
Imperial College London
Department of Computing

Accelerating Optimisation-Based

Anisotropic Mesh Adaptation

using nVIDIA’s CUDA Architecture

Georgios Rokos

Submitted in part fulfilment of the requirements for the
MSc Degree in Computing Architecture of Imperial College London,

September 2010

Abstract

This report presents the design and implementation of 2D anisotropic mesh adaptivity on nVIDIA’s

CUDA architecture. Mesh smoothing is a component of anisotropic mesh adaptivity, a numerical

technology of some importance in Computational Fluid Dynamics (CFD). Adapting the size and

shape of elements in an unstructured mesh to a specification encoded in a metric tensor field is done

by relocating mesh vertices using an optimisation algorithm, like the one proposed by Pain et al. in

2001. This computationally heavy task can be accelerated by engaging nVIDIA’s CUDA, a massively

parallel and floating-point capable architecture. In order to ensure correct parallel execution, we

implemented the parallel framework based on the use of independent sets proposed by Freitag et al.

in 1998.

The report contains all related algorithms and architectural details, gives design and implementation

descriptions and lists various CUDA code optimisations which can lead to a speedup of up to 190

times over the serial CPU code and up to 45 times over an eight-threaded OpenMP code. Performance

analysis shows that CUDA’s texture memory can assist in accelerating execution by 2.5 times and

that high register usage is the main limiting factor for better performance. The report closes with a

short comparison between CUDA and the older Cell Broadband Engine Architecture, explaining why

programming in CUDA is easier and expected to yield better performance results.

i

ii

Acknowledgements

I would like to express my gratefulness and thank following people for their contribution to the

accomplishment of this project:

• Professor Paul Kelly, who took the initiative, proposed this project and accepted to take me under

his supervision, giving me the chance and all necessary lab equipment to build CUDAMesh64

and fulfil the requirements for my MSc degree.

• Dr Gerard Gorman, who supported me throughout this project, giving me invaluable advice and

guidance, providing all necessary algorithmic knowledge and assuming the role of the second

supervisor, devoting a great amount of his time.

• Graham Markall, who assisted me in the technical part of the project, having interesting dis-

cussions with me on nVIDIA’s CUDA, an architecture with which I had no previous experience,

and providing lab support.

• My family who shouldered the financial requirements of my MSc course and provided emotional

support against all difficulties of living abroad for the first time in my life.

iii

‘I do not think there is any thrill that can go through the human heart like that felt by the inventor
as he sees some creation of the brain unfolding to success... Such emotions make a man forget food,
sleep, friends, love, everything.’

Nikola Tesla

iv

Contents

Abstract i

Acknowledgements iii

1 Introduction 1

1.1 Motivation and Objectives . 1

1.2 Related Work . 2

1.3 CUDA and CFD . 2

1.4 Contributions . 2

1.5 Statement of Originality . 3

1.6 Report Outline . 3

2 Background Theory 5

2.1 Anisotropic Mesh Adaptivity . 5

2.1.1 Partial Differential Equations and Meshes . 5

2.1.2 Objective Functionals: Element Size and Shape 6

2.1.3 Anisotropic PDEs . 7

2.1.4 Metric Tensors . 7

2.1.5 Vertex Smoothing . 9

2.1.6 Laplacian Smoothing . 10

v

vi CONTENTS

2.1.7 Algorithm by Freitag et al. 11

2.1.8 Algorithm by Pain et al. 13

2.1.9 Rescaling the metric tensor . 15

2.2 Parallel Execution . 16

2.2.1 Operation Task Graph . 17

2.2.2 Vertex Smoothing Elemental Operation . 17

3 nVIDIA’s CUDA Architecture 19

3.1 Architectural Overview . 20

3.1.1 Memory Model . 21

3.1.2 Programming Model . 24

3.1.3 Execution Model . 25

3.2 Code Optimisations . 25

3.2.1 Memory Optimisations . 25

3.2.2 Execution Configuration Optimisations . 26

3.3 C++ support . 26

4 Design and Implementation 29

4.1 Design choices . 29

4.2 Meshes and the VTK framework . 30

4.3 The object-oriented model and data structures . 31

4.3.1 MeshOptimizer class . 31

4.3.2 Mesh class . 31

4.3.3 Vector2d structure . 32

4.3.4 Vector2dPair structure . 32

CONTENTS vii

4.3.5 Vertex class . 32

4.3.6 Element class . 32

4.3.7 Cavity class . 33

4.3.8 Metric class . 33

4.3.9 ObjectiveFunctional class . 34

4.3.10 OptimizationAlgorithm namespace . 35

4.4 Parallel implementation . 36

4.4.1 IndependentSets class . 36

4.4.2 GraphColoring namespace . 36

4.4.3 Parallel execution using OpenMP and CUDA 36

4.5 Optimisation techniques . 38

4.5.1 Treating the metric tensor field as graphics texture 38

4.5.2 Putting boundary vertices in dedicated independent sets 39

4.5.3 Stripping Cavity objects off Element information 39

4.5.4 Using on-chip memory primarily as L1 cache 40

4.6 Implementation difficulties . 40

4.6.1 Automatic Differentiation . 41

4.6.2 CUDA linker . 41

4.6.3 METIS and two-level graph colouring . 41

5 Experimental results and evaluation 43

5.1 Execution Configuration . 43

5.2 Scaling with different mesh sizes . 45

5.3 Basic CUDA version speedup . 45

5.4 Optimisations . 48

5.5 Complexity of the Anisotropic Mesh Adaptivity problem 51

6 Conclusions and future work 55

6.1 Conclusions . 55

6.1.1 CUDAMesh64 . 55

6.1.2 nVIDIA’s CUDA vs IBM’s CBEA . 56

6.2 Future Work . 58

Bibliography 58

viii

Chapter 1

Introduction

Mesh adaptivity is an important numerical technology in Computational Fluid Dynamics (CFD). CFD
problems are solved numerically using unstructured meshes, which essentially represent the discrete
form of the problem. In order for this representation to be accurate and efficient, meshes have to
be adapted according to some kind of error estimation. Furthermore, this error estimation may also
encode information about a possible special orientation of the problem under consideration, in which
case we say that the underlying dynamics is anisotropic.

Various techniques and algorithms can be used to adapt a mesh. One sophisticated technique, which
is considered to yield very good results, is the optimisation-based vertex smoothing [FJP95]. It can
be implemented using a great variety of algorithms, each one having its own computational advan-
tages and disadvantages over the others, therefore being more or less suitable for a given computer
architecture. In this project we only investigated two-dimensional cases, although a large part of the
algorithmic background and codebase could be used and extended to three-dimensional problems.

1.1 Motivation and Objectives

Adapting a mesh to an error estimation involves an enormous amount of floating-point operations
which can push even the most powerful processing units to their limits. Modern trends like nVIDIA’s
CUDA and ATI’s Stream architectures have made the tremendous floating-point processing capabilities
of GPUs available to a wide range of applications apart from their traditional usage in games, graphics
and motion picture processing. This shift in GPU target applications has been very successful so far
and we are already speaking of supercomputers consisting of graphics processors. Moreover, there is a
dormant tendency in CPU industry to slowly integrate the two traditional processing worlds: general
purpose (CPU) and massive floating-point (GPU) computing. There are already some early attempts
towards this direction, like IBM’s Cell Broadband Engine Architecture.

The CUDA platform offers great computational power at relatively low cost (in terms of space occu-
pied, power consumption during operation and money spend to acquire the essential hardware). These
properties make it a perfect candidate for accelerating mesh adaptation software. The purpose of this
project is writing a new application framework which implements various optimisation-based vertex
smoothing algorithms along with the proposal by [FJP98] for their parallel execution, enabling mesh
adaptation to be accelerated on CUDA GPUs. It is interesting to perform a comparison between this
new platform and conventional hardware and see how well CUDA can compete against the old trends
in terms of performance and scalability.

1

2 Chapter 1. Introduction

1.2 Related Work

During the past years, the Applied Modelling and Computation Group at Imperial College London
has developed a CFD code called “Fluidity”. Fluidity is a general-purpose numerical solver for fluid
dynamics problems which uses the finite element methods with unstructured finite element meshes. So
far it has been used in a wide variety of problems such as heat transfer, oceanic flow and other complex,
compute-intensive applications. It was designed to run on conventional hardware and take advantage of
distributed memory parallel computers using the Message Passing Interface (MPI) [ML09]. Complex-
ity of modern CFD applications, however, shows that calculations are expensive; using conventional
hardware requires thousands of processors and many days of processing.

Taking this into account, it becomes obvious that it would be useful to the modelling community
to have an extensible, CUDA-enabled framework so that the group can actually take advantage of
modern, high-performance GPUs in their modelling and simulation tasks. This framework is built
with extensibility in mind so that new adaptation algorithms can be easily incorporated in the future.

1.3 CUDA and CFD

CUDA has already been used to create solvers for computational fluid dynamics problems. Relevant
works include [GBT06], which was an attempt to enable CUDA capabilities in an existing application
(much like the case of Fluidity), [TccS09], which constitutes an exploration into solving the Navier–
Stokes equation on desktop systems using single, dual and quad GPU configurations and [ELD08],
which addresses the simulation of a hypersonic vehicle configuration.

In all cases, execution performance was impressive compared to conventional architectures. [TccS09]
managed to get a speedup of 100 times using a Quad Tesla S870 server, compared to serial CPU code
running on an AMD Opteron 8216. A key point in application performance, which also scales well as
the number of GPUs increases, proved to be the extensive usage of shared memory. [GBT06] report
that CUDA computing does not perform very well on small problems because the whole overhead
of engaging the GPU outweighs the few benefits obtained by low-level parallelism. Additionally, if
CPU is assigned with global reduction tasks like result accumulation or data updates there is a great
amount of time when GPUs remain idle. Another important conclusion coming from this work is that
the single-precision restriction on floating-point arithmetic does not seem to affect result accuracy
(in this project, though, we work on Fermi chipsets which are proportionally powerful in double-
precision arithmetic). [ELD08] have derived some interesting results by analysing their application’s
performance model. They propose using texture memory to merge small data blocks into one large
group so that computational load is kept high at all times and use shared memory with the purpose
of increasing memory bandwidth for stencil operations.

1.4 Contributions

The venture of accelerating the optimisation-based anisotropic mesh adaptation on CUDA has led to
the following contributions:

• This is the first adaptive mesh algorithm implemented on CUDA as far as the author is aware.

• A speedup of 190 times was achieved over a conventional CPU, which is relatively high compared
to other codes.

1.5. Statement of Originality 3

• Using texture memory to store the metric tensor field and exploiting its dedicated hardware to
interpolate metric tensor values offered a speedup of 2.5 times over the simple CUDA code.

In order to carry out this research, we built an extensible mesh adaptation framework, which could
be the base for future development projects. Using the same framework, it was estimated that the
algorithmic complexity of the anisotropic mesh adaptation problem is Θ(n2), n being the number of
mesh vertices. Finally, the experience gained throughout this project led to some interesting conclu-
sions on the ease of programming and expected performance from nVIDIA’s CUDA as it is compared
to IBM’s Cell Broadband Engine, based on the author’s former experience with the latter platform
[RPK+10].

1.5 Statement of Originality

This report represents my own work and to the best of my knowledge it contains no materials previously
published or written by another person for the award of any degree or diploma at any educational
institution, except where due acknowledgement is made in the report. Any contribution made to this
research by others is explicitly acknowledged in the report. I also declare that the intellectual content
of this report is the product of my own work, except to the extent that assistance from others in the
project’s design and conception or in style, presentation and linguistic expression is acknowledged.

1.6 Report Outline

The rest of the report is organised as follows: Chapter 2 gives a comprehensive description of the
main principles and algorithms that govern the topic of Anisotropic Mesh Adaptivity. More precisely,
Section 2.1 contains a description of the concepts behind anisotropic problems and mesh adaptivity,
along with optimisation-based algorithms, and Section 2.2 describes the framework upon which these
algorithms can be executed in a parallel architecture. Chapter 3 is an introduction to the basics of
the CUDA architecture, presenting CUDA’s basic architectural points and outlining some key points
and strategies used to achieve high performance on this platform. In Chapter 4 we describe the design
choices and the actual implementation of the target application, the classes which encapsulate the en-
tities of the adaptivity problem, the data structures used, various code optimisations that have been
investigated while trying to improve execution performance and, finally, a list of difficulties we encoun-
tered during the development phase of this application. Chapter 5 presents performance diagrams for
CUDAMesh64 running in single-threaded mode, OpenMP-mode and CUDA-mode. Based on output
meshes, we also try to estimate the algorithmic complexity of the anisotropic mesh adaptivity prob-
lem. Finally, Chapter 6 summarises the main concepts, the important papers, the experience gained
throughout this project and lists the topics that remain open for further study and future work.

4 Chapter 1. Introduction

Chapter 2

Background Theory

This chapter describes the necessary background knowledge the reader should be familiar with before
proceeding to the rest of the report. The research is based on two major subjects, the numerical
analysis topic of Anisotropic Mesh Adaptivity and the general-purpose computing architecture of
nVIDIA’s CUDA, which is described in Chapter 3. Both of them need to be briefly introduced along
with references to a collection of documents and publications, which provide more in-depth details on
these topics.

2.1 Anisotropic Mesh Adaptivity

2.1.1 Partial Differential Equations and Meshes

Fluid Dynamics is the science that studies problems related to the motion of fluids. As in all other
physics problems, a fluid dynamics problem is modelled using mathematical formulations such as
differential and integral equations. In particular, we study such problems using a set of PDEs known
as Navier-Stokes Equations. In most cases, these equations cannot be solved in an analytical way, so
we turn to numerical methods. On common approach is known as Finite Element Method (FEM), in
which the problem space of the equation under consideration is discretised into smaller sub-regions,
usually of triangular (in two dimensions) or tetrahedral (in three dimensions) shape. These sub-
regions, referred to as elements or facets form what is called a mesh. The equation is then discretised
and solved on this mesh, inside each sub-region.

If there is no regular pattern in the topology of elements in a mesh, the mesh is said to be unstructured.
Unstructured meshes offer greater flexibility in the Finite Element Method, but their representation is
more complex and models based on unstructured meshes exhibit higher computational cost compared
to structured mesh models. [PFW+09]. An example of space discretisation which results in an
unstructured mesh is shown in Figure 2.1 [cL99].

The numerical solution process can be seriously affected by the quality of space discretisation. Common
discretisation techniques often provide us with poor quality meshes and this has the side effect of
both slowing down convergence speed and degrading solution accuracy [FJP95]. This is the point
where mesh improving techniques, which reside in the wider context of adaptive algorithms, come
to the foreground. After solving the PDE on the initial mesh and making a posteriori estimations
about solution errors we can spot problematic areas and perform these optimisation techniques, which
decide on the quality of a mesh element using some kind of local quality metric (for example, minimum

5

6 Chapter 2. Background Theory

Figure 2.1: Example of space discretisation, resulting in an unstructured mesh. (Figure from [cL99])

element angle) and try to improve element size, angles and ratio; in other words, they try to “adapt”
the mesh towards the correct solution.

This process is summarised in Algorithm 1. The first step consists of solving the equation on the
initial mesh and spotting the areas where the solution error is greater than a pre-defined tolerance.
Then the adaptive algorithm tries to improve mesh quality and, therefore, solution accuracy. This
loop is repeated until solution error reaches an acceptable level.

Algorithm 1 General algorithm for the adaptive solution of a PDE.

Mesh mesh = new Mesh(PDE);

mesh.adapt();

PDE.solveOn(mesh);

while(PDE.getSolutionErrorEstimation() > USER_DEFINED_THRESHOLD)

{

Set S = {elements of low quality};

mesh.adapt();

PDE.solveOn(mesh);

}

2.1.2 Objective Functionals: Element Size and Shape

The quality and, therefore, the suitability of a mesh element is determined by some criterion. Common
quality criteria include the size of element angles, the aspect ratio between element edges, element size
and element shape. Mathematically, these criteria are expressed in the form of an objective functional,
i.e. a functional the value of which corresponds to the “height” of quality.

Vasilevskii & Lipnikov proposed a functional [VL99] which takes both element size and shape into
account. The functional is defined as:

QM (∆) = 12
√
3
| ∆ |M
| ∂∆ |2M︸ ︷︷ ︸F

(
| ∂∆ |M

3

)
︸ ︷︷ ︸

In the functional above, | ∆ | denotes the element area of an element ∆ and | ∂∆ | denotes its
perimeter. F (x) is a smooth function defined as

F (x) =

[
min

(
x,

1

x

)(
2−min

(
x,

1

x

))]3
which has a single global maximum of 1 in x = 1 and decreases as we move towards 0 or ∞, with
F (0) = F (∞) = 0. The first factor expresses the element quality based on its shape, whereas the

2.1. Anisotropic Mesh Adaptivity 7

second factor controls the size of element edges. For an equilateral triangle with edges of length l,
the first factor evaluates to 1. For any other triangle, this factor evaluates to < 1. Additionally, the
second factor evaluates to 1 for a triangle with edges the sum of which is equal to 3, e.g. an equilateral
triangle with edges of unit length, otherwise it evaluates to < 1. Taking these two factor together, the
objective functional reaches its maximum for an equilateral triangle with sides of unit length; in any
other case, the objective functional evaluates to < 1.

Usually, and in the scope of this project, we consider the value of the objective functional for the
entire mesh or a mesh cavity to be equal to the value of the element with the lowest quality in the
mesh or cavity, respectively.

2.1.3 Anisotropic PDEs

A problem is characterised as “anisotropic” if its solution exhibits directional dependencies. In other
words, an anisotropic mesh contains elements which have some (suitable) orientation. An example of
an anisotropic mesh is shown in Figure 2.2 [cL99]. The process of anisotropic mesh adaptation begins
with a (usually automatically) triangulated mesh as input and results in a new mesh, the elements
of which have been adapted according to some error estimation. This estimation is given in the form
of a Metric Tensor. In the scope of this project, we assume that the error estimation in given to us
and we do not examine how it can be calculated. An example of gradually adapting a mesh to the
requirements of an anisotropic problem is shown in Figure 2.3 [AMC06].

Figure 2.2: Example of an anisotropic mesh. Mesh elements have different shape and size in different
locations on the mesh. (figure from [cL99])

The error estimation gives information about how big or small a mesh element should be. In 1-D, the
solution error inside an element e (i.e. a line segment) is defined as

ε = h2e |
∂2ψ

∂x2
|

where he is the length of element e and ψ is the solution variable. In multi-dimensional problems, the
error is defined as

ε = uT | H | u

where H is the Hessian of the solution equation and u is a vector which shows the ideal length and
orientation of element e. In simpler words, the higher the error inside an element e the smaller this
element has to become [PUdOG01].

2.1.4 Metric Tensors

In the last equation, the vector u is constructed according to a metric tensor M , i.e. a tensor which,
for each point in the 2-D (or 3-D) space, represents the desired length and orientation of an edge

8 Chapter 2. Background Theory

Figure 2.3: Example of anisotropic mesh adaptation. On the left, the process begins with an auto-
matically triangulated mesh, which was not created with with the error estimation in mind. This fact
has an impact on the solution error, which is depicted in the bottom left figure. After one refinement
iteration (middle figures) the mesh is better adapted to PDE’s anisotropy and the solution error is
greatly reduced. After two iterations (right figure) the results are even better. (figure from [AMC06])

containing this point. As was the case with the PDE itself, the metric tensor is also discretised; more
precisely, it is discretised node-wise. The value of the error between mesh nodes (points) can be taken
by interpolating the error from nearby nodes.

The objective functional introduced earlier involved the area and the perimeter of an element E.
These quantities are defined with respect to a metric M . If we are in the standard Eucleidian space,
the functional reaches its maximum when we have a mesh consisting of uniformly sized, equilateral
triangles. In an anisotropic problem we can use the quantities of area and perimeter if we express
them with respect to a non-Eucleidian metric M(x). For an element E with area | ∆ |E and edges of
length ei in the standard Eucleidian space, its area with respect to the metric M(x) can be calculated
as

| ∆ |M=
√
det(M) | ∆ |E

and it perimeter as

| ∂∆ |M=

3∑
i=1

∥ ∂ei ∥M=

3∑
i=1

√
eTi Mei

where we consider that M is constant over the element E, both for simplicity and numerical imple-
mentation.

Adapting a mesh so that it distributes the error uniformly over the whole mesh is, in essence, equivalent

2.1. Anisotropic Mesh Adaptivity 9

to constructing a uniform mesh consisting of equilateral triangles with respect to the metric M . This
concept can be more easily seized if we give an analogous example with a distorted space like a piece
of rubber that has been stretched (see Figure 2.4). In this example, our domain is the piece of rubber
and we want to solve a PDE in this domain. According to the objective functional by Lipnikov
(2.1.2), all triangles in the distorted (stretched) piece of rubber should be equilateral with edges of
unit length. When we release the rubber and let it come back to its original shape, the triangles will
look compressed and elongated, a picture that resembles Figure 2.3.

Figure 2.4: Example of mapping of triangles between the standard Eucleidian space (left shapes) and
metric space (right shapes). In case (α), the elements in the physical space are of the desired size and
shape, so they appear as equilateral triangles with edges of unit length in the metric space. In case
(β), the triangle does not have the desired geometrical properties, so it does not map to an equilateral
triangle in the metric space.(Figure from [PFW+09])

The metric is defined in such a way that an edge of an element is of unit length with respect to this
metric if it has the desired error ϵu indicated by this metric, i.e.

M =
1

ϵu | H̄ |

The metric tensor M can be decomposed as

M = QΛQT

where Λ is the diagonal matrix, the components of which are the eigenvalues of M and Q is an
orthonormal matrix consisting of eigenvectors Qi. Geometrically, Q represents a rotation of the axis
system so that the base vectors show the direction to which the element has to be stretched and Λ
represents the amount of distortion (stretching). Each eigenvalue λi represents the ideal length of an
edge in the direction Qi. If we denote the diagonal values of the Hessian of the solution as hi, then
each eigenvalue λi is defined as

hi =
1√
λi

so that stretching or compressing an element will be done in an inverse square fashion with respect to
the error metric [PFW+09].

2.1.5 Vertex Smoothing

Vertex smoothing is an adaptive algorithm which tries to improve mesh quality by relocating existing
mesh vertices. Contrary to other techniques, vertex smoothing has the advantage of leaving the mesh
topology intact. All elements affected by this relocation form an area on the mesh called cavity.
Essentially, a cavity is defined by its central, free vertex and all incident vertices. A vertex smoothing
algorithm tries to improve the quality of cavities containing bad elements. Optimisation takes into
account only elements belonging to the cavity, which means that only one vertex is considered for
relocation at a time. In other words, the scope of optimisation is the cavity, therefore vertex smoothing

10 Chapter 2. Background Theory

is said to be a local optimisation technique. The algorithm moves towards the global optimum through
a series of local optimisations. An example of optimising a cavity is shown in Figure 2.5 [Rok10].

Figure 2.5: Vertex smoothing example. The vertex under consideration is the one marked with a big
black circle. The local problem area is the light-orange one. All neighbouring vertices are denoted
with small black circles. Left figure shows the local problem cavity before smoothing. Right figure
shows the result of local smoothing. [Rok10]

The local nature of vertex smoothing leads to the need for optimising a cavity over and over again.
After having smoothed a vertex, smoothing an incident vertex in the scope of its cavity may change
the quality of the first cavity. Because of this property, the algorithm has to be applied a number
of times in order to bring things to an equilibrium. The need for multiple iterations dictates that
the local optimisation kernel should be computationally inexpensive. The process is summarised in
Algorithm 2. Although the number of iterations to reach an equilibrium is given as a user-defined
constant, it is not known a priori how many iterations will be needed and, in fact, it is not even
guaranteed that the global optimum can be reached [FJP98]. Convergence criteria could also be used
to terminate the algorithm, e.g. if the number of vertices smoothed during the last iteration is zero,
then the loop terminates. Following subsections describe the algorithms used in this research to solve
the local optimisation problem.

Algorithm 2 The vertex smoothing algorithm running MAX ITER times.

Set S = {vertices that should be relocated};

int iteration = 0;

while(iteration < MAX_ITER)

{

for(Vertex v : S)

v.relocate();

iteration++;

}

2.1.6 Laplacian Smoothing

Laplacian Smoothing is one of the most common smoothing algorithms, which just places the vertex to
the geometric centre of all vertices surrounding the cavity. Denoting a vertex’s coordinates as (xi, yi),

2.1. Anisotropic Mesh Adaptivity 11

the new position for a central vertex in a cavity, defined by N surrounding vertices, is the arithmetic
mean of all surrounding vertices:

xcentral =
1

N

∑
xi,∀(surrounding vertex)i

ycentral =
1

N

∑
yi,∀(surrounding vertex)i

Although computationally cheap, this method does not yield optimal results (it can actually worsen
mesh quality) and, what is worse, can even end up returning an invalid cavity, in which some elements
have been inverted and have negative area [Fre97]. Invalidation comes as a result of violating the
Interior Convex Hull restriction. This convex hull of a cavity is an area within which relocation has
to be restricted. An example of a cavity and its convex hull is depicted in Figure 2.6.

Figure 2.6: Example of an cavity and its interior convex hull. If the vertex under consideration is
relocated outside the grey zone, some elements will have negative area and the mesh will be invalid.

The problems of Laplacian Smoothing can be avoided using Optimisation-based smoothing, a family of
algorithms which try to optimise an objective functional, retaining validity of meshes and guaranteeing
that the resulting cavities will be at least of the same quality as the initial ones. All this comes at the
cost of heavier computational load, which is not necessarily a bad thing, as long as we are considering
parallel implementations where, as it is known, heavy kernels favour scalability (of course, this does
not mean that they also favour performance!). Therefore, optimisation-based smoothing is a perfect
candidate for floating-point capable and massively parallel architectures like CUDA. The optimisation-
based algorithms used in this research are described in the following sub-sections.

2.1.7 Algorithm by Freitag et al.

Vertex smoothing is a process which aims at maximising the quality of the worst element in a cavity.
Recall that the quality of an element is measured using some objective functional, like the one proposed
by Vasilevskii and Lipnikov [VL99]. The implied functional for the whole cavity can be defined as
the even infinity norm of all quality functionals associated with the elements of this cavity. This
description defines an optimisation problem for each individual cavity in the mesh. The following is
a description of the optimisation problem and the solution proposed by [FJP95], as it is described in
our previous work [Rok10].

“If we symbolise the cavity as Ci, its interior convex hull as Hi and the set of all elements inside Ci

12 Chapter 2. Background Theory

as Ai then the function we want to maximise is:

ϕ (p) = min
(
QM(∆)

(p)
)
,∀∆ ∈ Ai

A projection on the x-field of an example ϕ(p) is shown in Figure 2.7. As can be seen in that figure,
each QM(∆)

(p) is a smooth and differentiable function. Moving along a line ofQM(∆)
(p), there are more

than one elements ∆ that tend to obtain the minimum value. We say that these elements form the
active set A. The active set, however, changes at the points denoted by black circles in the figure and
at these points QM(∆)

(p) is non-differentiable. In order to find the position p of the central vertex for
which the worst element quality is maximised, we have to solve the non-smooth optimisation problem

max(ϕ(p)),p ∈ Hi

This problem has a solution at some point ps if all directional derivatives of ϕ(p) at ps are non-
negative. This solution is unique because all functions QM(∆)

(p) are monotonic while we move towards
a fixed search direction. The non-smooth problem can be solved using a technique similar to the
Gradient Descent method. This method, also called Steepest Descent, is used when we deal with
twice-differentiable functions. The modified algorithm for non-smooth functions is the one described
in Algorithm 3.

Figure 2.7: Projection of an example ϕ(p) on the x-field.

Let the original position of the central vertex be pinit. At first, the algorithm calculates the interior
convex hull of the cavity under consideration and chooses a starting point p0. If pinit does not coincide
with ps, in which case we already have the optimal location for the central vertex and the algorithm
exits, then a first guess for p0 is the geometric centre pc of this hull. If this guess coincides with ps

then the algorithm stops. Recall that the criterion to determine whether ps has been found is that
all directional derivatives of ϕ(p) at this guess-point are non-negative. If pc does not coincide with
ps then the algorithm decides which point (pinit,pc) corresponds to a larger value for ϕ(p) and sets
it as the starting point p0.

Having found a starting point, the algorithm iteratively tries to find a solution. At every estimation-
point pi the algorithm calculates all directional gradients. The search direction, i.e. the “overall”
steepest direction, is calculated by taking the gradients of all QM(∆)

∈ Ai and finding all possible
convex linear combinations of them (the latter implies solving a respective quadratic programming
problem). After that, the algorithm has to decide how to move along the search direction, i.e. solve the
“line search sub-problem”. This task is accomplished by predicting the points at which the active set
Ai will change. This prediction can be made by taking the first-order Taylor series approximation of

2.1. Anisotropic Mesh Adaptivity 13

QM(∆)
(p),∀QM(∆)

∈ Ai and calculating the intersection of each such approximation with the projection
of ϕ(p) in the search direction. The distance between pi and the intersection point closest to it is
the initial step length. If moving pi along the search direction by this length improves ϕ(p) by {the
estimated improvement ± some percentage} ([FJP95] propose ±10%) then this length is accepted and
{pi + step length × search direction} becomes the new estimation-point pi. Otherwise, the step
length is halved again and again until either a suitable length is found or the step length becomes
smaller than a user-defined threshold. Additionally, a step is accepted on the condition that the next
step improves ϕ(p) by a smaller amount.

The process described in the paragraph above is repeated until one of the following conditions are
met:

1. pi coincides with ps

2. the step length becomes smaller than the user-defined threshold

3. the improvement of ϕ(p) between two successive steps falls below a user-defined threshold

4. the number of iterations exceeds a pre-defined value”

2.1.8 Algorithm by Pain et al.

When solving the optimisation problem, we can also use non-differential methods, like the one de-
scribed by [PUdOG01]. Recall that the optimal cavity is the one in which all triangles are equilateral
with edges of unit length with respect to some error metric. In essence, the algorithm described here
is Laplacian Smoothing in metric space.

Given a cavity Ci, it consists of a central vertex Vi and all its adjacent vertices Vj . Let Li be the set of
all edges the one end of which is the central vertex and the other end is one of the adjacent vertices.
The aim is to equate the lengths of all edges ∈ Li. The length of an edge l in metric space is defined
as rl =

(
uTl Mlul

)
. In order to have (as much as possible) equilateral triangles, we want to minimise

the following functional:

Ei =
1

2

∑
l∈Li

r2l =
1

2

∑
uTl Mlul

If this functional is differentiated with respect to the position pi of the central vertex and expressing
the edge length in the standard Eucleidian space as ul = pi−yil , where yil is the position of an adjacent
vertex Vj , then

∂Ei

∂pi
=

∑
l∈Li

Mlul

At the minimum of the above functional:∑
l∈Li

Mlp
i =

∑
l∈Li

Mly
i
l − qi = 0

where qi =
∑

l∈Li
Mly

i
l . If we define Ai =

∑
l∈Li

Ml, then we can calculate the position pi using the

equation Aipi = qi. In order to ensure diagonal dominance and insensitivity to round-off error, a new
diagonal matrix Di is introduced so that the last equation can be written as

(Di +Ai)(pi − p̂i) = qi −Aip̂i

14 Chapter 2. Background Theory

Algorithm 3 The optimisation-based smoothing algorithm by Freitag et al. [FJP95].

Cavity c = {cavity under consideration};

Function phi = {function phi(p)};

Point pInit = c.getCentralPoint();

Function gradPhi = phi.getGradientFunction();

if(gradPhi.isNonNegativeInAllDirectionsAt(pInit))

return;

Point p = c.getConvexHull().getGeometricalCentre();

if(gradPhi.isNonNegativeInAllDirectionsAt(p))

{

c.setCentralPoint(p);

return;

}

if(c.testMinimumAngleWithCentre(p) <

c.testMinimumAngleWithCentre(pInit))

p = pInit;

int iteration = 0;

double step = INF;

while(!gradPhi.isNonNegativeInAllDirectionsAt(p) &&

iteration < MAX_ITERATIONS && step > MIN_STEP_LENGTH &&

c.getLastImprovement() > MIN_IMPROVEMENT)

{

Direction searchDirection = c.findSteepestDirectionAt(p);

step = p - c.getClosestIntrPointInDirection(searchDirection);

while((c.testMinAngleImprAt(step, searchDirection) <

0.9 * c.getEstimatedImpr() ||

c.testMinAngleImprAt(step, searchDirection) <

c.testMinAngleImprAt(step / 2, searchDirection))

&& step > MIN_STEP_LENGTH)

{

step /= 2;

}

if(step > MIN_STEP_LENGTH)

p += step * searchDirection;

iteration++;

}

c.setCentralPoint(p);

2.1. Anisotropic Mesh Adaptivity 15

where p̂i is the initial position of the central vertex and the diagonal matrix is defined as

Di
jk =

{
maxAi

jj , (1 + σ)
∑

m=1,m̸=j | Ai
jm |, if j = k

0, if j ̸= k

The value of σ is taken to be σ = 0.01 in this project. Finally, it is important to use relaxation of pi

for consistency reasons, using xi = wpi + (1 − w)pi, w ∈ (0, 1]. In this project, w = 0.5 and the new
position of the central vertex can be found by solving the the equation

(Di +Ai)(xi − p̂i) = w(qi −Aip̂i).

In the case of boundary vertices, i.e. vertices which are allowed to move only along a line (the mesh
boundary), a modification of the above algorithm has to be used. The restriction that the vertex can
only move along a line means that the new position xi can be calculated using the equation

xi = aiCu
i
l + p̂i,

where uil is the unit vector tangent to the boundary line and aiC is the displacement along this line
measured from the initial position p̂i of the vertex. aic can be calculated from the equation

(Di + M̂ i)aic = wgi,

where
M̂ i = uil

T ∑
l∈Li

Mlu
i
l

and
gi =

∑
l∈Li

uil
T
Ml(x

i − p̂i).

2.1.9 Rescaling the metric tensor

The main characteristic of vertex smoothing is that it does not change mesh topology, i.e. the number
of mesh elements remains constant and the mesh is not coarsened or refined. In this case, because we
cannot refine or coarsen the mesh, it is important to rescale the metric tensor field so that the expected
number of elements, as defined by the metric tensor, is equal to the current number of elements. The
expected number of elements can be defined as:

Enew =

∑Eold
e=1 A

Ω
e

θ

where Eold is the current number of mesh elements, AΩ
e = Ae

√
det(Me) is the area of a triangle in

metric space (Ae is the area of this element in the standard Eucleidian space) and θ =
√
3
4 is the area

of an ideal element in metric space. If Enew ̸= Eold, then the metric M has to be rescaled, so that we
end up with a new metric Mnew = βM. β is a scalar value which must satisfy the following condition:

Enew =

∑Eold
e=1 Ae

√
det(βMe)

θ
,

which gives that

β =
θEnew∑Eold

e=1 Ae

√
det(Me)

.

16 Chapter 2. Background Theory

2.2 Parallel Execution

This section gives a description of how vertex smoothing can be run in a parallel fashion, based upon
the parallel framework proposed by [FJP98]. Parallel execution means that data are distributed over
participating processing units. It is important to ensure correct execution, i.e. retain consistency of
distributed data and get the same results out of the parallel algorithm as if we ran a serial one. In
order to satisfy this requirement, we use the concepts of elemental operations and the operation task
graph, a graph with respect to which the elemental operations must be synchronised.

Trying to ensure data consistency is one of the main reasons why parallel execution performance can
be hindered. Being very strict on this consistence requirement would lead to a degeneration of the
parallel algorithm into a sequential one. [FJP98] introduce the concept of elemental operations and
propose that data consistency is maintained only between successive executions of these operations
and not during their execution. This requirement leads to the formulation of the elemental operation
steps:

(a) parallel execution of a set of some mesh improving techniques in each participating processing
unit and

(b) global reduction between these units to update data modified by a.

Retaining data consistency essentially means three things. First of all, there cannot exist two process-
ing units sharing ownership of the same data. Secondly, every mesh vertex has to know exactly what
its neighbouring vertices are, i.e. which these vertices are (e.g. their IDs) and their position on the
mesh. Neighbouring relationship has to be reciprocal, i.e. if processor 1 knows that its vertex v1 has
as neighbour processor 2’s vertex v2, then processor 2 must also know that v2 has v1 as neighbour.
Finally, every mesh element unit has to know its adjacent elements as well. Once again, this relation-
ship has to be reciprocal. A more formal formulation of these requirements is given in [Rok10] based
on the proposal by [FJP98]:

“The type of data structures depends on the problem under investigation, the algorithm used and the
specific implementation of this algorithm. The research group that proposed this parallel framework
([FJP98]), however, believe that the following properties must be fulfilled for every type of distributed
data structures used:

• Every piece of mesh data (vertices, edges and elements) is owned by a unique processing unit –
no two processors can share ownership of the same data.

• Vertex data have to retain their consistency. After any elemental operation, every vertex v has
to know which its neighbours are, i.e. adj(v). This knowledge has to be consistent, i.e. a vertex
u is neighbour of v if and only if v ∈ adj(u) in the processing unit owning vertex u. In other
words, GV has to be consistent across all processors. Knowing a neighbour means knowing which
vertex it is (for example its global index number) and its position on the mesh.

• Element neighbour data have to retain their consistency. After any elemental operation, every
element t has to know which are its neighbours, i.e. adv(t). In other words, GT has to be consis-
tent across all processors. This knowledge can be used to perform some important operations,
for example calculating a quality metric of two neighbouring elements in order to decide whether
an edge-flip will improve local quality.”

2.2. Parallel Execution 17

2.2.1 Operation Task Graph

The operation task graph G is a graph the vertices of which represent the elemental operations that
have to be accomplished and the edges represent dependencies between operations. If the input of
operation op2 depends on operation op1 then vertices v1 and v2 are connected by an edge. Edges are
undirected, i.e. if (v1, v2) ∈ G, then also (v2, v1) ∈ G. The task graph is an essential structure as it
allows us to extract independent sets of operations that can be executed in parallel. After executing
an independent set of operations, we have to update neighbouring data (vertices, edges and elements)
of the operations’ results. At this point it is guaranteed that the distributed data structure will be
consistent, since all operations executed were independent from each other. The general algorithm
can be seen in Algorithm 4.

Algorithm 4 General parallel algorithm for the mesh refinement process.

TaskGraph G = Problem.createTaskGraph();

Set S = new Set(G.getTasksToBeAccomplished());

while(!S.empty())

{

Set R = new Set();

while(!S.empty())

{

Set I = new Set(S.getIndependentSet());

I.executeElementalOperationsOnAllElements();

I.updateElements(I.getAdjacentElements());

R.add(I.getAdjacentElements().spawnElementalOperations());

}

S.setEqualTo(R);

}

This algorithm consists of two loops. The outer loop is call the propagation loop, because it spawns
new elemental operations to adjacent entities (e.g. cavities, elements etc.). In the case of vertex
smoothing, for example, once a cavity C defined by the central vertex VC has been optimised, the
cavities defined by all vertices adjacent to VC have to be re-optimised, since a change in cavity C’s
geometry may have affected their quality. As for the inner loop, the number of iterations performed
depends on the task graph and, more importantly, the way independent sets are extracted from it. The
nature of vertex smoothing implies that the elemental operations can run asynchronously and mostly
require only one-to-one communication between processing units (for other optimisation algorithms
a few global reductions would also be required). This property is very important in the scope of
efficiency and scalability of a parallel application.

2.2.2 Vertex Smoothing Elemental Operation

Executing the algorithm in parallel, we cannot smooth arbitrarily any vertices simultaneously. As
can be seen in Figure 2.8, when we smooth a vertex, all adjacent vertices have to remain at their old
positions. This means that the independent set of vertices to be smoothed contains vertices that are
not adjacent. After smoothing, all neighbouring vertices must have their adjacency lists updated with
the new position of the smoothed vertex. Algorithm 5 describes this elemental operation. The task
graph is the vertex graph GV which is essentially the representation of the mesh itself, as can be seen
in Figure 2.9.

Next up, having presented the concept of Anisotropic Mesh Adaptivity, the main algorithms involved in

18 Chapter 2. Background Theory

Figure 2.8: Example of how vertex smoothing should be performed. The left figure shows that in
order to smooth the vertex denoted by a black circle we need to know the positions of all adjacent
vertices (white circles). In the right, figure we see that all adjacent vertices must be updated with the
new position of the smoothed one.

Figure 2.9: Example of a vertex graph GV . If we ignore the exact shape of mesh elements, the same
drawing could depict the mesh itself.

it and the way it can be run in a parallel fashion, we proceed to present nVIDIA’s CUDA architecture,
which is the platform of choice for this project, on which (platform) we attempted to implement all
the above ideas.

Algorithm 5 Algorithm describing vertex smoothing elemental operation.
Vertex v = vertex under consideration;

v.smooth();

if(v.positionChanged())

{

v.getAdjacentVertices().updateWithNewPosition(v.getPosition());

R.add(v.getAdjacentVertices());

}

Chapter 3

nVIDIA’s CUDA Architecture

nVIDIA’s Compute Unified Device Architecture constitutes one of the most promising trends in modern
processor industry. Over the past two decades, the evolution of 3D games pushed semiconductors
industry to fabricate more and more powerful graphics processing chips. Gaming requirements have
led to the advancement of GPUs to the point where GPU performance in floating–point arithmetic
exceeded that of traditional CPUs. Up to recent years, all this tremendous processing power was
intended to be used only for graphics and video processing purposes. The concept of General Purpose
GPU Computing is a modern trend which aims at unleashing GPU processing capabilities and making
them available to a wider range of compute intensive applications. A comparison between CPU and
GPU floating-point capabilities over the past decade can be seen in Figure 3.1.

Figure 3.1: Comparison between the floating-point capabilities of conventional CPUs and GPUs over
the years. (Figure from [nC10a])

Memory latency and limited bandwidth are generally considered to be two main bottlenecks in high-
performance computing. High floating-point capabilities should be accompanied by high memory
bandwidths and modern GPUs seem to have address this problem pretty well in comparison to tradi-
tional CPUs. Figure 3.2 shows the evolution of memory bandwidth over the past years.

CUDA is nVIDIA’s attempt to enter the GPGPU market, which targets not only home and enterprise

19

20 Chapter 3. nVIDIA’s CUDA Architecture

Figure 3.2: Comparison of memory bandwidth between conventional CPUs and GPUs over the years.
(Figure from [nC10a])

users, but also the supercomputing field. The advantages of CUDA over conventional architectures lie
on the way GPUs are designed to manipulate data. Contrary to a general purpose CPU, a graphics
processor is designed to “apply the same shading function to many pixels simultaneously” or, in the
case of GPGPU computing, “apply the same function to many data simultaneously” [cfd08]. Massive
data processing means that GPUs can execute thousands of threads at the same time and are equipped
with high bandwidth interconnection between processing cores and memory. This renders them perfect
candidates for compute–intensive applications, but not for control–intensive tasks.

As can be seen in Figure 3.3, the main difference between a GPGPU and a traditional CPU is their
floating-point capability. A GPGPU “is specialized for compute-intensive, highly parallel computation
exactly what graphics rendering is about and therefore designed such that more transistors are devoted
to data processing rather than data caching and flow control” [nC10a].

Figure 3.3: Traditional processing units devote transistors both to execution units and cache memories.
CUDA, on the other hand, devotes more area to data processing. (Figure from [nC10a])

3.1 Architectural Overview

The philosophy behind CUDA programming is indissolubly bound with its massive data processing
capability. The program is written to be executed by one thread and is finally instantiated multiple

3.1. Architectural Overview 21

times so that it is executed by many threads running in parallel. This model implies that the program
has to be scalable in order to gain the most out of CUDA’s hundreds of cores and thousands of
threads. Depending on which GPU model is used, the number of available cores, therefore available
execution threads, can vary. A general overview of this architecture can be seen in Figure 3.4 [cud08b].
The GPU consists of a number of multi–processors, each one containing 8 smaller stream–processors.
Considering that a typical graphics card can have up to 30 multi–processors and each multi–processor
can execute up to some hundreds of threads, a single GPU device can run simultaneously up to some
thousands of threads.

Figure 3.4: Overview of CUDA architecture. [cud08b]

3.1.1 Memory Model

A CUDA program consists of small pieces of code called kernels. Each kernel is executed simultane-
ously on many cores by multiple threads. All threads run exactly the same code, but may manipulate
different data. The GPU communicates with the CPU through the PCI–Express bus. These two pro-
cessing units have different address spaces, but data can be transferred between them. Explicit data
transfer is mandatory and the CUDA API provides all necessary functions. Attempt to dereference
a CPU address on the GPU or vice versa will likely result in a crash. Each thread has its own local
storage (mainly in form of GPU core registers). Additionally, GPUs are equipped with 16KB per
multiprocessor on–chip memory which is two orders of magnitude in terms of latency and one order
of magnitude in terms of bandwidth faster than system memory. For devices of compute capability
over 2.0, like the one used in this project (Fermi architecture), the on–chip memory is 64KB large and
can be used both as software-managed shared memory and as a hardware-managed L1 cache. This
memory can be shared between all threads of the same block but is inaccessible to any other thread.
Figure 3.5 summarises memory hierarchy on a CUDA device and Table 3.1 describes properties of
various memory levels [nC10a].

The graphics-processing roots of CUDA have left an important heritage which a GPGPU program can
take advantage of: Texture Memory. Texture memory is writeable only from the host-side, whereas

22 Chapter 3. nVIDIA’s CUDA Architecture

Type Location Access Scope

Registers On–chip R/W Thread

Local Off–chip R/W Thread

Shared On–chip R/W Thread–Block

Global Off–chip R/W Device & Host CPU

Texture Off–chip R Device & Host CPU

Constant Off–chip R Device & Host CPU

Table 3.1: Memory hierarchy on a CUDA device

Figure 3.5: Memory hierarchy in a CUDA device. (figure from [nC10a])

a CUDA kernel can use in read-inly mode. Reading data from texture memory can have a lot of
performance benefits, compared to global memory accesses. Texture memory is cached in texture
cache, therefore reading texture data will involve a memory access only on a cache miss. Due to the
nature of textures, the texture cache is optimised for 2D spatial locality. The main advantages of
texture memory can be summarised in the following points:

• If memory accesses do not follow the patterns required to get good performance (as is the case
with global memory), higher bandwidth can be achieved provided there is some locality on
texture fetches.

• Addressing calculations are executed automatically by dedicated hardware outside processing
elements, so that CUDA cores are not occupied by this task and the programmer does not have
to care about addressing.

• Packed data can be broadcast to separate variables in a single operation.

• Integer data (8-bit or 16-bit) can be automatically converted to floating-point values in the range
of [0.0, 1.0] or [-1.0, 1.0] [nC10a].

3.1. Architectural Overview 23

Textures are discretised data from a (theoretically) continuous domain. In graphics processing, there
may be needed a texture value from a coordinate which falls between discretisation points. In this case,
there has to be performed some kind of texture data filtering. The nature of graphics textures resembles
the metric tensor field used in anisotropic mesh adaptivity problems. As was described earlier, the
metric tensor is discretised vertex-wise. However, when moving vertices during the optimisation
process, the new vertex location will most possibly not coincide with a discretisation point. If this
is the case, the value of the metric tensor field can be found by interpolating the values from the
four nearest discretisation points. This is completely analogous to the most common type of texture
filtering, Linear Filtering. An example of linear filtering is shown in Figure 3.6.

Figure 3.6: Example of 1D linear texture filtering. (figure from [nC10a])

In two dimensions, the result tex(x, y) of linear filtering is

tex(x, y) = (1− α)(1− β)T [i, j] + α(1− β)T [i+ 1, j] + (1− α)βT [i, j + 1] + αβT [i+ 1, j + 1]

where α is the horizontal distance of point (x, y) from the nearest texture sample (discretisation
point) T [i, j] and β is the vertical distance. The key point is that, when using texture memory, this
calculation is automatically performed by dedicated texture hardware outside multiprocessors. When
using a conventional CPU or a GPU reading texture from global memory, the above calculation has
to be performed by CPU / CUDA cores as part of the execution flow, which has to be programmed
manually and occupies execution resources.

From the analysis above, we reach the conclusion that there are two issues of benefit when we make
use of texture memory for the metric tensor field. Performance can benefit from texture caching as
well as hardware implementation of interpolation. In the scope of this project, we did not evaluate
the individual contribution of these two issues. This evaluation would be very interesting, especially
when 3D adaptivity problems are considered, and is left as future work. In a 3D problem we have to
interpolate the values of the 8 nearest neighbours:

tex(x, y, z) = (1− α)(1− β)(1− γ)T [i, j, k] + α(1− β)(1− γ)T [i+ 1, j, k]+

+ (1− α)β(1− γ)T [i, j + 1, k] + αβ(1− γ)T [i+ 1, j + 1, k]+

+ (1− α)(1− β)γT [i, j, k + 1] + α(1− β)γT [i+ 1, j, k + 1]+

+ (1− α)βγT [i, j + 1, k + 1] + αβγT [i+ 1, j + 1, k + 1]

(3.1)

24 Chapter 3. nVIDIA’s CUDA Architecture

and doing so would require (compared to 2D problems) double the data volume to be fetched from
global memory and more than double the floating-point operations if we do not use hardware imple-
mentation of interpolation.

3.1.2 Programming Model

A great advantage of programming on CUDA is that it is very similar to conventional C/C++ pro-
gramming and it is fairly easy to port existing codebase onto the new platform. Even if writing entirely
from the beginning, parallel programming on CUDA is much more effortless than on other platforms,
e.g. developing applications for the Cell Broadband Engine require writing code specifically for Cell’s
execution cores. A CUDA kernel is executed by many threads. These threads are grouped into so
called thread blocks and each thread within a block is identified by thread and block ID variables (akin
to processor rank number in MPI). Using these identifiers it is possible to specialise the execution
path of each thread. Blocks are executed one per multi–processor. The special thing about a block
is that all threads within it can communicate via shared memory and synchronise with each other.
All blocks form what is called a grid. Grids are executed one per GPU device. This description is
illustrated in Figure 3.7 [nC10a]. IDs of blocks are 2–coordinate ones and each block’s ID is unique
within a grid. Following the same convention, IDs of threads are 3–coordinate ones and each thread’s
ID is unique within a block. Grid dimensions are instantiated during application launch [cud08a].

Figure 3.7: Threads and blocks in a CUDA device. [nC10a]

Specialising the execution path of threads, however, can degrade performance. If two threads within
the same warp (a warp is a group of 32 threads that are created/managed/scheduled/executed in
parallel) need to diverge their execution paths, then these executions will be serialised, i.e. the first
path will be executed while the thread following the second path is stalled and after that the thread
following the first path will be stalled while the second threads is executed.

An important principle in CUDA programming is that blocks must be independent from each other.

3.2. Code Optimisations 25

They can be executed in any order, in series or in parallel, and coordinate their execution. However,
having shared locks between blocks to achieve coordination can not only lead to deadlocks but also
degrade application scalability, the latter being destructive considering the philosophy behind CUDA.
Synchronisation between CPU and GPU can be implemented using the CUDA API. When CPU
code calls a kernel to be executed on a GPU, control returns to CPU immediately and the kernel
is executed asynchronously. On the other hand, data transfer calls are blocking ones. There are
non–blocking versions of these calls and this allows us to overlap computation and communication,
therefore increasing performance and favouring scalability.

Additionally, there are calls which synchronise all threads within a block, i.e. they put a barrier at
that particular point in execution which must be reached by all threads in the block before execution
can continue [cud08a]. Unfortunately, blocks cannot synchronise with each other. The only way to
synchronise two or more blocks is to wait for the kernel to finish execution and then re-launch it.
This action definitely involves some overhead which can degrade performance. However, the cost is
not detrimental, because CUDA threads are lightweight an invoking a kernel is much cheaper than
creating, for example, an OS thread.

3.1.3 Execution Model

As was mentioned earlier, a CUDA program consists of small pieces of code called kernels. Kernels are
instantiated many times and each instance is executed by a dedicated thread. Many threads form a
thread–block which is executed on a multi–processor. One multi–processor may have many concurrent
thread–blocks, the number of which depends on the available hardware resources, i.e. on–clip shared
memory and register file. A thread–block is organised in warps, each one consisting of 32 threads and
being executed in a SIMD fashion. Many thread–blocks form a grid, which is executed on a CUDA
device. This device is dedicated to its grid, i.e. there cannot be two or more grids under execution on
a device at the same time [cud08c].

3.2 Code Optimisations

In this subsection we will try to describe some general guidelines that maximise execution performance
on a CUDA device. These ideas are basically what was proposed at [cud08c], which in turn is a
comprehensive summary of nVIDIA’s guidelines.

3.2.1 Memory Optimisations

A CUDA device is equipped with a memory system similar to other high–performance platforms,
like the Cell Broadband Engine. General rules for these platforms also apply here. Bandwidth is
much higher for inter–device communication than between host CPU and device GPU. Therefore, the
latter communication should be minimised. Additionally, every data transfer has a certain amount
of overhead, independently of transfer size, so one large transfer is preferable to many small ones.
Communication between host and device can be enhanced by taking advantage of CUDA’s ability to
allocate page–locked system memory. This technique maximises bandwidth for memory copy opera-
tions. Moreover, the application should be written in such a way so that computation and communi-
cation are overlapped. This is possible on CUDA thanks to its asynchronous memory copy operations.
Hiding communication latency behind computation not only favours performance but also application
scalability to more cores and devices.

26 Chapter 3. nVIDIA’s CUDA Architecture

Data alignment in memory is also an important factor in achieving good bandwidth utilisation and
high performance. Depending on the device’s compute capability, an access to global (device) memory
can be serviced by as few as 1 or 2 transfers. Accessing misaligned data, however, is followed by many
more memory transactions and performance can be seriously degraded. A way to address this problem
is utilisation of fast, on–chip shared memory, which can be used as a data re–alignment buffer for data
to be stored back to global memory (apart from its obvious uses as a means of thread synchronisation
within a block and global memory caching).

Shared memory accesses, however, have their own rules. This memory is divided into banks. Successive
32-bit words are allocated to successive banks. Each bank can be accessed by one thread at a time. If
two or more threads try to access the same bank simultaneously, requests will be serialised. If there
are no bank conflicts, shared memory can service simultaneously as many requests as the number of
its banks. Access speed is the same as for the register file. As is the case with shared memory, global
memory is also divided into partitions. Successive 256-byte sets of data are assigned to successive
partitions. Partition access should follow a pattern similar to that of shared memory. If many
threads try to access (either read of write) the same partition performance will be degraded and the
phenomenon is called partition camping.

3.2.2 Execution Configuration Optimisations

As is the case with every other multi–threaded platform, instructions within a thread are executed
sequentially, so if a thread stalls for some reason (data dependencies, data transfers) hardware utilisa-
tion is reduced. This problem can be addressed by running many warps on a multi–processor. General
guidelines are the following:

• The number of thread–blocks must be larger than the number of multi–processors so that every
multi–processor has at least one block to run.

• Even better, the number of thread–blocks should be al least twice the number of available multi–
processors so that even if a thread–block stalls (e.g. waiting on memory), the multi–processor
will continue to be busy executing the other block.

• If we want to take into account future GPUs which will incorporate even more multi–processors,
the number of thread–blocks should be even larger than the previous case.

Additionally, thread–block size should be multiple of warp size so that there are no under–occupied
warps that waste resources.

3.3 C++ support

Although nVIDIA provides full support for C code, C++ is only partially supported by the CUDA
compiler. C++ features that can be used by devices of compute capability 2.0 (Fermi architecture)
are the following:

• Polymorphism

• Default parameters

• Operator overloading

3.3. C++ support 27

• Namespaces

• Function templates

• Classes

More specifically on class support, any class function can be compiled to CUDA object code as long
as this function is not virtual (a restriction that will be removed in future architectures). Moreover,
all functions are inlined by the compiler because CUDA hardware is not capable of calling functions.
Unfortunately, the linker cannot link two functions that belong to different object files and this is the
reason why all classes must reside in the same source file.

Having presented both the topic of Anisotropic Mesh Adaptivity and nVIDIA’s CUDA architecture,
which comprise the essential background the reader should be familiar with, we go on to the next
chapter where we describe the design choices we had to make and the actual implementation of
CUDAMesh64.

28 Chapter 3. nVIDIA’s CUDA Architecture

Chapter 4

Design and Implementation

This chapter contains a thorough description of the application which was developed as a way for us to
evaluate the performance of anisotropic mesh adaptation. There is a description of the object-oriented
model the code-base is built upon, the data structures that are used to represent all useful information
about the adaptivity problem and the optimisations that were applied in our effort to improve CUDA
performance. Design and implementation were guided to a great extent by [nC10a] and [nC10b]. At
the end of the chapter, there is a list of problems that were encountered during the development and
optimisation phases. Apart from benchmarking purposes, the application described in this chapter
is also a stand-alone application, called CUDAMesh64, which can be used in the solution of real
adaptivity problems.

4.1 Design choices

Before proceeding to the description of the actual implementation, it is necessary to list the design
choices we had to make at the beginning of this implementation and the reasons why we took these
specific decisions.

The first thing we had to specify was the target platform of this application. We chose to work on
nVIDIA’s Fermi architecture, i.e. devices with compute capability 2.0. Apart from being the state-
of-the-art among CUDA architectures, Fermi offers better C++ support than previous generations,
which is an important feature when it comes to code development and testing compared to pure C.
Another advantage, and maybe the reason that renders Fermi mandatory choice, is its capabilities
in double-precision floating-point arithmetic. Contrary to older compute capabilities, where double-
precision data had to be broken down into pairs of single-precision values, Fermi overcomes this
limitation and manipulates double-precision data just like it does with single-precision ones.

Double-precision arithmetic was chosen over single-precision because it is the standard choice in the
world of scientific applications. The choice of higher precision is indicated by the need to make the
application more robust to the order in which arithmetic operations take place (a quite common
problem in numerical analysis) and reduce round-off errors. In addition, structuring our application
on double-precision data gives us the chance to assess Fermi’s double-precision capabilities and make
more meaningful comparisons between CPU and GPU, since in today’s CPUs even single-precision
variables are represented internally as double-precision ones.

Mesh adaptivity can be carried out using different families of algorithms. The most common families
are h-adaptivity and r-adaptivity. The first one includes algorithms which change mesh topology
by adding vertices and edges, creating new elements by bisection or adaptive refinement, flipping

29

30 Chapter 4. Design and Implementation

edges etc. [Rok10]. The family of r-adaptivity algorithms, on the other hand, includes techniques
that leave mesh topology intact. Vertex Smoothing is an r-adaptivity algorithm. Not modifying
mesh connectivity makes implementation much easier. Both the number of mesh vertices and their
connectivity remain constant and so does the operation task graph, i.e. there is no need to re-colour
the graph after every iteration over the mesh when running in parallel. Moreover, vertex smoothing
is a computationally demanding technique and this property helps in showing off CUDA’s capabilities
in floating-point arithmetic and exhibiting large speedups over conventional platforms.

As was mentioned in the introductory chapter, there is a related project called Fluidity. We decided to
build CUDAMesh64 independently of Fluidity ’s data structures, using our own ones. CUDAMesh64
is not part of Fluidity but rather an independent component for a mesh bases simulator which can
be coupled with any simulator. Having data structures customised for the specific problem of vertex
smoothing would allow us to optimise the application in a better way and achieve higher performance.

As far as graph colouring is concerned, we chose to implement a single-threaded and greedy colouring
algorithm, called First Fit Colouring [AOS06]. Although being a greedy algorithm, First Fit runs
adequately fast and still colours the mesh with satisfactorily few colours. These properties, along with
the simplicity of implementation, indicated that First Fit is just fine for the purpose of this project,
so parallel algorithms or more sophisticated colouring techniques were not deemed necessary.

As will be described in later sections, one of the optimisations we can enable in our code is having ded-
icated texture hardware interpolate metric tensor values. This interpolation can be done using either
nearest-point sampling or linear filtering. We chose to use the latter method, because nearest-point
sampling can be very unsuitable, especially when the metric tensor field has a lot of discontinuities.

The whole application and all auxiliary frameworks used throughout this project are compiled and
used in 64-bit mode, hence the name CUDAMesh64 of the target application. The reason behind our
choice of this mode is not that it is really needed at this time but because this framework was built with
extensibility and scalability in mind. Problems become more complex and so do the data representing
them. It is a matter of just a couple of years until hardware requirements of an adaptivity problem
exceed the order of magnitude in which we worked in this project. There is already the Tesla C2070
card which is based on Fermi architecture and hosts 6GB of device memory. Future architectures are
expected to host amounts of memory well above the 32-bit limit of 4GB.

4.2 Meshes and the VTK framework

The first thing that was taken into consideration is the way meshes can be represented and stored.
Due to its popularity and also because it is a very mature and reliable framework, the Visualization
Toolkit (VTK) was employed [Kitb]. As its creators describe it, the VTK is an open-source, freely
available software system for 3D computer graphics, image processing and visualization, which consists
of a C++ class library and several interpreted interface layers.

Unstructured meshes are stored using this framework in VTK’s XML unstructured grid files. This
type of file is in essence an XML description of the mesh, i.e. the vertices comprising the mesh, their
coordinates, the triplets of vertices forming mesh cells (triangles) and any field data. The XML parser
provided by the framework reads in all important information from the VTK file and passes them to
the core of the adaptivity application. After the process of adaptation is done, the core returns the
new coordinates of all mesh vertices which are written to a new VTK file.

To visualise the results we use Kitware’s ParaView [Kita]. ParaView is an open-source, multi-platform
data analysis and visualization application which can build visualizations in order for data to be anal-
ysed using qualitative and quantitative techniques. The data exploration can be done interactively in

4.3. The object-oriented model and data structures 31

3D. ParaView was developed to analyse extremely large datasets using distributed memory computing
resources; however, in this project it was only needed for data visualisation on a single computer.

4.3 The object-oriented model and data structures

4.3.1 MeshOptimizer class

CUDAMesh64 can be considered as a unit test for the adaptive framework described in this section.
The application consists of one main execution source file, which parses the command line arguments
(input VTK file, number of iterations, platform to be executed on (CPU or CUDA) and, in case of
CUDA, the number of threads per block). The main file creates thereafter a MeshOptimizer, an object
which parses the VTK file, passes all useful data to a Mesh constructor (which builds the mesh using
the data structures of our choice), uses a graph colouring algorithm to build independent sets out
of this mesh, invokes the optimisation process and, finally, writes the new vertex coordinates to an
output VTK file.

In terms of benchmarking, this class is responsible for initiating timers, measuring time differences
and printing timing results to the standard output, so that the user can see exactly how long the
optimisation process took. It should be noted that we are only interested in the optimisation process
and time measurements exclude parsing of VTK files, construction of the mesh, mesh colouring and
result writeback.

4.3.2 Mesh class

The Mesh class consists of four main parts: an array of Vertices, an array of Elements, an array of
Cavities and a structure which holds all information about the independent sets, which are extracted
from the mesh so that the optimisation process can be correctly executed in parallel. The constructor
of this class is responsible for converting the information provided by the VTK file to our inner
representation of choice, i.e. it takes all information about grid points and converts them to Vertex
information, all information of grid cells and converts them to Elements and, based on cell data, it
creates a vertex adjacency list, which is used both for construction of Cavities and mesh colouring.

Vertices and elements are stored in the mesh using vertex- and element- IDs. An ID is an ascending
number, beginning from 0, which corresponds in a one-to-one fashion to the order in which data are
read from the VTK file. This makes storing the new vertex positions back to the grid easy.

Another responsibility of this class is to copy all this information to the address space of the GPU. The
initial implementation of this class was based on STL std::vector containers which, according to the
specification, store elements in contiguous memory addresses, making the process of copying a vector
between host and device very simple and completing it in one transfer. This choice, however, proved to
be unsuitable because CUDA does not support STL; therefore std::vector ’s member functions could
not work on the device. A formal and apparently safe solution would be using the Thrust library
[HB10], a library developed by nVIDIA programmers. As its creators claim, “Thrust is a CUDA
library of parallel algorithms with an interface resembling the C++ Standard Template Library (STL).
Thrust provides a flexible high-level interface for GPU programming that greatly enhances developer
productivity” [HB]. Although this library was taken very seriously into consideration, the fact that
it is still an early effort and there is not much feedback about it discouraged us from using it. We
preferred the solution of converting all std::vector containers into standard C arrays.

32 Chapter 4. Design and Implementation

4.3.3 Vector2d structure

In the base of this application lies the Vector2d structure. A Vector2d is a data structure representing
a 2D vector. It contains a pair of coordinates, stored as two double-precision floating-point values,
i-coordinate and j-coordinate. For ease of programming, Vector2d provides overloaded methods for:

• Addition and subtraction of two Vector2ds

• Multiplication and division of a Vector2d by a scalar value

• Multiplication between two Vector2ds (inner product)

• Normalisation of a Vector2d

• Checking whether two Vector2ds are co-linear

All these methods can be compiled both to host and device code.

4.3.4 Vector2dPair structure

A Vector2dPair is a data structure which contains two Vector2ds, i-Vector and j-Vector. Essentially,
Vector2dPair is a 2 × 2 matrix. As was the case of Vector2d, Vector2dPair provides overloaded
methods for:

• Addition of two Vector2dPairs

• Multiplication of a Vector2dPair by a scalar value

• Multiplication between a Vector2dPair and a Vector2d, which results to a new Vector2d

which can be compiled to both architectures, host and device.

4.3.5 Vertex class

Every mesh vertex is represented in CUDAMesh64 by a Vertex object. Every instance of this class
contains just a Vector2d, which represents the coordinates of its vertex in the mesh. There are also
methods for retrieving vertex coordinates and setting new ones. All these methods can be used both
from host and device code.

4.3.6 Element class

An Element is a mesh triangle (this class it is called Facet in the codebase). Every Element contains
the IDs of the three vertices comprising it. There are methods for retrieving and setting vertex IDs,
as well as methods which return the important geometric characteristics of a triangle, i.e. its area and
perimeter with respect to a metric tensor field. This class can be fully used from both host and device
code. It should be noted that, as was the case with the Mesh class, vertex IDs were initially stored
using STL vector containers, which were later dropped and replaced by C-style arrays.

Additionally, in the very early development phase it was pointers to the actual Vertex objects that
were stored in the vertex list, not IDs. This was expected to speed up execution performance, because

4.3. The object-oriented model and data structures 33

a Vertex object could be accessed directly using this pointer, instead of using the vertex ID to access
the corresponding index in the array of vertices inside the Mesh. However, there is no point in copying
pointers between host and device address spaces, so the pointer-to-vertex approach was abandoned.

4.3.7 Cavity class

As was mentioned in 2, a cavity is defined by its central vertex, all adjacent vertices and all elements
defined by these vertices. Therefore, a Cavity object is a data structure containing the vertex and
element IDs of all its surrounding vertices and elements, respectively. Initially, a Cavity object would
contain STL vectors of pointers to vertices and elements, but for the reasons mentioned earlier we
followed the approach of C-style arrays of IDs. Another property of a cavity is whether it is defined
by a boundary vertex, because boundary vertices are smoothed using different variations of the main
smoothing algorithms. The Cavity class also implements methods for setting and retrieving the IDs
of surrounding vertices and elements, which can be used both from host and device code.

4.3.8 Metric class

One of the most important structures in anisotropic mesh adaptation is the metric tensor field.
CUDAMesh64 implements two versions of metric tensors, a Continuous Linear Metric and a Dis-
crete Linear Metric. The difference between these two versions, as their names imply, is that the
latter actually contains a discretised metric, i.e. a matrix containing metric samples from various
points, whereas the former is implemented as a continuous function which returns the metric value at
the requested point.

For the continuous metric test cases, we considered a linear variation across the domain: the expected
element size in both x- and y- directions grows linearly from minValue to maxValue as we move along
each direction. This means that the metric tensor (which is a Vector2dPair object) reaches its smallest
value in

T [0.0, 0.0] =

 1
maxXV alue2

0

0 1
maxY V alue2


and its largest value in

T [1.0, 1.0] =

 1
minXV alue2

0

0 1
minY V alue2

 .
Using these metric tensor fields, the ideal mesh should appear having an increasing density of elements
as we move from [0.0, 0.0] to [1.0, 1.0]. An example can be seen in Figure 4.1 and Figure 4.2. In
this example, an initial Delauney mesh is being adapted with respect to a linear metric, the values
of which lie in the range [0.05, 0.5] in both directions. Note in this example that in the lower left
corner, where the metric value is low, i.e. the metric space is similar to the standard Eucleidian space,
triangles are almost equilateral and begin being stretched as we move towards right and up.

For testing, CUDAMesh64 also contains a second continuous metric field, the Sinusoidal Metric. Using
this metric, the density of elements follows a sine curve as we move from left to right. The result is
shown in Figure 4.3. New metrics can be easily added to CUDAMesh64, as long as they comply to
the interface the rest of the application expects from a metric to expose.

The discrete version of metrics has been implemented as a 2D matrix of Vertex2dPairs. Normally, the
metric tensor field is discretised vertex-wise. In CUDAMesh64, however, metric values are stored as

34 Chapter 4. Design and Implementation

Figure 4.1: A Delauney mesh before anisotropic adaptation

Figure 4.2: The mesh from Figure 4.1 after anisotropic adaptation using the linear metric tensor field,
with minV alue = 0.05 and maxV alue = 0.5 in both directions.

if they were sampled on a uniform, structured mesh. In order to preserve accuracy, the metric tensor
field is super-sampled, meaning that the dimension of this matrix is equal to the next power of 2 that
is greater than the mesh size, e.g. a mesh that consists of 100 × 100 elements will be adapted using
a 128 × 128 metric matrix. The choice of a structured metric representation was indicated by the
optimisation we had in mind to manipulate metric data as textures.

4.3.9 ObjectiveFunctional class

The ObjectiveFunctional class implements the objective functional by Vasilevskii & Lipnikov, which
was described in 2.1.2. This class implements only one method, which takes one argument indicating
which cavity is to be optimised. The evaluation function can access the Mesh in order to retrieve
information about cavities, elements and vertices and uses the methods provided by the Element class
in order to evaluate the quality of the cavity under consideration with respect to a given metric tensor
field. The result of this evaluation is the value of Vasilevskii’s & Lipnikov’s functional for the worst
element in the cavity.

4.3. The object-oriented model and data structures 35

Figure 4.3: The mesh from Figure 4.1 after anisotropic adaptation using the sinusoidal metric tensor
field, with minV alue = 0.05 and maxV alue = 0.5.

This class is designed to be used by the optimisation algorithm by Freitag et al. (2.1.7) which, as is
described in the last section of this chapter, was not possible to be implemented. Using an Automatic
Differentiation (AD) tool, the gradient of the evaluation method can be used by this algorithm to
find the optimal position of a central vertex. Although an appropriate AD tool was not available at
the time of CUDAMesh64 development, all necessary work has been done so that, when such a tool
becomes available, it can use this class directly to produce the gradient of the evaluation function,
making the integration of AD into CUDAMesh64 very easy.

4.3.10 OptimizationAlgorithm namespace

The OptimizationAlgorithm namespace contains functions which perform the actual mesh optimi-
sation procedure. As far as anisotropic adaptivity is concerned, this namespace contains only the
implementation of the optimisation algorithm by Pain et al. (2.1.8), leaving the algorithm by Freitag
et al. (2.1.7) as future work, when an appropriate AD tool can be found. Laplacian Smoothing (2.1.6)
has also been implemented, but it will not be analysed, since it is of limited practical interest in an
anisotropic problem and may generate inverted elements.

The optimisation function receives three arguments: a pointer to the mesh to be optimised, a pointer
to the metric tensor field used in the anisotropic adaptation process and a number of iterations to
be performed. As was explained in 2.1.5, the number of iterations needed when performing vertex
smoothing can be limited by some convergence criteria and a maximum number of iterations is pro-
vided by the user to guarantee termination. This function examines each cavity in turn. Depending on
whether the cavity is defined by an inner or a boundary vertex, the optimisation function calls the ap-
propriate variant of Pain’s algorithm: functions relocateInnerVertex(. . .) and relocateOuterVertex(. . .),
respectively.

The same namespace also contains the corresponding version of the optimisation method for CUDA.
This version takes a fourth argument of type dim3, indicating the number of CUDA threads per block.
The same method is responsible for copying the metric tensor field from the host address space to the
device address space.

36 Chapter 4. Design and Implementation

4.4 Parallel implementation

This section describes the two basic tools which are essential for the correct parallel execution of
anisotropic mesh adaptivity: the IndependentSets class and the GraphColoring namespace. After
their presentation, it is explained how the independent sets are used to run the application in parallel
using OpenMP or a CUDA device.

4.4.1 IndependentSets class

An independent set of a graph contains vertices which are not connected through and edge with each
other in the graph. This property allows us to optimise cavities defined by vertices from the same
independent set simultaneously, without disrupting correct execution, as was described in 2.2. It is
obvious that the larger the independent sets, the more parallelism we can extract from CUDAMesh64.
Large independent sets, each containing thousands of vertices, are necessary in order to exploit CUDA’s
massive parallelism capabilities.

The IndependentSets class is a structure which holds information about the independent sets of a
mesh, as they have been extracted by a graph colouring algorithm. Essentially, an IndependentSets
object contains an array of pointers to arrays of vertex IDs. Each such array contains the IDs of all
vertices that belong to the same independent set. This class is accompanied by auxiliary structures
which assist in copying the independent sets from host to device memory.

4.4.2 GraphColoring namespace

GraphColoring is a namespace which contains the implementation of the graph-colouring algorithm.
In this project, only one colouring method was implemented, the First Fit Colouring (greedy) algo-
rithm [AOS06]. This method considers vertices in ascending ID order and assigns to each vertex the
smallest available colour not occupied by any of the adjacent vertices, adding a new colour if necessary.
Colouring of one vertex is described in Algorithm 6. Algorithm 7 describes the process of colouring
the entire mesh. In the latter algorithm, it can be seen that vertices are considered in ascending ID
order and each one is coloured by probing the 0th colour as the first colour to be tested.

4.4.3 Parallel execution using OpenMP and CUDA

Executing CUDAMesh64 in parallel on the host CPU can be done by using OpenMP. Parallelising
the optimisation function can be done very easily by executing Algorithm 8. Instead of considering
vertices one at a time, this function can be implemented as a for-loop, in every execution of which an
independent set in considered. Processing of all vertices inside this set is parallelised by putting the
appropriate OpenMP directive before the inner for-loop that traverses the set.

On the other hand, parallel execution on the device can be done as described in Algorithm 9. Once
again, there is a for-loop which considers one independent set at a time. Having provided the number
of threads per CUDA block as an input argument in CUDAMesh64, the algorithm launches as many
blocks as needed so that every vertex in the independent set will be considered for optimisation
and each CUDA thread will consider at most one vertex. Because inter-block synchronisation is
not possible, the host-side code waits for all kernel launches to return before proceeding to the next
independent set. Relaunching a kernel may involve some overhead but CUDA threads are lightweight,
so the effect of this overhead is mitigated.

4.4. Parallel implementation 37

Algorithm 6 Colouring of a vertex with ID = VERTEX INDEX using the First Fit algorithm
int color = INITIAL_COLOR_TO_TRY;

const set<vtkIdType> & adjSet = vertexAdjacency->at(VERTEX_INDEX);

set<vtkIdType>::const_iterator it = adjSet.begin();

while(it != adjSet.end())

{

if(colorOfVertex[*it] == color)

{

it = adjSet.begin();

color++;

continue;

}

it++;

}

colorOfVertex[VERTEX_INDEX] = color;

Algorithm 7 Colouring the entire mesh using the First Fit algorithm. COLOR VERTEX is the
function described in Algorithm 6

vector< set<vertexID> > * vertexAdjacencyList = mesh->getVertexAdjacencyList();

int nVertices = vertexAdjacencyList->size();

int maxColor = -1;

int * colorOfVertex = new int[nVertices];

for(int index = 0; index < nVertices; index++)

colorOfVertex[index] = -1;

for(int vertexIndex = 0; vertexIndex < nVertices; vertexIndex++)

COLOR_VERTEX(INITIAL_COLOR_TO_TRY = 0, VERTEX_INDEX = vertexIndex);

Algorithm 8 The optimisation method OptimisationAlgorithm::optimize(. . .) using OpenMP.

for(int independentSetNo = 0; independentSetNo < numberOfSets; independentSetNo++)

{

int setIterator;

vertexID iSet[] = independentSets[independentSetNo];

#pragma omp parallel for private(setIterator)

for(setIterator = 0; setIterator < verticesInSet; setIterator++)

{

cavityID cavity = iSet[setIterator];

Vector2d newCoords;

if(!meshCavities[cavity].isOnBoundary())

newCoords = relocateInnerVertex(...);

else

newCoords = relocateOuterVertex(...);

}

}

38 Chapter 4. Design and Implementation

Algorithm 9 The optimisation method OptimisationAlgorithm::cudaOptimize(. . .).

for(int independentSetNo = 0; independentSetNo < numberOfSets; independentSetNo++)

{

dim3 numBlocks(ceil((double) verticesInSet / threadsPerBlock));

kernel<<<numBlocks, threadsPerBlock>>>(independentSets[independentSetNo]);

cudaThreadSynchronize();

}

__device__ void kernel(IndependentSet iSet)

{

int vertex = blockIdx.x * blockDim.x + threadIdx.x;

if(vertex < verticesInSet)

{

cavityID cavity = iSet[vertex];

Vector2d newCoords;

if(!meshCavities[cavity].isOnBoundary())

newCoords = relocateInnerVertex(...);

else

newCoords = relocateOuterVertex(...);

}

}

4.5 Optimisation techniques

Having described the implementation of CUDAMesh64, the data structures used and the way parallel
execution takes place, we can now assemble a list of optimisation techniques which assist in achieving
higher performance from a CUDA device. Some of these techniques also offer some speedup on the
host side; however, the emphasis here is given to the benefits from the device side. These optimisations
can be turned on or off by setting the appropriate definitions in the Configuration header file.

4.5.1 Treating the metric tensor field as graphics texture

As was described in 4.3.8, the metric tensor field has been implemented both as a continuous function
which returns the magnitude of the metric tensor in a requested point or as a matrix of metric samples
(discrete form). The latter approach is the one that makes sense for real problems, since the error
metric is almost always given as a collection of node-wise discretised samples (whereas the continuous
version can only be used for demonstration purposes).

Having a matrix of metric samples, there are two ways it can be used. The näıve approach is to
store this matrix in global memory. On the host side, this is the only available option. On the device
side, however, this matrix can be stored in Texture Memory, offering the benefits described in 3.1.1.
Apart from that, interpolating metric values is done by dedicated hardware outside CUDA cores, so
execution resources are relieved from all time-consuming calculations that are needed if the metric is
stored in global memory, as can be seen in Algorithm 10. The only thing that has to be executed
when using texture memory is simply a statement like:

float4 metric = tex2D(metricTexture, iCoordinate, jCoordinate);

4.5. Optimisation techniques 39

It should be noted, however, that CUDA limits the variety of datatypes that can be used in texture
memory. As far as floating-point values are concerned, only 1-, 2- and 4- element vectors of single-
precision floats are permitted. Representing the metric tensor field using single-precision is not really
a problem in terms of accuracy. The only problem is that it could be claimed that we are unfair when
we compare execution performance between CPU and GPU, loading the CPU with double the amount
of data, i.e. double the memory traffic and double the cache load. On the other side, single-precision
values are converted back to double-precision ones once they are fetched into the core, so these extra
conversion instructions make up somehow for the lower bandwidth and lower cache usage “cheat”.

Algorithm 10 Accessing the discrete metric tensor field from host code or from device code in case
the field is stored in global memory.
double iIndex = jCoordinate * metricDim;

int i = floor(((metricDim - 1) / metricDim) * iIndex);

iIndex -= i;

double jIndex = iCoordinate * metricDim;

int j = floor(((metricDim - 1) / metricDim) * jIndex);

jIndex -= j;

if(i == (metricDim - 1)

metric = metricValues[metricDim * (metricDim - 1) + j] * (1 - jIndex) +

metricValues[metricDim * (metricDim - 1) + (j+1)] * jIndex;

else if(j == metricDim - 1)

metric = metricValues[(i+1) * metricDim - 1] * (1 - iIndex) +

metricValues[(i+2) * metricDim - 1] * iIndex;

else

metric = metricValues[i * metricDim + j] * (1 - iIndex) * (1 - jIndex) +

metricValues[i * metricDim + (j+1)] * (1 - iIndex) * jIndex +

metricValues[(i+1) * metricDim + j] * iIndex * (1 - jIndex) +

metricValues[(i+1) * metricDim + (j+1)] * iIndex * jIndex;

4.5.2 Putting boundary vertices in dedicated independent sets

In 3.1.2 it is mentioned that thread divergence can seriously degrade execution performance. As can
be seen in Algorithm 9, boundary vertices are smoothed using a different method than inner vertices.
This can cause thread divergence in case two threads of the same warp are assigned one inner and
one boundary vertex at the same time. In order to avoid this situation, boundary vertices can be
coloured so that they belong to dedicated independent sets. This way, all threads within a warp will
be assigned only inner or only boundary vertices at any given time.

Colouring using dedicated sets for boundary vertices can be done as described in Algorithm 11. Inner
vertices are coloured exactly as was described in Algorithm 7. After doing so, boundary vertices are
coloured starting with a fresh colour instead of the first colour, i.e. creating a new independent set.
This way, all boundary vertices will be put into dedicated independent sets.

4.5.3 Stripping Cavity objects off Element information

As was described in 4.3.7, Cavities include the IDs of all surrounding vertices and all elements defining
the cavity. Element information is stored in a cavity for the purpose of evaluating the objective

40 Chapter 4. Design and Implementation

Algorithm 11 Colouring the entire mesh using the First Fit algorithm, putting boundary vertices
to dedicated independent sets. COLOR VERTEX is the function described in Algorithm 6

vector< set<vertexID> > * vertexAdjacencyList = mesh->getVertexAdjacencyList();

int nVertices = vertexAdjacencyList->size();

int maxColor = -1;

int * colorOfVertex = new int[nVertices];

for(int index = 0; index < nVertices; index++)

colorOfVertex[index] = -1;

for(int vertexIndex = 0; vertexIndex < nVertices; vertexIndex++)

if(!mesh->getCavities()[vertexIndex].isOnBoundary())

COLOR_VERTEX(INITIAL_COLOR_TO_TRY = 0, VERTEX_INDEX = vertexIndex);

int minOuterColor = maxColor + 1;

for(int vertexIndex = 0; vertexIndex < nVertices; vertexIndex++)

if(mesh->getCavities()[vertexIndex].isOnBoundary())

COLOR_VERTEX(INITIAL_COLOR_TO_TRY = minOuterColor,

VERTEX_INDEX = vertexIndex);

functional (4.3.9). In 4.3.10, however, it was explained that the optimisation algorithm by Freitag
et al. was not possible to be implemented. The algorithm by Pain et al., on the other hand, does
not use any element information; therefore, this piece of data can be omitted from the Cavity data
structure, saving both memory space and bandwidth, as well as increasing (possibly) cache hit rates.
This optimisation can have a performance benefit both for host and device codes.

4.5.4 Using on-chip memory primarily as L1 cache

In devices of compute capability 2.0 and above, the same on-chip memory is used both as shared
memory and L1 cache. Two configurations are possible [nC10a]:

• Configured as 48KB of shared memory with 16KB of L1 cache (which is the default)

• Configured as 16KB of shared memory with 48KB of L1 cache

The unstructured nature of anisotropic mesh adaptivity has not allowed us to use shared memory ex-
plicitly. On the other hand, a hardware-managed L1 cache exploits data locality in a much better way.
Choosing the second configuration can be done by preceding the kernel invocation with a statement
like:

cudaFuncSetCacheConfig(optimizationKernel, cudaFuncCachePreferL1);

4.6 Implementation difficulties

This section lists various difficulties that were encountered during the development of CUDAMesh64.
These problems either prevented us from implementing more features for the application or made us
run out of time for the submission of this project.

4.6. Implementation difficulties 41

4.6.1 Automatic Differentiation

As was described in 2.1.7, the algorithm by Freitag et al. uses objective functionals and their gradients
in order to optimise a mesh cavity. The gradient of a functional, as mentioned in 4.3.9, can be computed
using an Automatic Differentiation tool. Unfortunately, all AD tools we were able to find are classified
into two categories, none of which is suitable for CUDAMesh64.

The first category includes AD tools, like OpenAD [MoANL], that parse the C source code imple-
menting the function-to-be-differentiated and output new C source code implementing the gradient of
this function. This way, we can obtain the C source code of the gradient and compile it for CUDA.
Unfortunately, tools in this category can work only with C code, while C++ is only partially or not at
all supported. The ObjectiveFunctional::evaluate(. . .) method relies upon Cavity and Element objects,
so it implemented using (unsupported by AD) C++ code. By the time we realised that we would
need an AD tool, it was too late to convert our codebase to pure C.

The second category contains tools and libraries that are called from a program, passing as argument a
pointer to the function-to-be-differentiated in runtime. It is obvious that this approach cannot be used
on CUDA, since these tools do not produce any C source code. Moreover, the libraries are compiled
for conventional architectures, which means that the tool itself cannot be used from CUDA code; it
can only run on the host. The only way we could use such an AD tool on CUDA would be taking its
source code and porting it to the GPU, a task that is out of question for a time-constrained project
like CUDAMesh64.

4.6.2 CUDA linker

A fact that is not documented in nVIDIA’s CUDA Programming Guide [nC10a] regards some linker
restrictions. Current CUDA hardware cannot call functions; therefore, everything has to be inlined
in the kernel. This well-known property does not explain why the CUDA linker refuses to link into
the same executable two functions that have been compiled to different object files. This restriction
makes impossible, for example, using Vector2d overloaded operators inside the optimisation algorithm,
because Vector2d and OptimizationAlgorithm are compiled to two different object files, Vector2d.o
and OptimizationAlgorithm.o.

The only solution we could come up with is including all source code in a single file. CUDAMesh64
consists of only one source file, “application.cu”, which includes all necessary header files, as any
regular C++ program would do. Each header file, however, includes in turn the .inl file which imple-
ments the class / structure / namespace. In other words, instead of including header files on top of
implementation files, we do exactly the opposite. This way, after the C++ pre-processing stage, the
compiler has just one big source file as input, so it builds only one object file as output.

4.6.3 METIS and two-level graph colouring

In an effort to exploit data locality as much as possible, a two-level colouring scheme was considered.
In this scheme, the whole mesh would be partitioned into many small partitions, each one consisting
of as few as 5 or 6 vertices, and the colouring algorithm would extract independent sets of partitions.
Each CUDA thread would be assigned one partition, therefore optimising adjacent cavities in a serial
way (no hazard of incorrect execution) and making better use of on-chip memory (either as software-
controlled shared memory or hardware-managed L1 cache). Since all partitions belonging to the same
independent set would be independent from each other, all threads could run in parallel and still
output a correct result. Mesh partitioning can be done using a classic tool, like METIS [Lab].

42 Chapter 4. Design and Implementation

Although two-level colouring is an interesting optimisation to explore in order to improve memory
access latency, it was not implemented at this point because profiling the application indicated more
serious performance bottlenecks elsewhere. Another interesting question that arises is about the
complexity of two-level colouring. It can be shown that this optimisation is followed by some overhead
work, which takes more than linear time (maybe even quadratic) to be executed. The question that
remains to be answered is whether this overhead is worthwhile, taking into account that the Anisotropic
Mesh Adaptivity problem has a complexity of O(n2), as will be shown in Chapter 5.

Now that the essential algorithmic and architectural background has been analysed and all design
and implementation details have been described, we can proceed to the evaluation of CUDAMesh64 ’s
performance, where it is shown how well this application is executed on CUDA in comparison to Intel’s
Xeon processors, how each optimisation affects performance and what the main bottlenecks are in this
version of CUDAMesh64.

Chapter 5

Experimental results and evaluation

This chapter presents experimental results regarding the performance of CUDAMesh64, comparing
absolute times and speedups between CPU serial, CPU mult-threaded and CUDA versions, exploring
the right execution configuration with the help of the CUDA Occupancy Calculator, attempting to
spot the main performance bottlenecks along with suggestions on how to overcome them in future
releases and estimating the algorithmic complexity of the Anisotropic Mesh Adaptivity problem.

All experiments took place on a workstation which hosts two Intel “Clovertown” quad-core Xeon
X5355 CPUs (2.66GHz) and is equipped with 4GB of main memory and a Tesla C2050 graphics
board. The operating system at the time of experimentation was Ubuntu Server running Linux kernel
2.6.32-24-server x86 64. CPU code was compiled with GCC version 4.4.3, whereas for GPU code we
used CUDA SDK 3.1 and CUDA compilation tools, release 3.1, V0.2.1221. Experiments were done
using nVIDIA Forceware driver, version 256.40.

Every measurement presented in this chapter is the result of repeating the same experiment 5 times
and taking the average value (apart from serial CPU execution, which would need whole days to
complete). Additionally, CUDA times include the time it takes to copy data between host and device,
but no measurement includes the time it takes to read in the unstructured grid, construct the mesh,
colour it or write back the results to the output VTK file. In essence, the time to copy data between
host and device is not important because these transfers take place only twice during an execution
(copying the initial mesh to the device at the beginning and copying the adapted mesh back to the
host at the end) and when we have thousands of iterations this time is amortised.

5.1 Execution Configuration

The very first thing that has to be done before taking any measurements is to find out the best
execution configuration. nVIDIA provides a tool called CUDA Occupancy Calculator [nC], which
gives valuable information about the warp occupancy of a CUDA multiprocessor. This occupancy is
directly related with the peak performance which can be expected from a CUDA kernel. The highest
possible occupancy in Fermi devices is 48 warps per multiprocessor.

Compiling CUDAMesh64 with the additional flag --ptxas-options=-v instructs the compiler to output
details about register usage by the CUDA kernel. Depending on which implementation of the Metric
class we use, register usage is as shown in Table 5.1. Figure 5.1 shows the multiprocessor warp
occupancy for the first three cases (59-62 registers per kernel) and Figure 5.2 depicts the occupancy
for the discrete-textured case. As can be seen in these diagrams, the CUDA kernel uses too many
registers in all cases:

43

44 Chapter 5. Experimental results and evaluation

Metric Version Register Count

Linear 62

Sinusoidal 59

Discrete non-textured 59

Discrete textured 51

Table 5.1: Register usage by the CUDA kernel, depending on which version of Metric is used.

• With a register count of 59-62, maximum performance is achieved when using 48, 64, 112, 128,
240, 256, 496 or 512 threads per block and this performance is only 16

48 = 33.3% of the potential
peak.

• With a register count of 51, maximum performance is achieved when using 80, 96, 176, 192, 272
or 288 threads per block and this performance is only 18

48 = 37.5% of the potential peak.

Figure 5.1: Multiprocessor warp occupancy when the kernel uses 59-62 registers.

Figure 5.2: Multiprocessor warp occupancy when the kernel uses 51 registers.

Comparing the occupancy diagrams, it is seen that using texture memory for the metric tensor field
is expected to offer even more benefits than just the ones described in Chapter 3. It should be noted,

5.2. Scaling with different mesh sizes 45

Mesh Size Vertices Iterations Time [sec] Normalised Time [nsec]

10× 10 91 10,000 2.33 2560.44

100× 100 6417 10,000 3.56 55.48

200× 200 25472 10,000 4.88 19.16

300× 300 56878 10,000 8.46 14.87

500× 500 157673 10,000 19.39 12.30

800× 800 402849 10,000 48.22 11.97

1000× 1000 627973 10,000 75.00 11.94

2000× 2000 2512380 10,000 297.72 11.85

3000× 3000 5654659 10,000 665.85 11.78

Table 5.2: Time results for various mesh sizes, using the basic CUDA version of CUDAMesh64 (i.e.
no optimisations turned on) and the continuous Sinusoidal Metric.

however, that occupancy diagrams are not necessarily indicative of the actual performance. The
occupancy is calculated just by the number of registers used by a kernel. There are also other factors
which affect performance, e.g. memory access latency and data locality.

5.2 Scaling with different mesh sizes

In this section we try to measure CUDA performance using various mesh sizes. CUDA is a massively
parallel and floating-point capable architecture, which implies that good performance is expected to be
observed in really large problems. In order to prove this claim, we ran a series of measurements using
mesh sizes from 10×10 up to 3, 000×3, 000 (larger meshes would not fit in the available main memory
of the workstation). These measurements correspond to the basic CUDA version of CUDAMesh64,
i.e. no optimisations were turned on, using the continuous Sinusoidal metric.

Experimental results are tabulated in Table 5.2, where Time is the total execution time for 10,000
iterations and Normalised Time is the time in nanoseconds per cavity per iteration. Figure 5.3 presents
these results in a graphical way. As can be seen, there is not enough parallelism in small meshes, so
the GPU cannot be exploited to all its extent and the overhead of copying mesh data to the device
and launching CUDA kernels is not justified. As a general rule, it can be said that CUDA execution
starts becoming meaningful for mesh sizes above 200× 200.

5.3 Basic CUDA version speedup

The next thing to investigate is how the basic CUDA version compares to serial and OpenMP CPU
versions. The workstation we are working on allows us to run OpenMP applications using up to 8
threads (recall that this machine is equipped with two quad-core, non-HyperThreaded Xeons). Before
proceeding to CPU-GPU comparison, we have to find out which exact execution configuration yields
the best CUDA performance. According to the occupancy diagrams, maximum occupancy is achieved
when using 48, 64, 112, 128, 240, 256, 496 or 512 warps per CUDA block. Table 5.3 and Figure 5.4
show the execution time achieved by each configuration, when running on a 2, 000 × 2, 000 mesh
(10, 000 iterations). Note that, from now on, we measure performance using only the discretised form
of the metric tensor field, because this is the form used in a real adaptivity problem.

The best configuration seems to be 32 threads per CUDA block. Although multiprocessor occupancy
is lower using 32 threads per block than using 48 and above, which in theory would imply lower

46 Chapter 5. Experimental results and evaluation

Figure 5.3: Time per vertex per iteration for various mesh sizes, using the basic CUDA version and
the continuous Sinusoidal Metric.

Threads per Block Time [sec] Normalised Time [nsec]

16 981.9 39.08

32 820.16 32.64

48 889.58 35.41

64 1,039.23 41.37

80 931.07 37.06

96 988.02 39.33

112 954.45 37.99

128 1,037.19 41.28

Table 5.3: Execution time of the basic CUDA version on a 2, 000 × 2, 000 mesh (10,000 iterations)
using various execution configurations.

Figure 5.4: Normalised execution time of the basic CUDA version on a 2, 000 × 2, 000 mesh using
various execution configurations

5.3. Basic CUDA version speedup 47

Mesh Size Serial [sec] OpenMP [sec] CUDA [sec]

500× 500 2,512.33 544.11 51.95

800× 800 7,770.02 1,931.72 131.40

1000× 1000 11,797.94 2,902.62 203.22

2000× 2000 55,627.80 12,997.13 819.58

Table 5.4: Performance comparison for various mesh sizes, using the basic CUDA version.

performance, the fact that using less threads per block yields better performance indicates there is a
bottleneck in memory access. Having less threads per block means that we have more blocks running
on each multiprocessor and, in turn, having more blocks per multiprocessor helps us hide memory
latency (whereas having more threads per block helps us hide instruction latency). Another reason
behind this oddity is the fact the number of vertices in every independent set is not a multiple of
the size of the CUDA block. This means that the block processing the last vertices in a set contains
threads that remain idle. The larger the block size, the more likely it is that a lot of threads in these
last blocks will have no cavities to optimise.

Using the optimal execution configuration we ran a series of tests to compare the basic CUDA version
to the serial and the eight-threaded OpenMP CPU versions. Using mesh sizes up to 2, 000×2, 000 and
performing 10,000 iterations in each case, we measured the absolute execution time of each version and
the relative speedup between serial and OpenMP, between serial and CUDA and between OpenMP
and CUDA. Table 5.4 shows timing results. Figure 5.5 shows the relative speedup between the three
versions of CUDAMesh64. The 8-threaded OpenMP version is 4-5 times faster than the serial code,
whereas engaging the GPU offers a speedup of 48-68 times over the serial code and 10-16 times over
OpenMP.

Figure 5.5: Speedup between serial, OpenMP and basic CUDA versions.

Before proceeding to the optimisations section, we deem as necessary to test the performance of
CUDAMesh64 when the Cavity class is defined without element information. The reason we believe
that this optimisation belongs to this section is that stripping cavities off element information affects
both CPU and GPU executions. Table 5.5 and Figure 5.6 show the experimental results. Absolute
execution time has been reduced in all three versions of CUDAMesh64 ; however, the relative speedup
remains pretty much the same.

48 Chapter 5. Experimental results and evaluation

Mesh Size Serial [sec] OpenMP [sec] CUDA [sec]

500× 500 2,242.52 510.19 51.06

800× 800 7,099.94 1,812.79 128.92

1000× 1000 10,797.34 2,793.12 199.63

2000× 2000 54,588.46 12,864.17 805.59

Table 5.5: Performance comparison for various mesh sizes, using element-less cavities and the basic
CUDA version.

Figure 5.6: Speedup between serial, OpenMP and basic CUDA versions using element-less cavities.

5.4 Optimisations

Having seen how well the basic CUDA version competes against the OpenMP one, it is interesting
to see how performance can benefit from the optimisation described in Section 4.5 and how big the
CPU-GPU gap can become. All experiments below have been done using the element-less version of
the Cavity class.

The major optimisation, and the one our experimentation starts with, is the usage of texture memory
to store the metric tensor field. It has been already mentioned that this optimisation results in a
CUDA kernel which uses less registers than the basic version; therefore, it is necessary to repeat the
best configuration test. The results can be seen in Table 5.6 and Figure 5.7. Once again, although
the theoretically best configuration should be one of the configurations indicated by Figure 5.2, in
practice 16 threads per block seems to execute at the fastest speed.

An additional point worth mentioning is that, by comparing execution times for the 2, 000 × 2, 000
mesh between Table 5.2 and Table 5.6, we can see that engaging texture memory almost takes away
the overhead of using the discrete form of the metric tensor field.

Using the optimal execution configuration we ran a series of tests to assess the performance of the
texture-memory version, as well as how much this version can benefit from using the on-chip memory
as L1 cache and putting boundary vertices to dedicated independent sets. Using mesh sizes up
to 2, 000 × 2, 000 and performing 10,000 iterations in each case, we measured the absolute CUDA
execution time, enabling one more optimisation in each successive experiment. Timing results can be
seen in Table 5.7.

5.4. Optimisations 49

Threads per Block Time [sec] Normalised Time [nsec]

16 323.05 12.86

32 360.57 14.35

48 367.14 14.61

64 385.02 15.32

80 380.73 15.15

96 385.23 15.33

112 378.59 15.07

128 387.55 15.43

Table 5.6: Execution time of the texture-memory CUDA version on a 2, 000 × 2, 000 mesh (10,000
iterations) using various execution configurations.

Figure 5.7: Normalised execution time of the texture-memory CUDA version on a 2, 000×2, 000 mesh
using various execution configurations

Figure 5.8: Speedup between the three CUDA optimisations.

Figure 5.8 shows the relative speedup between the three CUDA optimisations. Using texture memory
for the metric tensor field offers a performance boost of ×2.5. Enabling the on-chip memory to operate

50 Chapter 5. Experimental results and evaluation

Mesh Size Serial [sec] OpenMP [sec] CUDA [sec] + TM [sec] + L1 [sec] + DS [sec]

500× 500 2,242.52 510.19 51.06 20.70 18.55 19.26

800× 800 7,099.94 1,812.79 128.92 53.15 47.52 48.23

1000× 1000 10,797.34 2,793.12 199.63 81.28 72.72 73.64

2000× 2000 54,588.46 12,864.17 805.59 322.87 289.71 290.65

Table 5.7: Performance comparison for various mesh sizes, enabling CUDA optimisations; fifth column:
CUDA + texture memory; sixth column: CUDA + texture memory + on-chip memory as L1 cache;
seventh column: CUDA + texture memory + on-chip memory as L1 cache + dedicated sets for
boundary vertices.

Figure 5.9: Speedup between the best CUDA version and the serial and OpenMP CPU versions.

as a 48KB L1 cache further boosts performance, bringing it to a level of the basic version ×2.75. Oddly
enough, the dedicated-sets optimisation does not assist in reducing execution time; on the contrary,
timing results are slightly worse. This unexpected behaviour indicates two things:

(a) Having applied all other optimisations, memory latency is now more significant. Thread divergence
does not affect performance, since threads would stall anyway waiting for data to be fetched into
the multiprocessor.

(b) Independent sets containing boundary vertices are too small. This means that when it comes to
boundary vertex smoothing, it is not possible to exploit the hardware to all its extent. As an
example, colouring the 2, 000×2, 000 mesh results to the following independent sets: Set0(673,510
vertices), Set1(539,053 vertices), Set2(601,044 vertices), Set3(523,783 vertices), Set4(161,806 ver-
tices), Set5(5,183 vertices), Set6(1 vertex), Set7(4,000 vertices), Set8(3,996 vertices), Set9(4 ver-
tices). The difference between “inner” and “boundary” independent sets is obvious.

Figure 5.9 shows the relative speedup between the best CUDA version and CPU versions. Taking the
dedicated sets oddity into consideration, the best CUDA version is the one using texture memory for
the metric tensor field and on-chip memory as L1 cache. Compared to the serial code, the best CUDA
code executes 120-190 times faster, as mesh sizes grow. The speedup over the OpenMP version is also
significant, lying in the ×27−×45 range.

5.5. Complexity of the Anisotropic Mesh Adaptivity problem 51

5.5 Complexity of the Anisotropic Mesh Adaptivity problem

The final thing we want to conclude out of this project is the complexity of the Anisotropic Mesh
Adaptivity problem. The complexity is defined with respect to the number of mesh vertices n and
can be found by determining the number of iterations that have to be performed until we converge to
an adapted mesh. In this test we have used two medium-sized meshes, a 100 × 100 and a 200 × 200
one. The results of gradually adapting these meshes can be seen in Figure 5.10 and Figure 5.11,
respectively.

Looking at the results, we can say that the 100 × 100 mesh, which consists of 6, 417 vertices, needs
10, 000 − 20, 000 iterations to completely adapt to the error metric. Similarly, the 200× 200 mesh,
which consists of 25, 472 vertices, needs 40, 000 − 60, 000 iterations. This observation leads to the
conclusion that, in general, a mesh consisting of n vertices needs Θ(n) iterations to adapt. Conse-
quently, the complexity of the Anisotropic Mesh Adaptivity problem using the optimisation algorithm
by Pain et al. is Θ(n2).

Another interesting observation is the reason why it takes so long for a mesh to adapt. Anisotropic
problems require larger-scale vertex relocation, i.e. a vertex may be moved several “pixels” away from
its original position pi. Even if we knew the exact final position pf for that vertex from the very
beginning, we would have to wait for several iterations until all vertices between pi and pf be also
relocated; we cannot relocate the vertex under consideration in one step because if we do so we may
invert cavities and invalidate the mesh.

Recapitulating, this chapter presented the results from our experimentation with CUDAMesh64. It
was shown that the CUDA version can offer performance gains up to ×190 compared to the simple,
serial CPU code and ×45 over the eight-threaded OpenMP version. Additionally, we found out that
the theoretically best execution configuration does not necessarily yield the best timing results in
the presence of other important obstacles, like memory latency. Finally, it was estimated that the
algorithmic complexity of the Anisotropic Mesh Adaptivity problem is quadratic with respect to the
number of mesh vertices. The next, and final, chapter of this report summarises all these points and
proposes topics that are left as future work.

52 Chapter 5. Experimental results and evaluation

Figure 5.10: Gradually adapting a 100 × 100 mesh. Top line: The original mesh (left), after 100
iterations (right); Middle line: After 1,000 iterations (left), after 5,000 iterations (right); Bottom line:
After 10,000 iterations (left), after 20,000 iterations (right).

5.5. Complexity of the Anisotropic Mesh Adaptivity problem 53

Figure 5.11: Gradually adapting a 200 × 200 mesh. Top line: The original mesh (left), after 200
iterations (right); Middle line: After 4,000 iterations (left), after 16,000 iterations (right); Bottom
line: After 40,000 iterations (left), after 60,000 iterations (right).

54 Chapter 5. Experimental results and evaluation

Chapter 6

Conclusions and future work

This last chapter constitutes a recapitulation of what has been done throughout this project, the main
algorithmic concepts encountered, the key architectural points of CUDA, the benefits this architecture
can offer in terms of performance compared to conventional hardware approaches and the experience
we gained through our avocation with this project. Additionally, we summarise the main performance
bottlenecks of CUDAMesh64 and propose ways in which these problems can be mitigated, along with
topics that remain open to further study and future investigation. Finally, we attempt to link the
knowledge acquired through this project to our previous experience with another high-performance
architecture, IBM’s Cell Broadband Engine, and explain why we think that programming in CUDA is
much simpler and easier and still it results to greater speedups.

6.1 Conclusions

This project was proposed having in mind the creation of CUDA-enabled application, which was
named CUDAMesh64, with the purpose of assessing this architecture with respect to a specific, applied
mathematics problem.

6.1.1 CUDAMesh64

The basis of this project is the problem of Anisotropic Mesh Adaptation, i.e. the process of taking an
unstructured input mesh and adapting it (or deforming it) as indicated by some metric. The algorithm
we used to perform mesh adaptation is known as Vertex Smoothing and it has been implemented using
the optimisation technique proposed by Pain et al. ([PUdOG01]). Another optimisation technique
that was attempted is the one proposed by Freitag et al. ([FJP95]), which is based on optimising
some objective functional, like the one proposed by Vasilevskii and Lipnikov ([VL99]). Unfortunately,
there were technical difficulties which inhibited us from implementing this optimisation technique.

Correct Parallel Execution is a key point when a large scale application, like CUDAMesh64, is to be
run on a parallel processing architecture. Freitag et al. have proposed a relative framework ([FJP98])
which can be easily implemented, ensures correctness of execution and leaves a lot of parallelism to
be extracted out of a large problem (large mesh). This framework relies upon graph colouring, which
means that we have to engage some colouring algorithm. It is clear that the amount of parallelism,
therefore the expected execution performance, is affected in a critical way by the choice of a suitable
colouring scheme. First Fit Colouring, a simple, greedy and serial colouring algorithm, was shown to
be sufficiently good, although better schemes may help us achieve better performance.

55

56 Chapter 6. Conclusions and future work

nVIDIA’s Compute Unified Device Architecture ([nC10a], [nC10b]) was the target platform of choice
for our application. It is a massively parallel and floating-point capable architecture, ideal for solving
complex scientific problems. The näıve CUDA version of CUDAMesh64 can run up to ×68 faster
than the serial CPU code and up to ×16 faster than an eight-threaded OpenMP code. Throughout
our experiments with CUDAMesh64 it was shown that a powerful feature of CUDA is the ability to
use Texture Memory to store the metric tensor field. Doing so raises the relative speedup over serial
and OpenMP versions, reaching a total speedup of up to ×190 and ×45, respectively. In fact, using
texture memory can almost take away the overhead of using the discrete form of metric tensors.

Performance analysis also showed there are two serious bottlenecks. The most important seems to
be the fact that the CUDA kernel occupies a lot of registers, which results in low multiprocessor
occupancy. Even in the best version, i.e. the version occupying the fewest registers, register usage is
still so high that it accounts for a theoretical 62.5% performance loss. This problem could be mitigated
by breaking down the optimisation algorithm into many smaller stages and storing intermediate results;
the output of one stage will be the input to the next one. Each stage will be executed by launching
a dedicated CUDA kernel. The downside of this approach is that many more kernels will have to be
launched compared to the current implementation of CUDAMesh64 : instead of launching one kernel
per mesh pass, if the algorithm is broken down into k parts, k kernels will have to be invoked for each
pass. According to nVIDIA, however, kernels are very lightweight, so increasing the number of kernel
invocations should not be a problem.

The second obstacle is memory access. Best performance is achieved when using few threads per block
and not the values indicated by the occupancy calculator. The first thing that has to be done towards
fixing memory latency is to improve data locality. Using the on-chip memory as a 48KB L1 cache is
already proved to speed up execution. A two-level colouring scheme that takes locality into account
could potentially improve execution speed even further. Although such a scheme was started in this
project, there was not sufficient time to complete the work.

Another conclusion from this project regards the complexity of the Anisotropic Mesh Adaptivity prob-
lem when the algorithm by Pain et al. is used. Seeing how the mesh looks after various numbers of
iterations, it is estimated that the complexity of this problem is Θ(n2), n being the number of vertices
in the mesh. Although other, more sophisticated algorithms, like the one by Freitag et al., are usually
expected to converge faster to a solution, we highly doubt that this is really the case in anisotropic
problems. The main reason why it takes so many iterations for a mesh to adapt does not seem to be
algorithm accuracy or efficiency, but rather the fact that vertex relocation in anisotropic problems is
of a much larger scale than in isotropic PDEs. Even if the algorithm can indicate the final position of
a vertex precisely, this vertex cannot be relocated to that position in one step, since there are other
vertices in between that have to be smoothed first.

6.1.2 nVIDIA’s CUDA vs IBM’s CBEA

Before starting this project we had some previous experience with another high-performance archi-
tecture, IBM’s Cell Broadband Engine [IBM07], in the scope of numerical analysis project, where we
studied the solution of the 2D advection PDE on the latter platform ([RPK+10]). Having spent time
testing both architecture, we can comment on how easy it is to program on each platform and what
one should expect in term of execution performance.

The first advantage of CUDA we noticed was from the programmer’s perspective. When porting CPU
code to the device, there are only a few modifications that have to be made. In contrast, porting
existing code to CBE includes a complete rewrite so that new code is written specifically for the
Synergistic Processor Elements (SPEs), the main vector execution cores of Cell. As a result, CUDA’s
approach is much more safe, as it is not very likely that new bugs will be introduced in the existing

6.1. Conclusions 57

codebase. Another advantage of the SIMT (Single Instruction Multiple Threads) concept is that
parallelisation of an algorithm is done in a more automated way. There is no need for manual data
vectorisation or explicit data transfer to a multiprocessor. When a multiprocessor needs some data,
it access global memory directly, whereas in Cell these data have to be transferred explicitly to an
SPE’s Local Storage using DMA Transfers.

From an architectural point of view, CUDA can exploit much more parallelism, being able to manipu-
late thousands of threads. This way, it is easier to get higher performance even from näıve code. The
key point is the organisation of threads in warps and the ability to switch between warps at no cost.
In contrast, a typical CBE chip contains 8 SPEs, each one being able to run one context (thread) at a
time. If, for any reason, a SPE thread stalls, there is no way to keep the SPE busy doing other useful
stuff (apart from SPU context switching, the overhead of which is too high to be considered as a real
alternative). Computation and communication can be overlapped in CBE as it is possible to have
many outstanding DMA transfers; however, doing so requires some effort by the programmer and it
is not always the solution to low performance (e.g. if a kernel needs a lot of data but executes only a
few operations on them, overlapping computation-communication will not help much). The concept
of warps and the ability to run hundreds of threads on each multiprocessor not only hides memory
access latency but eliminates branch penalties as well.

On the other hand, Cell has its own points of excellence. Instead of relying on a relatively slow bus like
PCI-Express, it engages a high-bandwidth Element Interconnect Bus (EIB), which can communicated
directly with the main memory. EIB also lacks CUDA’s restrictions on memory access patterns, like
memory partitions and coalesced accesses. Moreover, each SPE is equipped with two heterogeneous
pipelines, one being responsible for memory operations (IBM calls it “odd” pipeline) and the other
executing floating-point operations (IBM calls it “even” pipeline). These pipelines operate indepen-
dently from each other, so it is possible to avoid interruptions to the even pipeline if we make sure
that the odd pipeline has fetched all necessary data into the register file before the even pipeline needs
them.

From a programmer’s perspective, CBE fully supports C++, which can result in easier development
and less error-prone code. Furthermore, we encountered some undocumented aspects regarding CUDA,
like the linker’s incapability to link functions between different object files, which made us lose quite
a lot of time trying to figure out why we could not get our code to compile. Finally, nVIDIA has
not disclosed enough details about CUDA internals, like CUDA assembly language and register file
specifications. Although manual instruction scheduling is a painful and time consuming task, having
the full specifications of Cell enables us to optimise code to a much greater extent than what we are
able to do on CUDA.

The general feeling we are left with is that CUDA resources do not seem to keep up with massive
parallelism. For example, a multiprocessor can run 512 threads concurrently but it has only 64KB
of on-chip memory (this is the amount of L1 cache in a modern CPU core supporting 2-way SMT).
Another example is the significant performance penalty if a kernel occupies more than 20 registers;
in Cell all 128 128-bit registers can be used without worrying about performance penalties. These
restrictions are a legacy of CUDA’s graphics processing ancestry. CUDA seems to be more suitable
for very simple operations, i.e. small kernels, on very large amounts of data. This is why “GPU is
not CPU”.

In the end, however, what matters the most is the result: CUDA can achieve much higher GFLOPS
values. Still, we consider CBEA to be a much more sophisticated piece of engineering.

58 Chapter 6. Conclusions and future work

6.2 Future Work

There are various topics that remain open to further study. The most significant among them, and
the ones to be investigated in the context of a publication following this project, are:

• Breakdown of the optimisation kernel, so that register usage is limited and multiprocessor oc-
cupancy is maximised.

• Graph colouring using a two-level scheme in an attempt to improve data locality and cache
efficiency.

• Redoing the CPU experiments on a newer CPU, so that performance can be compared between
hardware of the same “era”.

• Finding out the individual contribution of the two issues of benefit from using texture memory
for the metric tensor field, i.e. texture caching and hardware implementation of interpolation.

Taking proposals for future work a bit further, we would suggest that following topics are considered:

• Reattempt to implement the optimisation algorithm by Freitag et al., once an appropriate au-
tomatic differentiation tool is available or significant part of CUDAMesh64 codebase can be
rewritten in pure C.

• Porting CUDAMesh64 to AMD’s (formerly ATI) Stream Architecture, with the purpose of per-
forming comparisons between these competing architectures.

• Rewriting the application in OpenCL so that there is an abstraction layer between the application
itself and the underlying hardware.

• Using the port to OpenCL to experiment with AMD’s OpenCL compiler, testing not only GPU
code, but also the compiler’s capabilities in vectorisation (SSE) and multi-core execution. With
AMD’s Fusion architecture of Accelerated Processing Units (APUs) being on the way, such an
experimentation would be very interesting.

• Even experimenting with IBM’s OpenCL compiler for Cell.

• Accelerating the 3D version of Anisotropic Mesh Adaptivity using GPGPU computing.

Bibliography

[AMC06] AMCG. Simple adapt example.
http://amcg.ese.ic.ac.uk/index.php?title=Simple Adapt Example, April 2006.

[AOS06] Hussein Al-Omari and Khair Eddin Sabri. New graph coloring algorithms. Journal of
Mathematics and Statistics, 2006.

[cfd08] Case Study: CFD. Technical report, Supercomputing 2008 CUDA Tutorial, November
17th 2008.

[cL99] François Labelle. Anisotropic triangular mesh generation based on refinement.
http://www.eecs.berkeley.edu/ flab/cs294-5/project2/mesh.html, December 1999.

[cud08a] CUDA Basics. Technical report, Supercomputing 2008 CUDA Tutorial, November 17th
2008.

[cud08b] Introduction to CUDA. Technical report, Supercomputing 2008 CUDA Tutorial, Novem-
ber 17th 2008.

[cud08c] Optimizing CUDA. Technical report, Supercomputing 2008 CUDA Tutorial, November
17th 2008.

[ELD08] Erich Elsen, Patrick LeGresley, and Eric Darve. Large calculation of the flow over a
hypersonic vehicle using a gpu. Journal of Computational Physics, 227(24):10148 – 10161,
2008.

[FJP95] Lori Freitag, Mark Jones, and Paul Plassmann. An Efficient Parallel Algorithm for Mesh
Smoothing. In INTERNATIONAL MESHING ROUNDTABLE, pages 47–58, 1995.

[FJP98] Lori F. Freitag, Mark T. Jones, and Paul E. Plassmann. The Scalability Of Mesh Improve-
ment Algorithms. In IMA VOLUMES IN MATHEMATICS AND ITS APPLICATIONS,
pages 185–212. Springer-Verlag, 1998.

[Fre97] Lori A. Freitag. On Combining Laplacian And Optimization-Based Mesh Smoothing
Techniques. In TRENDS IN UNSTRUCTURED MESH GENERATION, pages 37–43,
1997.

[GBT06] Dominik Göddeke, Christian Becker, and Stefan Turek. Integrating GPUs as fast co-
processors into the parallel FE package FEAST. In Matthias Becker and Helena Szczer-
bicka, editors, 19th Symposium Simulationstechnique (ASIM’06), Frontiers in Simulation,
pages 277–282, September 2006.

[HB] Jared Hoberock and Nathan Bell. Thrust.
http://code.google.com/p/thrust/.

59

60 BIBLIOGRAPHY

[HB10] Jared Hoberock and Nathan Bell. Thrust: A parallel template library, 2010. Version
1.2.1.

[IBM07] IBM. Cell Broadband Engine Programming Tutorial. Technical report, 2007.

[Kita] Inc. Kitware. ParaView - Open Source Scientific Visualization.
http://www.paraview.org/.

[Kitb] Inc. Kitware. The Visualization Toolkit.
http://www.vtk.org/.

[Lab] Karypis Lab. METIS - Family of Multilevel Partitioning Algorithms.
http://glaros.dtc.umn.edu/gkhome/views/metis.

[ML09] Applied Modelling and Computation Group Imerial College London. Fluidity.
http://amcg.ese.ic.ac.uk/index.php?title=Fluidity, November 2009.

[MoANL] Mathemetics and Computer Science Division of Argonne National Laboratory. OpenAD.
http://www.mcs.anl.gov/OpenAD/.

[nC] nVIDIA Corporation. CUDA GPU Occupancy Calculator.
http://developer.download.nvidia.com/compute/cuda/CUDA Occupancy calculator.xls.

[nC10a] nVIDIA Corporation. nVIDIA CUDA Programming Guide, Version 3.1. Technical report,
2010.

[nC10b] nVIDIA Corporation. nVIDIA CUDA Reference Manual, Version 3.1. Technical report,
2010.

[PFW+09] M. D. Piggott, P. E. Farrell, C. R. Wilson, G. J. Gorman, and C. C. Pain. Anisotropic
mesh adaptivity for multi-scale ocean modelling. Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences, 367(1907):4591–4611, 2009.

[PUdOG01] C. C. Pain, A. P. Umpleby, C. R. E. de Oliveira, and A. J. H. Goddard. Tetrahedral mesh
optimisation and adaptivity for steady-state and transient finite element calculations.
Computer Methods in Applied Mechanics and Engineering, 190(29-30):3771 – 3796, 2001.

[Rok10] Georgios Rokos. ISO Thesis: Study of Anisotropic Mesh Adaptivity and its Parallel
Execution. Imperial College London, 2010.

[RPK+10] Georgios Rokos, Gerassimos Peteinatos, Georgia Kouveli, Georgios Goumas, Kornilios
Kourtis, and Nectarios Koziris. Solving the advection PDE on the Cell Broadband En-
gine. In Proceedings of the 24th IEEE International Parallel & Distributed Processing
Symposium, 2010.

[TccS09] Julien Thibault and Inanç Şenocak. Incompressible Navier-Stokes Solver Implementation
on Single, Dual and Quad GPU desktop platforms with CUDATM.
http://coen.boisestate.edu/senocak/files/BSU CUDA Res v5.pdf, 2009.

[VL99] Y. Vasilevskii and K. Lipnikov. An adaptive algorithm for quasioptimal mesh generation.
Computational Mathematics and Mathematical Physics, 39(9):1468–1486, 1999.

