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Lecture Overview

* Counters / loop iteration variables
* Getting data in and out of the chip
e Stream offsets

 MaxCompiler hardware mapping




Working with Loop Counters

* How can we implement this in MaxCompiler?
for (int 1 = 0; 1 < N; i++) |
qli] = pli] + 1i;
}
How about this?
DFEVar p = io.input (“p”, dfelInt(32));
DFEVar 1 = io.input (“i”, dfeInt(32));
DFEVar g = p + 1i;

io.output (“g”, g, dfeInt(32));

Yes.... But, now we need to create
an array i in software and send it to
the DFE as well
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Working with Loop Counters

* There is very little ‘information’ in the i stream.
— Could compute it directly on the DFE itself

DFEVar p = 1o.input (“p”, dfelInt(32));
DFEVar 1 = control.count.simpleCounter (32, N);

&

DFEVar g p + 1i;

io.output (“q”, g, dfeInt(32));

‘ Half as many inputs
Less data transfer

* Counters can be used to generate sequences of numbers
e Complex counters can have strides, wrap points, triggers:
 E.g.if (y==10) y=0; else if (en==1) y=y+2;




Scalar Inputs

e Stream inputs/outputs process arrays
— Read and write a new value each cycle
— Off-chip data transfer required: O(N)

* Counters can compute intermediate streams on-chip
— New value every cycle
— Off-chip data transfer required: None

 Compile time constants can be combined with streams
— Static value through the whole computation
— Off-chip data transfer required: None

 What about something that changes occasionally?
— Don’t want to have to recompile = Scalar input
— Off-chip data transfer required: O(1)




Scalar Inputs

e Consider:
void fnl(int N, int *g, int *p) { void fn2(int N, int *qg, int *p, int C) {
for (int 1 = 0; 1 < N; 1++4) VS. for (int i = 0; i < N; 1i++)
qli] = pli] + 4; qli] = pl[i] + C;

} }
* Infn2, we can change the value of C without recompiling,
but it is constant for the whole loop

* MaxCompiler equivalent:

DFEVar p = io.input (“p”, dfeInt(32));
DFEVar C = io.scalarInput(“C”, dfeInt(32));

Written
by host
C

DFEVar g = p + C;

io.output (“q”, g, dfeInt(32));

A scalar input can be changed
once per stream, loaded into the
chip before computation starts.




Common uses for Scalar Inputs

* Things that do not change every cycle, but do change
sometimes and we do not want to rebuild the .max file.

* Constants in expressions
* Flags to switch between two behaviours

— result = enabled ? x+7 : x;

* Control parameters to counters, e.g. max, stride, etc

— if (cnt==cnt_max) cnt=0; else cnt = cnt + cnt_step;




On-chip memories / tables

A DFE has a few MB of very fast SRAM on the chip

* Can be used to explicitly store data on chip:
— Lookup tables
— Temporary Buffers

* Mapped ROMs/RAMs can also be accessed by host

for (1 =
qli]

¥

DFEVar p = io.input (“p”, dfeInt (10));

0; i < N; i++) {
= table[ pl[1] 17

Written
by host

DFEVar g = mem.romMapped (“table”, p,
dfeInt (32), 1024);

io.output (V“q”, g, dfeInt(32));



Getting data in and out of the chip

* In general we have streams, ROMs (tables) and scalars

* Use the most appropriate mechanism for the type of
data and required host access speed.

e Stream inputs/outputs can operate for a subset of
cycles using a control signal to turn them on/off

m

Scalar input/output Slow

Mapped memory Up to a few Slow Moderate
(ROM / RAM) thousand

Stream input/output  Thousands to Fast Highest

billions




Stream Offsets

e So far, we’ve only performed operations on each
individual point of a stream

— The stream size doesn’t actually matter (functionally)!
— At each point computation is independent
* Real world computations often need to access values
from more than one position in a stream
— For example, a 3-pt moving average filter:

Vi=(X 42X +x,,)/3




Stream Offsets

e Stream offsets allow us to compute on values in a
stream other than the current value.

e Offsets are relative to the current position in a stream;
not the start of the stream

e Stream data will be buffered on-chip in order to be
available when needed - uses fast memory (FMEM)

— Maximum supported offset size depends on the amount of
on-chip SRAM available. Typically 10s of thousands of points.




Moving Average in MaxCompiler
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class MovingAverageSimpleKernel extends Kernel {

MovingAverageSimpleKernel(KernelParameters parameters) {

super(parameters);

DFEVar x = io.input("x", dfeFloat(B, 24));
DFEVar prev = stream.offset{x, —1);
DFEVar next = stream.offset(x, 1);

DFEVar sum = prev + x + next;
DFEVar result = sum / 3;

jo.output("y", result, dfeFloat(8, 24)):
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Kernel Execution




Kernel Execution




Kernel Execution




Kernel Execution




Kernel Execution

312|110

JVL




Kernel Execution




Boundary Cases

What about the

boundary cases?\\




More Complex Moving Average

 To handle the boundary cases, we must explicitly
code special cases at each boundary

(x,+x,,)/2 ifi=0
=1 (x_,+x)/2 1fi=N-1

(X +X; +x,,)/3 otherwise




Kernel Handling Boundary Cases

14  elass MovingAweragekernsl extends Kernel 1.'

15

1= Movingfweragekernel KernelParameters parameters) |
17 super(Darameters);

18

1% A Inpurk

20 DFEVar x = ie.inputi™x", dfeFloat{8, 24));

S

22 DFEVar size = ie_scalarinput]“size”, diellini(32));
23

24 & Dala

28 DFEVar prevOriginal = stream.offsalx, —11;

28 DFEVas rle::lﬂriginal = slream. allsel|x, 1};

27

28 & Comral

29 DFEVar count = control count simpleCounteri 32, sife);
an

8 DFEVar abovel owerBound = count = 0;

az DFEVar belowUpperBound = count < size — 1;

33

34 DFEVar withinBounds = abovelowerBound & belowUpperBound,
3s

Kl DFEVar prev = abovelowerBeound 7 prevOriginal : 0;
a7 DFEWVar next = belowUpperBound 7 nextCriginal : O
38

39 DFEVar divisor = withinBounds ? constant.var|dfeFloat|g, 24), 3) :
40

41 DFEVar sum = prev + X + nexi;

42 DFEVar resull = sum /[ divisor;

43

44 io.output™y", result, disFloalid, 24)),

45 !

w )




Multidimensional Offsets

e Streams are one-dimensional but can be interpreted
as multi-dimensional structures

— Just like arrays in CPU memory

A multidimensional offset, is the distance between
the points in the one dimensional stream =2 linearize

for (int y = 0; y < N; y++)
for (int x = 0; x < N; x++)
plyl[x] = gly-1][x] + gqlyl[x-1] + glyl[x] + gly]l[x+1] + gly+1] [x]
for (int yv = 0; y < N; y++)
for (int x = 0; x < N; x++)
ply*Ntx] = ql(y-1)*N+x] + qly*N+x-1] +
gly*N+x] + gl[y*N+x+1] + gl (y+1l) *N+x]

And of course we now need to handle boundaries in
both dimensions...




Optimisation of On-chip Resources
DSP Black (~2000) 10 B]

LUT/FF (~300k) Block RAM (~1000)

ck

o

* Different operations use
different resources

* Main resources
— LUTs
— Flip-flops
— DSP blocks (25x18 multipliers)
— Block RAM (36Kbit)
— Routing!




Resource Usage Reporting

* Allows you to see what lines of code are using what
resources and focus optimization

— Separate reports for each kernel and for the manager

LUTs FF's BRAMs DSPs : MyKernel.java
7277 871 1.0 2 : resources used by this file
0.24% 0.15% 0.09% 0.10% of available
71.41% 61.82% 100.00% 100.00% of total used
94.29% 97.21% 100.00% 100.00% of user resources

o° o°

o°

: public class MyKernel extends Kernel {
public MyKernel (KernelParameters parameters) {
: super (parameters) ;
1 31 0.0 0 : DFEVar p = io.input ("p", dfeFloat(8,24)):;

2 9 0.0 0 : DFEVar g = io.input ("g", dfeUInt(8)):;
: DFEVar offset = io.scalarInput ("offset", dfeUInt(8))
8 8 0.0 0 : DFEVar addr = offset + qg;
18 40 1.0 0 : DFEVar v = mem.romMapped ("table", addr,
: dfeFloat (8,24), 256);
139 145 0.0 2 P =p * p;

401 541 0.0 0 : P =p + v;
: io.output ("r", p, dfeFloat(8,24));




Summary

* Counters help to reduce off chip traffic
* Choose the right variable type for your problem
e Offsets help but take care of boundary conditions

* Track the resource usage of your spatial code




