
Program Analysis Probably Counts

Alessandra Di Pierro1, Chris Hankin2, and Herbert Wiklicky2

1 University of Verona, Ca’ Vignal 2 - Strada le Grazie 15 I-37134 Verona, Italy
2 Imperial College London, 180 Queen’s Gate London SW7 2AZ, UK

Abstract. Semantics-based program analysis uses an abstract seman-
tics of programs/systems to statically determine run-time properties.
Classic examples from compiler technology include analyses to support
constant propagation and constant folding transformations and estima-
tion of pointer values to prevent buffer overruns. More recent exam-
ples include the estimation of information flows (to enforce security con-
straints) and estimation of non-functional properties such as timing (to
determine worst case execution times in hard real-time applications).
The classical approaches are based on semantics involving discrete math-
ematics. Paralleling trends in model-checking, there have been recent
moves towards using probabilistic and quantitative methods in program
analysis.
In this paper we will start by reviewing both classical and probabilis-
tic/quantitative approaches to program analysis. We will provide a com-
parison of the two approaches. We will use a simple information flow
analysis to exemplify the classical approach. The existence of covert in-
formation flows through timing channels are difficult to detect using
classical techniques; we show how such problems can be addressed using
probabilistic techniques.

1 Introduction

Program analysis is a collection of techniques to predict in advance what will
happen when a program is executed. Classically, such information could be used
to optimise the code produced by a compiler; more recently this has formed
the basis for the automatic debugging, verification and certification of code.
Unfortunately, well known fundamental results, like the Halting problem, tell us
that it is impossible to know everything about the behaviour of every program.
The solution to this obstacle of undecidabilty is to aim for partial answers to
some of the questions. Program analysis techniques have been in use in compilers
since the dawn of the computing age; semantics-based techniques, which will be
our focus, stem from the late 1970s.

Different applications and users have different priorities and interests and
therefore accept different kinds of imprecision. When it comes, for example, to
systems which are critical for life and limb one might be cautious and attempt
to determine absolute limits on what can go wrong in the worst case – like in
the case of safety critical systems in cars, planes, etc. If, on the other hand, the
possible damage is only in terms of lost money, time or other resource one might

be inclined to accept an estimate in order to forecast average profits or losses –
as in the context of speculative threading, power consumption of mobile devices,
etc.

In this paper we will briefly compare and contrast two different approaches to
semantics-based program analysis. The first is based on abstract interpretation
and uses traditional (discrete) mathematical models as a basis. The alternative is
based on probabilistic and continuous models – making program analysis count
(probably)! We will use language-based security as an example of what can be
achieved by traditional methods and then show how quantitative methods can
help detect and fix indirect information flows known as covert channels.

2 Program Analysis

Abstract Interpretation [1–4] provides a general methodology for constructing
static analyses which is, to some extent, independent of the particular style
used to specify the program analysis. Thus, it applies to any formulation of a
(data/control flow or type/effect-system) analysis.

The semantics of a program f identifies some set V of values and specifies how
the program transforms one value v1 to another v2: f ` v1 ; v2. In a similar
way, a program analysis identifies the set L of properties and specifies how a
program f transforms one property l1 to another l2: f ` l1 � l2. For first-order
program analyses, i.e. those that abstract properties of values, correctness is
established by directly relating properties to values using a correctness relation:
R : V × L → {true, false}. The intention is that v R l formalises our claim
that the value v is described by the property l.

To be useful one has to prove that the correctness relation R is preserved
under computation: if the relation holds between the initial value and the initial
property then it also holds between the final value and the final property:

v1 R l1 ∧ f ` v1 ; v2 ∧ f ` l1 � l2 ⇒ v2 R l2

The most common scenario in abstract interpretation is when both V and L
are complete lattices. We then require that R satisfies:

v R l1 ∧ l1 v l2 ⇒ v R l2 (1)

(∀l ∈ L′ ⊆ L : v R l)⇒ v R
(l

L′
)

(2)

The first of these concerns safety [4]: if we have a property which correctly
describes a value, then any larger property is also a safe description. The second
concerns the existence of best descriptions: if we have a set of properties that
correctly describe a value then their meet will also be a correct description and
is more accurate.

The correctness relation is often achieved via a Galois connection: (V, α, γ, L)
is a Galois connection between the complete lattices (V,v) and (L,v) if and only

if α : V → L and γ : L → V are monotone functions that satisfy: γ ◦ α w idV

and α ◦ γ v idL.
Having defined a suitable “set” of properties we then define suitable interpre-

tations of program operations. The framework of abstract interpretation guar-
antees that the analysis will be safe as long as we use an interpretation, Fabs,
of each language operator, F, that satisfies: Fabs w α ◦ F ◦ γ.

Quantitative approaches to program analysis aim at developing techniques
which provide approximate answers (in a way similar to the classical program
analysis) together with some numerical estimate of the approximation introduced
by the analysis.

One useful source of numerical information for a quantitative program analy-
sis is a probabilistic semantics and in particular the use of vector space or linear
algebraic structures for modelling the computational domain. By exploiting the
probabilistic information resulting from a probabilistic program analysis one can
quantify the precision of the analysis and obtain as a result answers which are
for example “approximate up to 35%”.

As a quantitative approach to program analysis we have developed Proba-
bilistic Abstract Interpretation (PAI) [5, 6] which recasts classical Abstract In-
terpretation in a probabilistic setting where linear spaces replace the classical
order-theoretic domains, and the notion of the so-called Moore-Penrose pseudo-
inverse of a linear operator replaces the classical notion of a Galois connection.
The abstractions we get this way are close approximations of the concrete se-
mantics. Thus, closeness is a quantitative replacement for classical safety which
does not require any approximation ordering.

The application of operator algebraic methods instead of order theoretic ones
makes the framework of probabilistic abstract interpretation essentially different
from approaches which apply classical abstract interpretation to probabilistic
domains [7]. Although classical techniques can also be used in a probabilistic
context, e.g. to approximate distributions, as was demonstrated for example in
a number of papers by D.Monniaux [7], this will always result in safe, i.e. worst
case analysis.

Probabilistic Abstract Interpretation is defined in general for infinite dimen-
sional Hilbert spaces. We recall here the general definition, although in this
paper we will only consider the finite dimensional case. Given two probabilis-
tic domains C and D, a probabilistic abstract interpretation is defined by a pair
of linear maps, A : C 7→ D and G : D 7→ C, between the concrete domain C
and the abstract domain D, such that G is the Moore-Penrose pseudo-inverse
of A, and vice versa. Let C and D be two Hilbert spaces and A : C 7→ D a
bounded linear map between them. A bounded linear map A† = G : D 7→ C is
the Moore-Penrose pseudo-inverse of A iff

A ◦G = PA and G ◦A = PG

where PA and PG denote orthogonal projections (i.e. P∗A = PA = P2
A and

P∗G = PG = P2
G) onto the ranges of A and G.

Alternatively, if A is Moore-Penrose invertible, its Moore-Penrose pseudo-
inverse, A† satisfies the following:

(i) AA†A = A,
(ii) A†AA† = A†,

(iii) (AA†)∗ = AA†,
(iv) (A†A)∗ = A†A.

where M∗ is the adjoint of M. It is instructive to compare these equations with
Galois connections where we similarly have α ◦ γ ◦ α = α and γ ◦ α ◦ γ = γ.

As in the classical framework, given a concrete semantics we can always
construct a best correct approximation for this semantics, although the notions of
correctness and optimality assume a different connotation in our linear setting.
If Φ is a linear operator on some vector space V expressing the probabilistic
semantics of a concrete system, and A : V 7→ W is a linear abstraction function
from the concrete domain into an abstract domain W, we can compute the
(unique) Moore-Penrose pseudo-inverse G = A† of A. An abstract semantics
can then be defined as the linear operator on the abstract domain W:

Ψ = A ◦ Φ ◦G = GΦA.

3 Approximations: Classical Function Interpolation

In oder to give a deeper comparison of these two approaches, we need a setting
where the domain in question in some way naturally provides both structures.
One such situation is in the context of classical function interpolation or approx-
imation.

The set of real-valued functions on real interval [a, b] obviously comes with a
canonical partial order, namely the point-wise ordering, and at the same time is
equipped with a vector space structure, again the point-wise addition and scalar
multiplication. Some care has to be taken in order to define an inner product,
e.g. one could consider only the square integrable function L2([a, b]). In order to
avoid mathematical (e.g. measure-theoretic) details we simplify the situation by
just considering the step functions on the interval.

For a (closed) real interval [a, b] ⊆ R we call the set of subintervals [ai, bi] with
i = 1, . . . , n an n-subdivision of [a, b] if

⋃n
i=1[ai, bi] = [a, b] and bi − ai = b−a

n for
all i = 1, . . . , n. We assume that the subintervals are enumerated in the obvious
way, i.e. ai < bi = ai+1 < bi+1 for all i and in particular that a = a1 and bn = b.

Definition 1. The set of n-step functions Tn([a, b]) on [a, b] is the set of real-
valued functions f : [a, b]→ R such that f is constant on each subinterval (ai, bi)
in the n-subdivision of [a, b].

We define a partial order on Tn([a, b]) in the obvious way: for f, g ∈ Tn([a, b]):

f v g iff f(
bi − ai

2
) ≤ g(

bi − ai

2
)

i.e. iff the value of f (which we obtain by evaluating it on the mid-point in
(ai, bi)) on all subintervals (ai, bi) is less or equal to the value of g.

It is also obvious to see that Tn([a, b]) has a vector space structure isomorphic
to Rn and thus is also provided with an inner product. More concretely we

define the vector space operations . · . : R × Tn([a, b]) → Tn([a, b]) and . + . :
Tn([a, b])× Tn([a, b])→ Tn([a, b]) pointwise as follows:

(α · f)(x) = αf(x)

(f + g)(x) = f(x) + g(x)

for all α ∈ R, f, g ∈ Tn([a, b]) and x ∈ [a, b]. The inner product is given by:

〈f, g〉 =
n∑

i=1

f(
bi − ai

2
)g(

bi − ai

2
).

In this setting we now can apply and compare both the classical and the
quantitative version of abstract interpretation as in the following example.

Example 2. Let us consider a step function f in T16 (the concrete values of a
and b don’t really play a role in our setting) which can be depicted as:

which can also be represented by a vector in R16:(
5 5 6 7 8 4 3 2 8 6 6 7 9 8 8 7

)
We then can construct a series of abstractions which correspond to coarser and
coarser sub-divisions of the interval [a, b], e.g. considering 8, 4 etc. subintervals
instead of the original 16. These abstractions are from T16([a, b]) to T8([a, b]),
T4([a, b]) etc. and can be represented by 16× 8, 16× 4, etc. matrices.

For example, the abstraction which joins two sub-intervals and which corre-
sponds to the abstraction α8 : T16([a, b]) → T8([a, b]) together with its Moore-

Penrose pseudo-inverse is represented by:

A8 =

1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1

G8 =

1
2

1
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1
2

1
2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1
2

1
2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1
2

1
2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1
2

1
2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1
2

1
2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1
2

1
2 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
2

1
2

With the help of Ai we can easily compute the the abstraction of f as fA,
which in order to compare it with the original f we can then again concretise
using G, i.e. computing fAG. In a similar way we can also compute the over-
and under-approximation of f in Ti based on the above pointwise ordering and
its reverse ordering. The result of these abstractions is depicted geometrically in
Figure 1.

The individual diagrams in this figure depict the original, i.e. concrete step
function f ∈ T16 together with its approximations in T8, T4, etc. On the left
hand side the PAI abstractions show how coarser and coarser interval subdi-
visions result in a series of approximations which try to interpolate the given
function as closely as possible, sometimes below, sometimes above the concrete
values. The diagrams on the right hand side depict the classical over- and under-
approximations: In each case the function f is entirely below or above these
approximations, i.e. we have safe but not necessarily close approximations. Ad-
ditionally, one can also see from these figures not only that the PAI interpolation
is in general closer to the original function than the classical abstractions (in fact
it is the closest possible) but also that the PAI interpolation is always between
the classical over- and under-approximations.

4 Information Flow

We now turn to an example which is closer to programming language theory
and is motivated by language-based security concerns. We focus on the flow of
information between variables in a program. Classical work in language-based
security partitions the variables into different security classes and then seeks
to enforce various security properties such as no read-up (where, for example,

Probabilistic Abstract Interpretation Classical Abstract Interpretation

T8

T4

T2

T8

Fig. 1. Average, Over- and Under-Approximation

the value of a higher security variable may not be assigned to a lower security
variable). The material in this section is based on [8].

Following Denning [9] we divide information flows into two classes: direct and
indirect. Indirect flows are just the transitive flows (a flow from x to y followed
by a flow from y to z implies a flow from x to z). The direct flows are further
divided:

1. Explicit flows arise from assignments; for example, x := y+ z causes explicit
information flows from both y and z to x.

2. Implicit flows arise when one variable’s value influences the value assigned to
another by determining the flow of control. There are two types of implicit
flow (though Denning only considered the first type in detail):
(a) Local flows arise from guards in conditionals:

if x then y := z else y := w.

Here there is local implicit information flow from x to y, in addition to
the explicit flows from z and w.

(b) Global flows arise from guards in while loops

x := y; (while w do x := z); · · · .

Here there is a global implicit flow from w to all subsequent program
points, since reaching those points carries the information that the loop
terminated and hence, in this example, that w was false.

4.1 Information Flow for While

The syntax of the language is as follows:

S ∈ Statement
C ∈ Command

` ∈ Lab
x ∈ Ide

a ∈ Arith-exp
b ∈ Bool-exp

S ::= C`

C ::= skip | x := a | S1;S2 |
if b then S1 else S2 | while b do S |
new x. S

This is the standard While language, used in many programming language
textbooks, extended with a block structuring construct (new); the reader should
see [4] for a detailed treatment of program analysis techniques for this language.
Command are labelled in order to allow us to formulate the program analysis;
the labels play no part in the semantics.

The semantics of the language is standard. The Information Flow Analysis
is presented in the style of a flow logic as pioneered by Flemming Nielson and
Hanne Riis Nielson and their group; see [4] for an introduction to this style. For
this language the control flow is explicit and we just use the flow logic to specify
information flow. We assume that Ide and Lab are restricted to those variables
and labels appearing in the program, ensuring that the constraints have finite
solutions. We write

(Ĝ, D̂) |= S

when (Ĝ, D̂) is an acceptable Information Flow Analysis of the statement S.
We use the following functions on labels:

X̂ ∈ Assign = Lab→ P(Ide)

Ĝ ∈ Global = Lab→ P(Îde)

D̂ ∈ Dep = Lab→ P(Îde× Îde)

where Îde = Ide ∪ {•}. Given a label, X̂ returns a superset of those variables
which may be assigned to during evaluation of the statement with that label. It
is necessary to collect this information in order to handle implicit flows correctly.
The function X̂ has a straightforward inductive definition (see [8].

Given a label, Ĝ returns a superset of those variables whose values may affect
termination of the statement with that label. The special variable • is used
to indicate that a while loop has been encountered (and thus non-termination
is possible). The variables in Ĝ(`) are involved in implicit global flows to any
variables assigned to after the execution of the statement at `.

Given a label, D̂ returns a superset of the dependencies for the statement
with that label; a pair (x, y) is a dependency for S if different values for y in the
state prior to execution of S can result in different values for x in the state after
execution of S.

We also use FV(a) to denote the set of variables occurring in a (and similarly
for b). Note that D̂(`) is a binary relation on Îde. We denote the identity relation
on Îde by Id. We use ; for relational composition and also overload this notation
to allow the ‘composition’ of a set with a relation, thus: Y ;R def= {z | ∃y ∈ Y. y R
z}. Where convenient, we treat D̂(`) as a function of type Îde → P(Îde). In
particular, we use a ‘function update’ notation on relations thus: R[x 7→ Y] def=
{(y, z) ∈ R | y 6= x} ∪ {x} × Y .

A selection of rules from the Information Flow Analysis are shown in table 1.
If a variable is not assigned at a label, its post-execution value will be the

same as its pre-execution value; hence the clause for skip. When an assignment
is executed, there are direct information flows from the variables on the right
hand side to the variable on the left hand side. In a sequential composition, the
variables that might affect termination are those that might affect the termi-
nation of the first sub-statement or those that might affect termination of the
second sub-statement after taking account of dependencies created by the first

(bG, bD) |= skip` iff bD(`) ⊇ Id

(bG, bD) |= (x := a)`

iff bD(`) ⊇ Id[x 7→ FV(a)]

(bG, bD) |= (C`1
1 ; C`2

2)`

iff (bG, bD) |= C`1
1 ∧ (bG, bD) |= C`2

2 ∧bG(`) ⊇ bG(`1) ∪ bG(`2) ; bD(`1) ∧bD(`) ⊇ bD(`2) ; bD(`1)

(bG, bD) |= (if b then C`1
1 else C`2

2)`

iff (bG, bD) |= C`1
1 ∧ (bG, bD) |= C`2

2 ∧bG(`) ⊇ bG(`1) ∪ bG(`2) ∧
(• ∈ bG(`)⇒ bG(`) ⊇ FV(b)) ∧bD(`) ⊇ bD(`1) ∪ bD(`2) ∧bD(`) ⊇ bX(`)× FV(b)

Table 1. Information Flow Analysis for While

sub-statement (hence the relational composition); the dependencies are gener-
ated by the relational composition of the dependencies for the sub-statements.
The conditional clause mainly concerns propagation of information from the
then and else branches; if either branch contains a while loop, the variables ap-
pearing in the predicate are added to Ĝ(`) – this ensures that there is an implicit
global flow to statements following the conditional; the variables assigned in the
branches are forced to depend on the variables in the predicate – this establishes
the implicit local information flows.

Having analysed a program, C`, we determine that there is no breach of
security if both

– {x | x ∈ H} ∩ Ĝ(`) = ∅, and
– ∀x ∈ L. 6 ∃y ∈ H.x D̂(`) y

i.e. there are no global information flows from high variables and no low variable
depends on any high variable.

5 Adding Quantities

Early work on language-based security, such as Volpano and Smith’s type sys-
tems [10], precluded the use of high security variables to affect control flow.
Specifically, the conditions in if-commands and while-commands were restricted
to using only low security information. If this restriction is weakened, as we
have done in the previous section, it opens up the possibility that high security

data may be leaked through the different timing behaviour of alternative control
paths. This kind of leakage of information is said to form a covert timing channel
and is a serious threat to the security of programs (cf. e.g. [11]).

We consider a language similar to that used in the previous section but
with the addition of a probabilistic choice construct and skip statements of
different duration (reflecting the fact that assignment consumes less cycles than
a conditional). We draw motivation from [12]:

C,D ::= x := a | skipAsn x a | if b then C else D | skipIf b C
| while b do C | C;D | [choose]p C or D

The probabilistic choice is used in an essential way in the program transformation
presented later. We also keep the language of types from [12], although in a
simplified form (with L ≤ H and s ≤ s):

Security levels s ::= L | H
Base types τ ::= Int | Bool
Security types τ ::= τs

and sub-typing:
s1 ≤ s2
τs1 ≤ τs2

.

We will indicate by E the state of a computation and denote by EL its
restriction to low variables, i.e. a state which is defined as E for all the low
variables for which E is defined, and is undefined otherwise. We say that two
configurations 〈E | C〉 and 〈E′ | C ′〉 are low equivalent if and only if EL = E′L
and we indicate this by 〈E | C〉 =L 〈E′ | C ′〉. In the following we will sometimes
use the shorthand notation c, c1, c2, . . . , c′, c′1, . . . for configurations. We will also
denote by Conf the set of all configurations.

The big step semantics of expressions and the small-step semantics of com-
mands are essentially the same as those in [12]. The only difference is the rule
for probabilistic choice which we have added to the original semantics (see Table
2). In this rule, tch indicates the time it takes to execute a choice command. In
general, we will use the time labels t. to represent the time it takes to perform
certain operations: tx is the time to store a variable, ta is the time it takes to
evaluate an arithmetic expression, tasn represents the time to perform an assign-
ment, tbr is the time required for a branching step, and tch is the time to perform
a probabilistic choice. The choice rule states that the execution of a probabilistic
choice construct leads, after a time tch, to a state where either the command C
or the command D is executed with probability p or 1− p, respectively.

5.1 Abstract Semantics

According to the notion of security we consider in this paper, an observer or
attacker can only observe the changes in low variables. Therefore, we can simplify
the semantics by ‘collapsing’ the execution tree in such a way that execution steps
during which the value of all low variables is unchanged are combined into one
single step. We call an execution sequence σ deterministic if the probability of the
sequence is 1 and we call it low stable if all the states in the low-slice are equal in

(Assign)
E ` a ⇓ v

〈E | x := a〉
1:ta·tx·tasn·

√
// E[x = v]

(Seq)
〈E | C〉

p:ts·
√

) // E′

〈E | C; D〉
p:ts // 〈E′ | D〉

〈E | C〉
p:ts // 〈E′ | C′〉

〈E | C; D〉
p:ts // 〈E′ | C′; D〉

(If)
E ` b ⇓ true

〈E | if b then C else D〉
1:tb·tbr // 〈E | C〉

E ` b ⇓ false

〈E | if b then C else D〉
1:tb·tbr // 〈E | D〉

(SkipAsn)
E ` a ⇓ v

〈E | skipAsn x a〉
1:ta·tasn·

√
// E

(SkipIf)
E ` b ⇓ v

〈E | skipIf b C〉
1:tb·tbr // 〈E | C〉

v ∈ {true, false}

(While)
E ` b ⇓ false

〈E | while b do C〉
1:tb·tbr·

√
// E

E ` b ⇓ true

〈E | while b do C〉
1:tb·tbr // 〈E | C; while b do C〉

(Choose)

〈E | [choose]p C or D〉
p:tch // 〈E | C〉

〈E | [choose]p C or D〉
(1−p):tch // 〈E | D〉

Table 2. pWhile semantics

the low variables. The empty path (of length zero) is by definition deterministic
and low stable. An execution sequence is maximal deterministic/low stable if it
is not a proper sub-sequence of another deterministic/low stable path.

Definition 3. The collapsed transition relation 〈E1 | C1〉
p:T +3 〈E2 | C2〉 be-

tween two configurations is defined iff

(i) there exists a configuration 〈E′1 | C ′1〉 such that 〈E1 | C1〉
p:t // 〈E′1 | C ′1〉,

(ii) 〈E′1 | C ′1〉
1:t1 // . . . 〈E′2 | C ′2〉

1:tn // 〈E2 | C2〉 is deterministic,

(iii) 〈E1 | C1〉
p:t // 〈E′1 | C ′1〉 . . .

1:tn−1 // 〈E′2 | C ′2〉 is maximal low stable,

(iv) and T = t+
n∑

i=1

ti.

5.2 Bisimulation and Timing Leaks

Observing the low variables and the running time separately is not the same as
observing them together; a correlation between the two random variables (prob-
ability and time) has to be taken into account. A naive probabilistic extension
of the Γ -bisimulation notion introduced in [12] might not take this into account.
More precisely, this may happen if time and probability are treated as two in-
dependent aspects which are observed separately in a mutual exclusive way.
According to such a notion an attacker must set up two different covert channels
if he/she wants to exploit possible interference through both the probabilistic
and the timing behaviour of the system. The notion of bisimulation we introduce
here allows us to define a stronger security condition: an attacker must be able
to distinguish the probabilities that two programs compute a given result in a
given execution time. This is obviously different from being able to distinguish
the probability distributions of the results and the running time.

Probabilistic bisimulation was first introduced in [13] and refers to an equiv-
alence on probability distributions over the states of the processes. This latter
equivalence is defined as a lifting of the bisimulation relation on the support sets
of the distributions, namely the states themselves.

An equivalence relation ∼ ⊆ S × S on S can be lifted to a relation ∼∗ ⊆
Dist(S)×Dist(S) between probability distributions on S via (cf [14, Thm 1]):
µ ∼∗ ν iff ∀[s] ∈ S/∼ : µ([s]) = ν([s]). It follows that ∼∗ is also an equivalence
relation ([14, Thm 3]). For any equivalence relation ∼ on the set Conf of con-
figurations, we define the associated low equivalence relation ∼L by c1 ∼L c2 if
c1 ∼ c2 and c1 =L c2. Obviously ∼L is again an equivalence relation. We can lift
a low equivalence ∼L to (∼L)∗ which we simply denote by ∼∗L.

Definition 4. Given a security typing Γ , a probabilistic time bisimilarity ∼
is the largest symmetric relation on configurations such that whenever c1 ∼ c2,
then c1 =⇒ χ1 implies that there exists χ2 such that c2 =⇒ χ2 and χ1 ∼∗L χ2.

We say that two configurations are probabilistic time bisimilar or PT-bisimilar,
c1 ∼ c2, if there exists a probabilistic time bisimilarity relation in which they
are related.

We now exploit the notion of bisimilarity introduced above in order to intro-
duce a security property ensuring that a system is confined against any combined
attacks based on both timing and probabilistic covert channels.

Definition 5. A pWhile program P is probabilistic time secure or PT-secure if
for any set of initial states E and E′ such that EL = E′L, we have 〈E,P 〉 ∼
〈E′, P 〉.

5.3 Security Typing

Agat’s transformation is based on a (security) typing of commands which is
based on the basic (security) typing of variables via Γ . We only have to add a
rule for the choose statement (essentially a straight forward extension of the
rule for if). In detail, we have the following typing rules:

(AssignH) Γ `≤ a : τs Γ `= x : τH s ≤ H
Γ ` x := a : skipAsn x a

(AssignL) Γ `≤ a : τL Γ `= x : τL

Γ ` x := a : x := a

(Seq) Γ ` C : CL Γ ` D : DL
ΓC;D : CL;DL

(IfH) Γ `≤ b : BoolH Γ ` C : CL Γ ` D : DL

Γ ` if b then C else D : skipIf b CL
CL ∼ DL

(IfL) Γ `≤ b : BoolL Γ ` C : CL Γ ` D : DL

Γ ` if b then C else D : if b then CL else DL

(While) Γ `≤ b : BoolL Γ ` C : CL

Γ ` while b do C : while b do CL

(Choose) Γ ` C : CL Γ ` D : DL
Γ ` [choose]p C or D : [choose]p CL or DL

(SkipAsn)
Γ ` skipAsn x a : skipAsn x a

(SkipIf) Γ ` C : CL
Γ ` skipIf b C : skipIf b CL

Note that the rule (IfH) refers to the semantic notion of timed bisimilarity (as
introduced before).

5.4 A Probabilistic Version of Agat’s Transformation

In order to transform programs into secure versions we need to introduce an
auxiliary notion, that of the global effect ge(C) of commands. This is used to
identify (global) variables which might be changed when a command C is exe-
cuted – this is closely related to the X̂ function from the previous section. This
is its formal definition:

ge(x := a) = {x}
ge(C1;C2) = ge(C1) ∪ ge(C2)

ge(if b then C1 else C2) = ge(C1) ∪ ge(C2)
ge(while b do C) = ge(C)

ge([choose]p C1 or C2) = ge(C1) ∪ ge(C2)
ge(skipAsn x a) = ∅
ge(skipIf b C) = ge(C)

Finally, based on the security typing the notion of global effects we can specify
the rules for “transforming out timing leaks”. The judgments or transformation
rules are of the general form:

Γ ` C ↪→ D | DL

which represents the fact that with a certain (security) typing Γ we can transform
the statement C into D – we also record as a side-product the so-called low slice
DL of D. Again all these rules can be found in [12] with the exception of rule
(IfH): Here we replace – as indicated before – the branches of an if statement
not just by the correctly “padded version” as in [12], instead we introduce in
every branch a choice such that the secure replacement will be executed only
with probability p while with probability 1 − p the original (and shorter) code

fragment will be executed.

Γ `≤ a : τs Γ `= x : τH s ≤ H
Γ ` x := a ↪→ x := a | skipAsn x a

Γ `≤ a : τL Γ `= x : τL

Γ ` x := a ↪→ x := a | x := a

Γ ` C1 ↪→ D1 | D1L Γ ` C2 ↪→ D2 | D2L

Γ ` C1;C2 ↪→ D1;D2 | D1L;D2L

Γ `≤ b : BoolH Γ ` C1 ↪→ D1 | D1L Γ ` C2 ↪→ D2 | D2L ge(D1L) = ∅ ge(D2L) = ∅

Γ ` if b then C1 else C2 ↪→
if b then ([choose]p D1 or D1;D2L) else
([choose]p D2 or D1L;D2) | skipIf b (D1L;D2L)

Γ `≤ b : BoolL Γ ` C1 ↪→ D1 | D1L Γ ` C2 ↪→ D2 | D2L

Γ ` if b then C1 else C2 ↪→ if b then D1 else D2 | if b then D1L else D2L

Γ `≤ b : BoolL Γ ` C ↪→ D | DL

Γ ` while b do C ↪→ while b do D | while b do DL

Γ ` C1 ↪→ D1 | D1L Γ ` C2 ↪→ D2 | D2L

Γ ` [choose]p C1 or C2 ↪→ [choose]p D1 or D2 | [choose]p D1L or D2L

Γ ` skipAsn x a ↪→ skipAsn x a | skipAsn x a

Γ ` C ↪→ D | DL

Γ ` skipIf b C ↪→ skipIf b D | skipIf b DL

6 Conclusion

We have briefly introduced semantics-based program analysis and exemplified it
in the context of language-based security. In its thirty year existence, program
analysis has moved from an academic curiosity to a routine industrial and com-
mercial tool. Examples include the advanced development tools for embedded
systems produced by AbsInt and used by major car and electronic goods man-
ufacturers such as BMW, Daimler and Bosch. Another example is the work of
Polyspace (recently taken over by The MathWorks) and their work with Airbus
on the verification of fly-by-wire software.

Computer Science has seen a growing move towards the use of probabilistic
and quantitative models and techniques. This was first apparent in the perfor-
mance modelling community. Embedded systems is providing further impetus in
this direction; Henzinger and Sifakis make an eloquent case for the reappraisal

of the foundations of computing in [15]. They call for a new scientific founda-
tion which “. . . will systematically and even-handedly integrate computation and
physicality . . . ”. They identify the a list of issues that must be dealt with which
include:

– computation and physical constraints
– nondeterminism and probabilities
– functional and performance requirements
– qualitative and quantitative analysis, and
– Boolean and real values

We have pioneered a semantics-based approach to program analysis which
begins to address some of these issues and we hope that this paper has given a
flavour of some of the possibilities. The papers [16, 17] introduce an approximate
version of bisimulation and confinement where the approximation can be used as
a measure ε for the information leakage of the system under analysis. The quan-
tity ε is formally defined in terms of the norm of a linear operator representing
the partition induced by the ‘minimal’ bisimulation on the set of the states of
a given system, i.e. the one minimising the observational difference between the
system’s components. In [18] we show how to compute a non-trivial upper bound
δ to ε by essentially exploiting the algorithmic solution proposed by Paige and
Tarjan [19] for computing bisimulation equivalence. This was already adapted
to PTS’s in [20], where it was used for constructing a padding algorithm as part
of a transformational approach to the timing leaks problem.

Clark, Hunt and Malacaria [21, 22] have done some interesting work using
information theoretic ideas as a basis for studying information flow. This general
theme of incorporating quantitative and probabilistic techniques into program
analysis and reasoning is certain to expand. It remains to be seen which approach
will eventually prevail but, whichever does, there is no doubt that the arsenal of
techniques will be enrichened and program analysis probably will count!

References

1. Cousot, P., Cousot, R.: Abstract Interpretation and Applications to Logic Pro-
grams. Journal of Logic Programming 13(2-3) (July 1992) 103–180

2. Mycroft, A.: The theory and practice of transforming call-by-need into call-by-
value. In: Symposium on Programming. Volume 83 of Lecture Notes in Computer
Science., Springer (1980)

3. Abramsky, S., Hankin, C., eds.: Abstract Interpretation of Declarative Languages.
Ellis-Horwood, Chichester, England (1987)

4. Nielson, F., Nielson, H.R., Hankin, C.L.: Principles of Program Analysis. Springer
(1999)

5. Di Pierro, A., Wiklicky, H.: Concurrent Constraint Programming: Towards Prob-
abilistic Abstract Interpretation. In: Proceedings of PPDP’00, Montréal, Canada,
ACM (2000) 127–138

6. Di Pierro, A., Wiklicky, H.: Measuring the precision of abstract interpretations. In:
Proceedings of LOPSTR’00. Volume 2042 of Lecture Notes in Computer Science.,
Springer Verlag (2001) 147–164

7. Monniaux, D.: Abstract interpretation of probabilistic semantics. In: Proceedings
of SAS’00. Volume 1824 of Lecture Notes in Computer Science., Springer Verlag
(2000)

8. Clark, D., Hankin, C., Hunt, S.: Information flow for algol-like languages. Comput.
Lang. 28(1) (2002) 3–28

9. Denning, D.: A lattice model of secure information flow. In: Communications of
the ACM, ACM (1976) 236–243

10. Smith, G., Volpano, D.: Secure information flow in a multi-threaded imperative
language. In: Symposium on Principles of Programming Languages (POPL’98),
San Diego, California, ACM (1998) 355–364

11. Kocher, P.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and
other systems. In: Proceedings of CRYPTO ’96. Volume 1109 of Lecture Notes in
Computer Science., Springer Verlag (1996) 104–113

12. Agat, J.: Transforming out timing leaks. In: Proceedings of POPL’00, ACM Press
(2000) 40–53

13. Larsen, K., Skou, A.: Bisimulation through probabilistic testing. Information and
Computation 94 (1991) 1–28

14. Jonsson, B., Yi, W., Larsen, K.: 11. In: Probabilistic Extentions of Process Alge-
bras. Elsevier Science, Amsterdam (2001) 685–710 see [23].

15. Henzinger, T., Sifakis, J.: The discipline of embedded systems design. IEEE
Computer (2007)

16. Di Pierro, A., Hankin, C., Wiklicky, H.: Measuring the confinement of probabilistic
systems. Theoretical Computer Science 340(1) (2005) 3–56

17. Di Pierro, A., Hankin, C., Wiklicky, H.: Quantitative relations and approximate
process equivalences. In Lugiez, D., ed.: Proceedings of CONCUR’03. Volume 2761
of Lecture Notes in Computer Science., Springer Verlag (2003) 508–522

18. Di Pierro, A., Hankin, C., Wiklicky, H.: Quantifying timing leaks and cost op-
timisation. In: Proceedings 10th International Conference on Information and
Computer Security. Lecture Notes in Computer Science, Springer Verlag (2008) to
appear

19. Paige, R., Tarjan, R.: Three partition refinement algorithms. SIAM Journal of
Computation 16(6) (1987) 973–989

20. Di Pierro, A., Hankin, C., Siveroni, I., Wiklicky, H.: Tempus fugit: How to plug
it. Journal of Logic and Algebraic Programming 72(2) (2007) 173–190

21. Clark, D., Hunt, S., Malacaria, P.: Quantitative information flow, relations and
polymorphic types. Journal of Logic and Computation 15(2) (2005)

22. Malacaria, P.: Assessing security threats of looping constructs. In: Proc. 34th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL), ACM Press (2007)

23. Bergstra, J., Ponse, A., Smolka, S., eds.: Handbook of Process Algebra. Elsevier
Science, Amsterdam (2001)

