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1. Introduction

Non-interference was introduced by Goguen and
Meseguer in their seminal paper [8] in order to provide an
appropriate formalism for the specification of security poli-
cies. In its original formulation it states that:

“One group of users, using a certain set of
commands, is noninterfering with another group
of users if what the first group does with those
commands has no effect on what the second group
of users can see”.

This notion has been widely used to model various security
properties. One such property is confidentiality which is
concerned with how information is allowed to flow through
a computer system. In recent years, there has been a prolif-
eration of definitions of confidentiality, all based on the cen-
tral idea of indistinguishability of behaviours: In order to
establish that there is no information flow between two ob-
jects and , it is sufficient to establish that for any pair of
behaviours of the system that differ only in ’s behaviour,
’s observations cannot distinguish these two behaviours

[16]. For systems where non-determinism is present, the
problem of characterising the equality of two behaviours is
not a trivial one. In fact, there is no notion of system equiv-
alence which everybody agrees upon; which notion is ap-
propriate among , for example, trace or failure equivalence,
(various forms of) bisimulation and (various forms of) test-
ing equivalence, depends on the context and application in
question.
Another common aspects of these various formulations

of confidentiality is that they all treat information flows in a
binary fashion: they are either allowed to flow or not. Mod-
els for confidentiality typically characterise the absence
of information flow between objects (across interfaces or
along channels) by essentially reducing non-interference to
confinement. Depending on the nature of the information
flow one can characterise different confinement properties,

namely deterministic, nondeterministic, and probabilistic
confinement [25].
It is important to notice that nondeterministic confine-

ment is weaker than probabilistic confinement, as it is not
able to capture those situations in which the probabilistic
nature of an implementation may allow for the detection of
the confidential information, e.g. by running the program a
sufficient number of times [9]. In the context of imperative
programming languages, confinement properties with re-
spect to the value of high and low level variables, have been
recently discussed in [22, 26, 23] where a type-system based
security analysis is developed. Another recent contribution
to this problem is the work in [17, 18], where the use of
probabilistic power-domains is proposed, which allows for
a compositional specification of the non-interference prop-
erty underlying a type-based security analysis.
Although non-interference is the simplest characterisa-

tion of confidentiality, it has several problems [15]. One is
that absolute non-interference can hardly ever be achieved
in real systems. On the other hand, often computer sys-
tems “are not intended to be completely secure” [27]. As
a consequence, notions of non-interference such as confine-
ment turn out to be too strong as characterisation of the non-
interference criterion effectively used in practice (especially
in their non-deterministic version).
In this work we approach the problem of confidentiality

by looking at models which are able to give a quantitative
estimate of the information flowing through a system. Such
models abandon the purely qualitative binary view of the
information flow by characterising how much information
is actually “leaking” from the system rather than the com-
plete absence of any flow. This allows us to define a notion
of non-interference which is approximate and yet able to
capture the security properties of a system in a more “real-
istic” way: in real systems high-level input interferes with
low-level output all the time [15].
The key idea of our approach is to replace indistin-

guishability by similarity in the basic formalisation of non-
interference. As a result, two behaviours though dis-



stop successful termination
tell adding a constraint

ask probabilistic choice
prioritised parallelism
hiding, local variables

procedure call, recursion

Table 1. The Syntax of PCCP Agents.

tinguishable might still be considered as effectively non-
interfering provided that their difference is below a thresh-
old . A similarity relation can be defined by means of an
appropriate notion of distance and provides information (the
) on “how much” two behaviours differ from each other.
This information is not relevant in equivalence relations
such as observational equivalence or bisimilarity, where the
comparison between two behaviours is aimed to establish
whether they can be identified or not.
We will formalise our approach in a particular process al-

gebraic framework including probabilistic constructs which
allow us to deal with probabilistic informationflows. Such a
framework is Probabilistic Concurrent Constraint Program-
ming (PCCP) andwill be presented in Section 2. The notion
of identity confinement expressing confidentiality in PCCP
is then defined in Section 3. In Section 4 we introduce an
approximate version of the identity confinement and give a
statistical interpretation of the quantity measuring the ap-
proximation. Finally, we will propose two analyses of the
approximate confinement property based respectively on a
concrete (Section 5) and an abstract (Section 6) semantics,
and show the correctness of the abstract analysis with re-
spect to the concrete semantics. We conclude with a sum-
mary and an outline of some further research directions in
Section 7.

2. Probabilistic CCP

We illustrate our approach by referring to a probabilis-
tic declarative language, namely Probabilistic Concurrent
Constraint Programming (PCCP) language, which was in-
troduced in [6, 7] as a probabilistic version of the Con-
current Constraint Programming (CCP) paradigm [20, 19].
This language can be seen as a kind of “process algebra”
enhanced with a notion of “computational state”.

2.1. Syntax of Agents

The syntax and the basic execution model of PCCP are
very similar to CCP. Both languages are based on the no-

tion of a generic constraint system , defined as a cylindric
algebraic complete partial order (see [20, 4] for more de-
tails), which encodes the information ordering. In PCCP
probability is introduced via a probabilistic choice which
replaces the nondeterministic choice of CCP, and a form of
probabilistic parallelism, which replaces the pure nondeter-
minism in the interleaving semantics of CCP by introducing
priorities.
The syntax of a PCCP agent is given in Table 1, where
and are finite constraints in , and and are real

numbers representing probabilities.

2.2. Operational Semantics

The operational semantics of PCCP is defined in terms
of a probabilistic transition system, , where

is the set of configurations representing the
state of the system at a certain moment and the transition
relation is defined in Table 2. The state of the system
is described by the agent which has still to be executed,
and the common store . The index in the transition rela-
tion indicates the probability of the transition to take place.
The rules are closely related to the ones for nondeterministic
CCP, and we refer to [4] for a detailed description. The rules
for probabilistic choice and prioritised parallelism involve a
normalisation process needed to re-distribute the probabil-
ities among those agents which can actually be chosen
for execution. Such agents must be enabled (i.e. the cor-
responding guards ask succeed) or active (i.e. able to
make a transition). The probability after normalisation is
denoted by .

2.3. Observables

The notion of observables we consider in this paper
refers to the probabilistic input/output behaviour of a PCCP
agent. We will define the observables of an agent
in store as a probability distribution on constraints. For-

mally, this is defined as an element in the real vector space:

IR
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R1 tell stop

R2 ask and

R3

R4

R5

Table 2. The Transition System for PCCP

that is the free vector space obtained as the set of all for-
mal linear combinations of elements in . The coefficients
represent the probability associated to constraints .
Operationally, a distribution corresponds to the

set of all pairs , where is the result of a finite com-
putation of starting in store and is the probability of
computing that result. We define formally such a set of re-
sults as follows.

Definition 1 Let be a PCCP agent. A computational
path for in store is defined by

where ,
, stop and .

Note that this definition only accounts for successful ter-
mination. Our observables will not include infinite com-
putation nor those situations in which the agent in the final
configuration is not the stop agent and yet is unable to make
a transition, i.e. the case of suspended computations. We
denote by the set of all computational paths
for in store .

Definition 2 Let be a computational
path for in store

We define the result
of as and its probability as

.

Given a PCCP program, the set of the results of
an agent is the multi-set of all pairs , where
is the final store corresponding to the least upper bound
of the partial constraints accumulated during a computa-
tional path, and is the probability of reaching that result.

there exists
and

There might be different computational paths leading to
the same result. Thus, we need to “compactify” the results

so as to identify all those pairs with the same constraint as
a first component.

Definition 3 Let be a (multi-)set of re-
sults, where denotes the th occurrence of the constraint
, and let be the sum of all probabilities oc-

curring in the set which are associated with . The com-
pactification of is defined as:

We can now define the observables of an agent with
respect to store as:

In the following we will adopt the convention that whenever
the initial store is omitted then it is intended to be .

3. Identity Confinement

The original idea of non-interference as stated in [8] can
be expressed in the PCCP formalism via the notion of iden-
tity confinement. Roughly, this notion establishes whether
it is possible to identify which process is running in a given
program. Therefore, given a set of agents and a set of po-
tential intruders, the latter cannot see what the former set is
doing, or more precisely, no spy is able to find out which of
the agents in the first group is actually being executed.
We illustrate the notion of identity confinement via an

example borrowed from [18] where the setting is that of im-
perative languages. This example also show the difference
between non-deterministic and probabilistic (identity) con-
finement.

Example 1 In an imperative language, confinement — as
formulated for example in [17, 18] — usually refers to a
standard (two-level) security model consisting of high and
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low level variables. One then considers the (value of the)
high variable as confined if the value of the low level vari-
able is not “influenced” by the value of the high variable,
i.e. if the observed values of are independent of .
The following statement illustrates the difference be-

tween non-deterministic and probabilistic confinement:

mod

The value of clearly depends “somehow” on . How-
ever, if we resolve the choice non-deterministically it is im-
possible to say anything about the value of by observ-
ing the possible values of . Concretely, we get the follow-
ing dependencies between and possible values of : For
mod we have and for mod

we get , i.e. the possible values of are the
same independently from the fact that is even or odd. In
other words, is non-deterministically confined.
In a probabilistic setting the observed values for and

their probabilities allow us to distinguish cases where is
even from those where is odd. We have the following sit-
uation: For mod we get ,
and for mod we have .
Therefore, the probabilities to get and reveal if
is even or odd, i.e. is probabilistically not confined.
We can re-formulate the situation above in our declara-

tive setting by considering the following agents:

hOn tell on Rand

hOff tell off Rand

Rand tell on tell off

The constraint system consists of four elements:

on off on off

where on and off .
The constraints on and off represent the situations in

which the low variable or respectively. The
agent hOn corresponds then to the behaviour of the imper-
ative program fragment in case that mod while
hOff corresponds to the case where mod . The
auxiliary agent Rand corresponds to the second choice in
the above imperative fragment. The imperative notion of
confinement now translate in our framework into a prob-
lem of identity confinement: Getting information about in
the previous setting is equivalent to discriminating between
hOn and hOff, i.e. revealing their identity. The two agents
will be identity confined if they are observationally equiva-
lent in any context.

As explained in Section 2.3, the observables of a PCCP
agent correspond to a distribution on the constraint system,

that is a vector in the space . The difference between
two observables can then be measured by means of a norm.
We adopt here the supremum norm formally defined
as where represents a
probability distribution. In the following we will sometimes
omit the index .
Probabilistic identity confinement is then defined as fol-

lows [5]:

Definition 4 Two agents and are probabilistically
identity confined iff their observables are identical in any
context, that is for all agent , i.e.

or equivalently,

for some fixed scheduling priorities and .

It is easy to check that for the agents hOn and hOff of
the previous example the simple agent ask on

tell ask off tell is such that

hOn hOff

Example 2 As another example consider the following two
PCCP agents:

tell tell and tell

If we consider their non-deterministic versions we see that
and executed in any context give the same observables.
and are thus non-deterministically identity confined.
Treating the choice probabilistically still gives us the

same observables for and if they are executed on their
own, but they are not probabilistically confined. A spy
which reveals the identity of and is the following agent:

ask tell

ask tell

as the following observables are different.

4. Approximate Confinement

The confinement notion discussed above is exact in the
sense that it refers to the equivalence of the agents’ be-
haviour.
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However, sometimes it is practically more useful to base
confinement on some similarity notion. The intuitive idea
behind such a notion is that we look at how much the be-
haviours of two agents differ, instead of qualitatively assert-
ing whether they are identical or not. In particular, in the
probabilistic case we can measure the distance between the
distributions representing the agents’ observables instead of
checking whether this difference is . We can then say that
the agents are -confined for some .

Example 3 [2] Consider an (Automatic Teller Ma-
chine) accepting only a single number out of pos-
sible s, e.g. :

ask tell
ask tell

This agent simulates an which recognises : if
has been told the machine dispenses cash, otherwise

— for any incorrect — it sounds an alarm. The (ac-
tive) spy tries a random number :

ask tell

If we consider two such machines and
for and execute them in context we obtain two
slightly different observables and

. For most s both machines
will sound an alarm in most cases, but if we are lucky, the
spy will use the correct s in which case we are able to
distinguish the two machines (besides earning some cash).
The chances for this happening are small but are captured
essentially if we look at the difference between the observ-
ables:

The set is -confinedwith respect to
with but not strictly confined. In the practical ap-
plications, is usually very large, that is is very small,
which makes it reasonable to assume the ’s agents as
secure although not exactly confined.

The notion of approximate confinement we will discuss
in the following is based on the idea of measuring howmuch
the behaviour of two agents differs if we put them in a cer-
tain context. We will discuss first different kinds of such
contexts, which we will refer to as spies.

4.1. Admissible Spies

Security depends on the quality of the possible attacker.
Clearly, no system is secure against an omnipotent attacker.

Therefore, it makes sense to restrict our consideration to
particular classes of spies [13].
We will consider simple attackers expressed in PCCP by:

ask tell

where are fresh constraints, that is constraints which
never appear in the execution of the host agents, and .
These spies are passive and memoryless attackers: They do
not change the behaviour of the hosts, and are only allowed
to interact with the store in one step. Nevertheless, they are
sufficient for formalising quite powerful timing attacks as
described for example in [11].
A generalisation of this class is to consider active spies

(e.g. Example 4 and Example 3) and/or spies with memory
(e.g. ask ask tell ).

Example 4 Consider the two agents:

ask tell
stop

and are obviously confined with respect to any passive
spy: In store they both do nothing, and it is therefore
impossible to distinguish them by just observing. However,
for an active spy like tell it is easy to determine if it
is being executed in parallel with or .

4.2. Approximate Identity Confinement

We introduce the notion of approximate confinement as a
generalisation of the identity confinement introduced in [5]
and defined in Section 3. The definition we give is paramet-
ric with respect to a set of admissible spies and scheduling
priorities and . We say that two agents and
are approximately confined with respect to a set of spies
iff there exists an such that for all the distance
between the observables of and
is smaller than . We consider as a measure for this distance
the supremum norm as in Definition 4.

Definition 5 Given a set of admissible spies , we call two
agents and -confined for some and for fixed
scheduling priorities and , iff:

The definition can be generalised to a set of more than two
agents.
Obviously, if two agents and are -confined with
then they are probabilistically identity confined.

The number depends on the particular class of spies
and in some sense can be seen as a measure of the “power”
of . In fact, it is strongly related to the number of tests a
spy needs to perform in order to reveal the identity of the
host agents. We will make this argument more precise in
the next section.
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4.3. Statistical Interpretation of

The notion of approximate confinement is strongly re-
lated to statistical concepts, in particular to so-called hy-
pothesis testing, see e.g. [21].
Let us consider the following situation: We have two

agents and which are attacked by a spy . Further-
more, we assume that and are -confined with respect
to . This means that the observables and

are -different (we ignore in this argument the
concrete scheduling probabilities here, i.e. we write
instead of ). In particular, we can identify some
constraint such that where is
the probability of the result in an execution of and

is the probability that is a result of . Follow-
ing the standard interpretation of probabilities as “long-run”
relative frequencies, we can thus expect that the number of
times we get as result of an execution of and
will differ “on the long run” by exactly a factor .
For an unknown agent we can try do determine

experimentally by executing over and over again.
Assuming that is actually the same as either or
we know that the we obtain must be either or

. We thus can easily determine this way if or
, i.e. reveal the identity of (if ).

Unfortunately — as J.M. Keynes pointed out — we are
all dead on the long run. The above described experimental
setup is therefore only of theoretical value. For practically
purposes we need a way to distinguish and by finite
executions of and . If we execute
and a finite number of — say — times, we can
observe a certain experimental frequency and
for getting as a result. Each time we repeat this finite
sequence of some executions we may get different val-
ues for and (only the infinite experiments will
eventually converge to the same constant values and

).
Analogously, we can determine the frequency by

testing, i.e. by looking at executions of . We
could now try to compare with and or
with and in order to find out if or

. Unfortunately, there is neither a single value for
either , or (each experiment may give
us different values) nor can we test if or

nor if or .
For example, it is possible that is (coincidental) not the

result of the first execution of , although the (long-
run) probabilities of obtaining by executing or

are, let’s say, and . If we stop our
experiment after executions we get . We
know that or but the observed is dif-
ferent from both and . Nevertheless, we could argue
that it is more likely that as the observed

is closer to than to . The problem is
now to determine how much the identification of with
is “more correct” than identifying with .
For finite experiments we only can make a guess about

the true identity of , but never definitively reveal its iden-
tity. The confidence we can have in our guess — i.e. the
probability that we make a correct guess — depends on two
factors: The number of tests and the difference between
the observables of and .

Hypothesis Formulation. The problem is to determine
experimentally if an unknown agent is one of two known
agents and . The only way we can obtain information
about is by executing it in parallel with a spy . In this
way we can get an experimental estimate for the observ-
ables of . We then can compare this estimate with the
observables of and . We can then formulate
a hypothesis about the identity of , namely either that
“ is ” or that “ is ” depending on the fact that this
estimate is closer to or . More pre-
cisely, the method to formulate the hypothesis about the
identity of the unknown process consists of two follow-
ing steps:

1. We execute exactly times in order to obtain
an experimental approximation, i.e. average, for its
observables

# of times is the result

2. Depending if is closer to the observables
or we formulate the hypothe-

sis
if

otherwise

Hypothesis Testing. The question is now whether the
guess expressed by about the true identity of the black
box is correct, or more precisely: What is the probability
that the hypothesis indeed holds?
In the following we use the notation and to

indicate the probability assigned to in the distribution rep-
resenting the observables and the experimental
average respectively.
If we assume that there are only finitely many constraints

with non-zero probability in the observables then there ex-
ists a constraint where the difference between and
is maximal.
We therefore can look at a simplified situation where we

are considering only this single constraint . Let us assume
without loss of generality that as in the dia-
gram below:
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If the experimental value we obtained in our test is
anywhere to the left of then the hypothesis
we formulate (based in ) will be the correct one: “
is ”; if the experimental value is to the right of
we will formulate the incorrect hypothesis: “ is ”. Now
assume that is . Then the probability that we
will formulate the correct hypothesis is:

To estimate we therefore have just to estimate the
probability that the experimental
value is left of .

Confidence Estimation. The confidence we can have in
the hypothesis we formulated can be determined by vari-
ous statistical methods. We consider here methods which
allow us to estimate the probability that an experimental av-
erage , like , is within a certain distance from the
corresponding expectation value , like , i.e. the
probability , for some . These
methods are essentially all based on the central limit theo-
rem, see e.g. [1, 10, 21].
The type of tests we consider here to formulate a hy-

pothesis about the identity of the unknown agent are de-
scribed in statistical terms by so called Bernoulli Trials. The
central limit theorem for this type of tests [10, Thm 9.2],
gives us an estimate for the probability that the experimen-
tal value is in a certain interval :

where
and

Unfortunately, the integral (of the so called standard nor-
mal density) on the right side of the above expression is not
easy to obtain. In practical situations one has to resort to
numerical methods (or statistical tables), but it allows us —
at least in principle — to say something about .
Identifying with we can utilise the above ex-

pression to estimate the probability
which determines . In order to do this we have to take:

This allows us (in principle) to compute the probability:

Approximating — as it is common in statistics) —
by we

get:

with

We see that the only way to increase the probability
, i.e. the confidence that we formulate the right hy-

pothesis about the identity of , is by minimising the inte-
gral. In order to do this we have to increase the lower bound
of the integral. This can be achieved— as one would ex-

pect — by increasing the number of experiments.
We can also see that for a smaller we have to perform

more tests to reach the same level of confidence, :
The smaller the harder it is to distinguish and exper-
imentally. Note that for , the probability of correctly
guessing which of the agents and is in the black box
is , which is the best blind guess we can make anyway. In
other words: for we cannot distinguish between
and .

5. Analysis: Concrete Semantics

The -confinement property of a PCCP program can be
checked by means of a semantics-based static analysis of
the program. In this section we will consider a concrete
collecting semantics which describes the same observables
defined in Section 2.3 in a slightly more abstract way than
the transition system in Table 2. The analysis we present
will allow us to calculate an exact for measuring the con-
finement of a set of agents. In Section 6 we will present
a compositional semantics for PCCP which will allow us to
calculate a correct approximation of the in a more abstract
and simplified way.

5.1. A Collecting Semantics

We will base our analysis on a collecting semantics con-
sisting of distributions over the set of configurations.
Such distributions represent all the possible configurations
which are reachable by a given program in one step. They
are vectors in the space obtained by means of a
free construction similar to the one described for the space
of constraints , and can be represented as multi-sets of
pairs:
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where represents the probability associated to the config-
uration . Note that one configuration can occur more
than once in a multi-set . In this case the corresponding
distribution will be obtained by compactifying the set as de-
scribed in Section 2.3 and then normalising the resulting set.
The collecting semantics for PCCP is defined by the

rules given in Table 3. These rules defines a linear oper-
ator on the space . The semantics of an agent
is obtained by iteratively applying starting from the

initial configuration . This yields a sequence

From this semantics we can retrieve the observables
as stated in the following proposition. To this pur-

pose we first have to transform a distribution over configura-
tions , into a distribution over stores

by abstracting the information about the
agent.

Proposition 1 Let be an agent with collecting seman-
tics and let be the corresponding se-
quence of distributions over stores. Then:

The proof of this proposition relies on a result on the ex-
istence of the limit of the sequence which
we will omit for lack of space.

Example 5 For the two agents and in Example 2 their
collecting semantics is depicted in Table 4.

5.2. Security Analysis

Given two agents and , scheduling priorities and
and a spy , our aim is to calculate the such

that

We will show how we can construct the observables
and from the col-

lecting semantics of and respectively, and for spies
in .

Proposition 2 Let be a PCCP agent, and let be
a spy of the form

ask tell
ask tell

with . Suppose the observables of are
and there is only one computational path
leading to for all .

Then the observables of are given by:

if and
if and
if and
if and
if and

where

with the number of steps in needed to go from the
store where is first entailed to the store where also
is entailed, and the number of the remaining steps until
termination.

Corollary 1 With the hypothesis of Proposition 2 the fol-
lowing holds for all :

For the general case, where there is more than one path
leading to the same constraint in the observables
the probabilities and are given by

and

where the sum is over all computational paths
leading to , and and are the probabilities

of and via path . Obviously
holds in the general case too.

5.3. Limit Analysis

Starting from the formulas

and

consider the difference
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R0 stop stop

R1 tell stop

R2 ask and

R3 and

R4

R5

Table 3. A Collecting Semantics for PCCP

stop tell tell stop
stop

stop

Table 4. The Collecting Semantics for and .

This difference is maximal when is maximal,
namely when tends to . Therefore the “best” spy
is obtained by letting tend to and tend to , or vice-
versa.
In the case goes to and approaches we obtain

the following limit formulas for and :

and

By the equation

we get for the following formula:

For the case that tends to and goes to we get

and

As a result a spy with a limit choice distribution effec-
tively counts only the number of steps between and
along each path . The s are then independent of the
steps till the end of the computation.

5.4. Properties of a Spy

An agent is a spy for two agents and if and only
if the observables are different from

. The discussion in Section 5.2 provides
us with a useful criterion to decide whether an agent in
is a spy for and .

Proposition 3 Given an agent of the form

ask tell
ask tell

and two agents and with identical (probabilistic in-
put/output) observables , then is a spy for
and if there exists a constraint such that

1. ,

2. and ,

3. .

Note that the last condition is equivalent to
as we always have
. For the same reason we also have:

.
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The values of and depend on what scheduling be-
tween or and we have chosen, i.e. on the concrete
values of and . But as we can see from the the closed ex-
pressions for and , if for one schedul-
ing then this is true also for any other (non-trivial) schedul-
ing. The following holds therefore:

Corollary 2 An agent is a spy for and independently
of the scheduling priorities, as long as .

5.5. Effectiveness of a Spy

The number in Definition 5 measures how confined
and are, or equivalently how effective the class of spies
is. The effectiveness of a single spy , i.e. its ability to
distinguish between the two agents and , is such that
and are -confined with respect to . The analysis

of and gives us a means to calculate how large is.

Proposition 4 Let be a spy in of the form

ask tell
ask tell

and let and be two agents with identical probabilis-
tic input/output observables .
The effectiveness of is

Corollary 3 The effectiveness of a spy depends on the
scheduling priorities and .

5.6 The Most Effective Spy

The limit analysis in Section 5.3 shows that the most ef-
fective spy for a fixed pair of guards is obtained
by considering a choice distribution where and

or vice versa. In other words the “best” spy is
the one where the probabilities are at the extreme opposite.

Example 6 Using the limit analysis we now show that
is not the most effective spy for the agents and in Ex-
ample 2. Clearly, the most effective spy must have the same
guards and as , since no other intermediate constraints
exist for (and ). In order to determine the best spy, we
therefore only need to fix and . Assuming
again the uniform scheduling , we now calcu-
late the corresponding . To this purpose, we consider the
expressions for and in Section 5.3.

: For agent and its two computational paths we get

1. For the first path with , and
we get:

and

2. For the second path with , and
we get:

and

Summing up we get the extreme probabilities for
and :

and

: We have only one path with , and .
Thus:

and

The difference or equivalently
gives us the largest for and

and any spy in :

We can therefore conclude that and are -confined
with respect to all agents in (thus was not the most
effective spy).

6. Analysis: Abstract Semantics

The use of an exact (collecting) semantics makes the
analysis presented in the previous sections precise: no ap-
proximation is introduced in the calculation of .
We introduce here a semantics which is more abstract

than the collecting semantics but still allows for a useful
though approximated analysis. We associate to each agent
a set of tuples. Each tuple consists of two con-
straints and , a time stamp and a probability . It rep-
resents a transition from a store to store , which takes
place at step (at the earliest in a particular path) with prob-
ability , provided that the current store entails . The
time stamp is interpreted as a step counter and will be used
to extract information about the number of the previous
section.
The choice agent is modelled by the union of all tuples

in the semantics of sub-agents where the first constraint
entails the guard and the time is increased by .
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stop =
tell =

ask =
=
=
= for

Table 5. The Analysis for PCCP Agents

The parallel agent is interpreted as a choice
among all possible sequential compositions (permutations)
of agents , representing all possible interleavings. The
sequential composition of and is described by the set
of all tuples denoting the agent last executed ( ) where the
time is updated so as to consider the previous execution of
. In general, given two sets of tuples and , the opera-

tion is defined as follows:

where stands for the maximum value in the set
.

We use the operator to approximate the semantics of
a procedure call by “unwinding” it until the probability of
a further continuation gets smaller than or until we reach
a maximal recursion depth . The unwinding is defined in
Table 6: We start by a trivial approximation and con-
tinue by replacing the procedure call in the term by the
previous approximation — denoted by
— until the difference between the current and previous ap-
proximation becomes small enough (less or equal to ) or
we reach the maximal recursion depth . In this case we
take an approximation in place of further unwindings.
The difference between two approximations is the differ-
ence of the two sets of tuples seen as vector distributions

. The final approximation of a procedure call
is then given as:

which is effectively always reached after a finite num-
ber of unwindings. This can lead to a substantial over-
approximation of for recursive agents. The operator

is the quantitative analogue of a widening operator
in the standard approaches to abstract interpretation [3];
whilst the standard definition of a widening involves over-
approximation (of an upper bound), in the quantitative set-
ting we settle for “closeness”.

6.1. Abstract Security Analysis

Given the set of quadruples associated with an agent, we
can extract the set of abstract paths of execution:

where
Since the analysis of choice does not normalise the asso-

ciated probabilities, the probabilities in may be
smaller than in the concrete semantics.
Given a path with c first entailed in

and first entailed in , the difference de-
fines the (abstract) number of steps between the store
entailing and the store in path , while , which is the
product of the probabilities, is the abstract probability asso-
ciated to . Therefore, for each pair of constraints and
, the abstract analysis of program gives us the set:

6.2. Correctness of the Analysis

For each pair of constraints and , the concrete
semantics allows us to calculate the set

of all pairs , such that for each com-
putational path fo : is the probability associated to
and is the number of steps needed to go from the

store which first entails to the store which entails also .
The abstract analysis approximates and by and .
As already discussed in the previous section, the analysis of
choice implies that

On the other hand, for each , the operation used in the
sequential operator and the definition of defining the
procedure call in the abstract semantics imply that

11



if and
if and
otherwise

Table 6. Unwinding a Procedure Call

7. Conclusions

We introduced a quantitativemeasure describing the vul-
nerability of a set of agents against some kind of attacks
aimed at revealing their identity. Based on this measure
we then defined the notion of -confinement. This notion
differs from strict confinement — which aims in determin-
ing if agents are absolutely invulnerable — by allowing for
some exactly quantified weaknesses. The confinementmea-
sure can be interpreted in statistical terms as the probability
of guessing the right hypothesis about the identity of the
host agent after a given number of tests. For a smaller a
larger number of experiments must be performed to reach
the same level of confidence.
In a second step we identified for each agent and an ad-

missible spy two numbers, and , which forecast the
observables of the agent in the presence of the spy. The
collection of all ’s and ’s characterises an agent with re-
spects to attacks by any admissible spy. We showed that for
the most effective attackers the collection of ’s alone is
sufficient to determine the corresponding observables. The
information on the ’s is therefore all we need to know of
a set of agents in order to compute their -confinement.
Finally, we observed that if we are able to determine

some range for the ’s — instead of their exact values —
we can still compute the range of possible observables and
compare them to get a correct approximation of the . Fol-
lowing this argument we formulated an abstract semantics
which produces estimates — i.e. bounds — of the ’s.
It is important to note that this abstract analysis only

makes sense for approximate confinement notion. If we had
to consider strict confinement any non-exact estimation of
the ’s would fail to give a meaningful result: only if we
know the ’s exactly can we tell if or .
The notion of -confinement we introduced requires that

the behaviour of an agent is described by some object —
i.e. observables — and that we have a way to measure the
similarity of such objects. A similarity relation provides
information about such quantity, whereas equivalence rela-
tions such as observational equivalence or bisimilarity can

only establish whether two objects can be identified or not.
For example, in [13] the security of cryptographic proto-
cols is specified via an observational equivalence relation
which identifies protocols which differ asymptotically for
a polynomial factor. Such quantity is nevertheless neither
used to quantify the similarity of the protocols nor to cal-
culate a correspondent approximation level of the protocols
security property. Analogously, the bisimulation through
probabilistic testing of Larsen and Skou [12] allows to state
the indistinguishability of two processes with respect to so-
called testable properties. These are properties that can be
tested up to a given level of significance which gives an
upper bound of making the wrong decision. Again such a
quantity is not intended to provide a quantitative measure of
the behavioural difference between two processes.
The quantity measuring the similarity of two objects

could be formalised mathematically by a norm, a metric,
or some other appropriate notion of distance, depending on
the domain of objects used to describe the behaviour of pro-
grams. In this paper we concentrated on the probabilistic in-
put/output observables of PCCP programs which can be de-
scribed by probability distributions on the underlying space
of constraints, and we used a vector norm to measure their
similarity. In [24] van Breugel and Worrell consider instead
derivation trees together with a pseudo-metric to achieve
a similar weakening of the concept of behavioural equiv-
alence of concurrent processes.
The type of attacks we considered in this paper are in-

ternal attacks where the attacker is in some sense part of
the observed system: in particular it is scheduled like any
other agent. In another context one might be interested in
external attacks, where the attacker is only allowed to ob-
serve the system from the outside and is thus scheduled in a
different way, or one might impose other restrictions on the
way a spy may observe the agents in question. It is obvious
that for different types of attacks we need different types of
quantitative information for our analysis. For external at-
tacks, for example, a useful information is the average store
of an agent in some specified number of steps (the observa-
tion time) [14].
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Appendix

Proof of Proposition 2

Proof The first three terms of the expression are quite
straight forward:

If a constraint in the final observables does neither
entail nor , then all along the computational path
leading to this was the case, the execution therefore
can never schedule the spy and neither nor are
added to the store. The final configuration in this case
is thus stop which we obtain with ex-
actly the same probability as for .

If only one of the two guards are ever entailed, then
the agent acts just like a spy of class discussed
before. In this case we get stop stop
and stop stop as final configurations
together with their inherited probability .

The general case in which both constraints and
are entailed needs a more careful analysis. Let us assume
without loss of generality that is told first, after steps
and that it needs steps until also is entailed
by the store, and that finally it takes further steps until

terminates. Based on the collecting semantics
of ,

the collecting semantics of is then of the
following form:

: The distributions for and are essen-
tially identical:

: The constraint is first entailed, i.e. there exists
now a configuration with non-zero
probability in such that (and not yet

):

: Then the distribution is given by:

stop

Only can be added to the store.

: We get a similar iteration of as in the case
of spies, up to the moment when also gets en-
tailed. In this case we have:

stop

: We now have three possible continuations
for the first agent : (1) we can ig-
nore the spy and schedule , or we can schedule
the spy, in which case we have a choice between (2a)
executing the first branch tell or (2b) executing the
second one, tell , as both guards are entailed. The
probabilities that this is happening are for the case
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(1), and and for cases (2a) and (2b), respec-
tively. The second agent stop has to
continue quasi-deterministically with .

stop

stop

stop

stop

stop

: After further steps the agent termi-
nates [either successfully or because of deadlock].

stop

stop

stop

: The perhaps still not scheduled spy
must now finally be executed and we get finally:

stop stop

stop stop

stop stop

stop stop

stop stop

stop stop

Proof of Corollary 1

Proof The original probability of in the observables
for is . Moreover, since and by
the following identity (for p=1-q):

(1)

we have that:
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