CO405H

Computing in Space with OpenSPL
Topic 7: Programming DFEs
(Counters, Offsets and DFE mapping)
Oskar Mencer Georgi Gaydadjiev

Department of Computing
Imperial College London

http://www.doc.ic.ac.uk/~oskar/
http://www.doc. .ac.uk ~georgig/

CO405H course page: \ http://cc.doc.ic.ac.uk/openspl16/
WebIDE: http://openspl.doc.ic.ac.uk
OpenSPL consortium page: http://www.openspl.org

o.mencer@imperial.ac.uk g.gaydadjiev@imperie

Lecture Overview

* Counters / loop iteration variables
* Getting data in and out of the chip
e Stream offsets

 MaxCompiler hardware mapping

Working with Loop Counters

* How can we implement this in MaxCompiler?
for (int 1 = 0; 1 < N; i++) |
qli] = pli] + 1i;
}
How about this?
DFEVar p = io.input (“p”, dfelInt(32));
DFEVar 1 = io.input (“i”, dfeInt(32));
DFEVar g = p + 1i;

io.output (“g”, g, dfeInt(32));

Yes.... But, now we need to create
an array i in software and send it to
the DFE as well

L] S—

Working with Loop Counters

* There is very little ‘information’ in the i stream.
— Could compute it directly on the DFE itself

DFEVar p = 1o.input (“p”, dfelInt(32));
DFEVar 1 = control.count.simpleCounter (32, N);

&

DFEVar g p + 1i;

io.output (“q”, g, dfeInt(32));

‘ Half as many inputs
Less data transfer

* Counters can be used to generate sequences of numbers
e Complex counters can have strides, wrap points, triggers:
 E.g.if (y==10) y=0; else if (en==1) y=y+2;

Scalar Inputs

e Stream inputs/outputs process arrays
— Read and write a new value each cycle
— Off-chip data transfer required: O(N)

* Counters can compute intermediate streams on-chip
— New value every cycle
— Off-chip data transfer required: None

 Compile time constants can be combined with streams
— Static value through the whole computation
— Off-chip data transfer required: None

 What about something that changes occasionally?
— Don’t want to have to recompile = Scalar input
— Off-chip data transfer required: O(1)

Scalar Inputs

e Consider:
void fnl(int N, int *g, int *p) { void fn2(int N, int *qg, int *p, int C) {
for (int 1 = 0; 1 < N; 1++4) VS. for (int i = 0; i < N; 1i++)
qli] = pli] + 4; qli] = pl[i] + C;

} }
* Infn2, we can change the value of C without recompiling,
but it is constant for the whole loop

* MaxCompiler equivalent:

DFEVar p = io.input (“p”, dfeInt(32));
DFEVar C = io.scalarInput(“C”, dfeInt(32));

Written
by host
C

DFEVar g = p + C;

io.output (“q”, g, dfeInt(32));

A scalar input can be changed
once per stream, loaded into the
chip before computation starts.

Common uses for Scalar Inputs

* Things that do not change every cycle, but do change
sometimes and we do not want to rebuild the .max file.

* Constants in expressions
* Flags to switch between two behaviours

— result = enabled ? x+7 : x;

* Control parameters to counters, e.g. max, stride, etc

— if (cnt==cnt_max) cnt=0; else cnt = cnt + cnt_step;

On-chip memories / tables

A DFE has a few MB of very fast SRAM on the chip

* Can be used to explicitly store data on chip:
— Lookup tables
— Temporary Buffers

* Mapped ROMs/RAMs can also be accessed by host

for (1 =
qli]

¥

DFEVar p = io.input (“p”, dfeInt (10));

0; i < N; i++) {
= table[pl[1] 17

Written
by host

DFEVar g = mem.romMapped (“table”, p,
dfeInt (32), 1024);

io.output (V“q”, g, dfeInt(32));

Getting data in and out of the chip

* In general we have streams, ROMs (tables) and scalars

* Use the most appropriate mechanism for the type of
data and required host access speed.

e Stream inputs/outputs can operate for a subset of
cycles using a control signal to turn them on/off

m

Scalar input/output Slow

Mapped memory Up to a few Slow Moderate
(ROM / RAM) thousand

Stream input/output Thousands to Fast Highest

billions

Stream Offsets

e So far, we’ve only performed operations on each
individual point of a stream

— The stream size doesn’t actually matter (functionally)!
— At each point computation is independent
* Real world computations often need to access values
from more than one position in a stream
— For example, a 3-pt moving average filter:

Vi=(X 42X +x,,)/3

Stream Offsets

e Stream offsets allow us to compute on values in a
stream other than the current value.

e Offsets are relative to the current position in a stream;
not the start of the stream

e Stream data will be buffered on-chip in order to be
available when needed - uses fast memory (FMEM)

— Maximum supported offset size depends on the amount of
on-chip SRAM available. Typically 10s of thousands of points.

Moving Average in MaxCompiler

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

class MovingAverageSimpleKernel extends Kernel {

MovingAverageSimpleKernel(KernelParameters parameters) {

super(parameters);

DFEVar x = io.input("x", dfeFloat(B, 24));
DFEVar prev = stream.offset{x, —1);
DFEVar next = stream.offset(x, 1);

DFEVar sum = prev + x + next;
DFEVar result = sum / 3;

jo.output("y", result, dfeFloat(8, 24)):

78

L

=1

Kernel Execution

Kernel Execution

Kernel Execution

Kernel Execution

Kernel Execution

312|110

JVL

Kernel Execution

Boundary Cases

What about the

boundary cases?\\

More Complex Moving Average

 To handle the boundary cases, we must explicitly
code special cases at each boundary

(x,+x,,)/2 ifi=0
=1 (x_,+x)/2 1fi=N-1

(X +X; +x,,)/3 otherwise

Kernel Handling Boundary Cases

14 elass MovingAweragekernsl extends Kernel 1.'

15

1= Movingfweragekernel KernelParameters parameters) |
17 super(Darameters);

18

1% A Inpurk

20 DFEVar x = ie.inputi™x", dfeFloat{8, 24));

S

22 DFEVar size = ie_scalarinput]“size”, diellini(32));
23

24 & Dala

28 DFEVar prevOriginal = stream.offsalx, —11;

28 DFEVas rle::lﬂriginal = slream. allsel|x, 1};

27

28 & Comral

29 DFEVar count = control count simpleCounteri 32, sife);
an

8 DFEVar abovel owerBound = count = 0;

az DFEVar belowUpperBound = count < size — 1;

33

34 DFEVar withinBounds = abovelowerBound & belowUpperBound,
3s

Kl DFEVar prev = abovelowerBeound 7 prevOriginal : 0;
a7 DFEWVar next = belowUpperBound 7 nextCriginal : O
38

39 DFEVar divisor = withinBounds ? constant.var|dfeFloat|g, 24), 3) :
40

41 DFEVar sum = prev + X + nexi;

42 DFEVar resull = sum /[divisor;

43

44 io.output™y", result, disFloalid, 24)),

45 !

w)

Multidimensional Offsets

e Streams are one-dimensional but can be interpreted
as multi-dimensional structures

— Just like arrays in CPU memory

A multidimensional offset, is the distance between
the points in the one dimensional stream =2 linearize

for (int y = 0; y < N; y++)
for (int x = 0; x < N; x++)
plyl[x] = gly-1][x] + gqlyl[x-1] + glyl[x] + gly]l[x+1] + gly+1] [x]
for (int yv = 0; y < N; y++)
for (int x = 0; x < N; x++)
ply*Ntx] = ql(y-1)*N+x] + qly*N+x-1] +
gly*N+x] + gl[y*N+x+1] + gl (y+1l) *N+x]

And of course we now need to handle boundaries in
both dimensions...

Optimisation of On-chip Resources
DSP Black (~2000) 10 B]

LUT/FF (~300k) Block RAM (~1000)

ck

o

* Different operations use
different resources

* Main resources
— LUTs
— Flip-flops
— DSP blocks (25x18 multipliers)
— Block RAM (36Kbit)
— Routing!

Resource Usage Reporting

* Allows you to see what lines of code are using what
resources and focus optimization

— Separate reports for each kernel and for the manager

LUTs FF's BRAMs DSPs : MyKernel.java
7277 871 1.0 2 : resources used by this file
0.24% 0.15% 0.09% 0.10% of available
71.41% 61.82% 100.00% 100.00% of total used
94.29% 97.21% 100.00% 100.00% of user resources

o° o°

o°

: public class MyKernel extends Kernel {
public MyKernel (KernelParameters parameters) {
: super (parameters) ;
1 31 0.0 0 : DFEVar p = io.input ("p", dfeFloat(8,24)):;

2 9 0.0 0 : DFEVar g = io.input ("g", dfeUInt(8)):;
: DFEVar offset = io.scalarInput ("offset", dfeUInt(8))
8 8 0.0 0 : DFEVar addr = offset + qg;
18 40 1.0 0 : DFEVar v = mem.romMapped ("table", addr,
: dfeFloat (8,24), 256);
139 145 0.0 2 P =p * p;

401 541 0.0 0 : P =p + v;
: io.output ("r", p, dfeFloat(8,24));

Summary

* Counters help to reduce off chip traffic
* Choose the right variable type for your problem
e Offsets help but take care of boundary conditions

* Track the resource usage of your spatial code

