> p launched on Dec 9, 2013

Q

Q

The Combined Control/DataFlow system

Customized
Encoding

Goal is to minimise and optimise data
movements in Control/DataFlow (C/DF)

* System 1 and System 2 are based on D Kahneman,

o

Thinking Fast Thinking Slow”, Nobel Prize in Economics, 2002 -

OpenSPL basics

e Control and Data-flows are decoupled
— Both are fully programmable

* Operations exist in space and by default runin paraIIeI
— Their number is limited only by the available space

* All operations can be customized at various levels
— e.g., from algorithm down to the number representation

* Multiple operations constitute kernels

* Data streams through the operations / kernels
 The data transport and processing can be balanced
* All resources work all of the time for max performance

* The In/Out data rates determine the operating frequency

Equally spread the available “forces” and move no faster than required by the application

OpenSPL example: X? + 30

Syntax Directed Translation

SCSVar x = 1o.input ("x"

SCSVar result = x * x + 30;

io.output ("y", result, scsInt(23)); \\\\\\\&

“f OpenSPL

_

"
,m,

OpenSPL example: Moving Average

class MovingAvgKernel extends Kernel ({
MovingAvgKernel () {

SCSVar x = io.input(“x”, scsFloat(7,17));
SCSVar prev = stream.offset(x, -1);
SCSVar next stream.offset (x, 1),
SCSVar sum = prev + xX + next;
SCSVar result = sum / 3;
io.output (Vy”, result, scsFloat(7,17));

OpenSPL example: Control in Space
or What do we do with IF statements
\%

class SimpleKernel extends Kernel ({
SimpleKernel () {
SCSVar x = io.input (“x”, scsFix(24));
SCSVar result = (x>10) ? x+1 : x-1;
io.output (“y”, result, scsFix(25));

10 1 1

The Machine Model of Space

e A Spatial Computing system consists of:

— a Chip: a Spatial Computing Substrate (SCS):
hardware technology with flexible arithmetic units
and programmable interconnect

— SCS specific compilation toolchain
— SCS specific runtime system and all low level software

* Three basic memory types:

— Scalars
— Fast Memory (FMEM): small and fast
— Large Memory (LMEM): large and slow

Fast and Slow

John von Neumann, 1946:

“We are forced to recognize the
possibility of constructing a hierarchy of
memories, each of which has greater
capacity than the preceding, but which
is less quickly accessible.”

-M

The Machine Model of Space

 Computational kernels interconnected by data flow
streams to form bigger entities called actions

e Action is the basic the Spatial Computing Substrate
(SCS) execution unit and performs as a single entity

* |n a spatial system one or more SCS engines exist,
each executing a single action at any moment in time

Arithmetic in Space

* Operations instantiated as separate arithmetic units

* Units along data paths use custom arithmetic and
number representation (as long data stays correct)

* The above may reduce individual unit sizes
(and maximizes the number that fits a given SCS)

* Data rates of memory and I/O communication may
also be maximized due to scaled down data sizes

Multiscale Arithmetic in Space

* Arithmetic optimizations at the bit level
— e.g., minimizing the number of "1’s in binary numbers, leading
to linear savings of both space and power (the zeros are
omitted in the implementation)
* Higher level arithmetic optimizations
— e.g., in matrix algebra, the location of all non-zero elements in
sparse matrix computations is important
* Spatial encoding of data structures can reduce transfers
between memory and computational units (boost
performance and improve efficiency)

— In temporal computing encoding and decoding would take time
and eventually can cancel out all of the advantages

— In spatial computing, encoding and decoding just consume a bit
more of additional space

Multiscale Optimisations

Multiple scales of computing Important features for optimization

complete system level => balance compute, storage and IO

parallel node level => maximize utilization of compute and
interconnect

microarchitecture level => minimize data movement

arithmetic level =>tradeoff range, precision and accuracy

= discretize in time, space and value

bit level =>encode and add redundancy

transistor level => create the illusion of ‘O’ and ‘1’

And more, e.g., trade Communication (Time) for Computation (Space)

Expl: Minimize ‘1's => Sparse Coefficients

m;
- o=
Si’g si’].
a) [Ci2|00 - 00| Cin
- wi,1 =0

wi,z

Sy Sz _Si
b) | €i3[0=0| Ci2 00| Ci,2

~ - wi,1 =0
Wiz3 W2
32799 609 14881 , i 75 34538 6169 , - 32793 31836 21146 ,
P= 30768 ~ 32768~ 32768 32768 | 32768 32768 32768 ' 32768 32768

151413121110 9 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 0

Fig. 2. Target format for cos function. Fig. 3. Target format for sin function. Fig. 4. Target format for exp function.

Nicolas Brisebarre, Jean-Michel Muller and Arnaud Tisserand

Sparse Coefficient Polynomial Approximations for Hardware Implementation,
Asilomar Conference, 2004.

_

To CompUte or remember, that is the question.

Computing f(x) in the range [a,b] with |E| < 27"

Table Table+Arithmetic Arithmetic
< >
and +I-IXI+ +I-le+
= uniform vs non-uniform = polynomial or rational approx
=" number of table entries = continued fractions
= how many coefficients " multi-partite tables

Underlying hardware/technology changes the optimum

Meta-programming

You can use the full power of your language of
choice, e.g., Java, to write a program that generates
the computation in space

Variables can be used as constants in hardware
(actually wires)
— inty; SCSVar x; x=x+y;

Hardware variables do not “exist” at compile time!
— Cannot do: inty; SCSVar x; y = x;

Conditionals and loops choose how to generate
hardware = not make run-time decisions

Runtime vs Compiletime Variables

What dataflow graph is generated?

A\ 144

SCSVar x = 1o.input (“x”, <type>);
SCSVar vy;
int CON = 1;

y = x + CON;

AN 144

io.output (“y”, y, <type>);

Runtime versus Compiletime Variables (cont)

What dataflow graph is generated?

SCSVar x = io.input (“x”, <type>);
int s = 10;
SCSVar vy;

if (s < 100) { v =x + 1; }
else { y = x —1; }

A\ 144

io.output (“yv”, vy, <type>);

What dataflow graph is generated?

SCSVar x = 1o.1input (“'x”, <type>);
SCSVar vy;

if (x < 10) { vy =x+ 1; }
}

else { yv = x - 1;]
Compile error.

io.output (“vyv”, vy, <type>); You can’t use the value of stream
X" in a meta conditional

Loops

What dataflow graph is generated?

SCSVar x = 1o.1input (“'x”, <type>);
SCSVar y = x;
for (int 1 = 1; 1 <= 3; 1++) {
y =y + 1i;
}
io.output (“yv”, vy, <type>);

Can make the loop any size — until you run out
of space on the chip!

Larger loops can be partially unrolled in space
and reused multiple times in time

If-Else Statements

* Data dependent conditional statements are common
* How can we implement this in OpenSPL?

int C = 500;
for (int 1 = 0; 1 < N; 1i++) {
if (x[1] > yl[i])
result[i] = x[1] - yI[i];
else
result([i] = C + x[i] + y[i];

Control Flow in Space
If-Else = Mux

What is this scalar input? &

SCSVar x = io.input ("x", <type>);
SCSVar y = 1o.inputA"y", <type>);
SCSVar C = i1o.scalarInput("C", <type>);

v \ 4

SCSVar result = x > y ? falsli/lu)t(rue/
(x —vy) ¢+ (C+ x + vy);

Select

Scalar Inputs Connect Space and Time

 Consider:
void fnl (int N, int *g, int *p) { void fn2 (int N, int *g, int *p, int C) {
for (int 1 = 0; 1 < N; 1i++) for (int 1 = 0; 1 < N; 1i++)
qli] = pl[i] + 4; hamnd qli]l = p[i] + C;

} }
* Infn2, we can change the value of C without recompiling,
but it is constant for the whole loop

 OpenSPL equivalent:

. . Written
SCSVar p = 1o.1input (“p”, scsInt(32)); C by CPU
SCSVar C = io.scalarInput(“C”, scsInt(32));
SCSVar g = p + C;

io.output(“qg”, g, scsInt(32));

Summary

 OpenSPL is an open concept for a language based on
computing in space

 OpenSPL provides the core constructs to map
computation onto a 2D compute fabric

 OpenSPL concepts can be targetted to different chip
platforms, while performance optimisations are
highly algorithm and chip specific

