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Abstract

We show how the framework of probabilistic abstract interpretation can be applied to stat-
ically analyse a probabilistic version of the A-calculus. The resulting analysis allows for a more
speculative use of its outcomes based on the consideration of statistically defined quantities.
After introducing a linear operator based semantics for our probabilistic A-calculus Ap, and
reviewing the framework of abstract interpretation and strictness analysis, we demonstrate
our technique by constructing a probabilistic (first-order) strictness analysis for Ap.

1 Introduction

In this paper we aim to show how probabilistic abstract interpretation [12, 13] can be used to
analyse terms in a probabilistic A-calculus. Our running example will be a simple strictness analysis
[17, 2]. This analysis has been used in the non-probabilistic setting to optimise lazy functional
languages by allowing lazy evaluation to be replaced by eager evaluation without compromising
the semantics. We suggest that, in the probabilistic setting, strictness analysis might be used to
perform a more speculative optimisation which replaces lazy by eager evaluation as long as the
risk of introducing non-termination is sufficiently low.

In order to illustrate how quantitative elements change classical analysis, we will present an
example borrowed from the theory of stochastic processes (see Example 2.1 of [6]), which is related
to economics and in particular to risk management. Consider the situation in which a company
starts with initial capital of Cap,, at each time step its income is In; and its outlay to meet
claims is Out;; the sequence of incomes and outlays are modelled by mutually independent and
identically distributed variables. The fortunes of the company are modelled by a simple random
walk with an absorbing barrier at zero and jumps Step,, = In,, — Out,;:

Cap. — Cap,,_, + Step,, if Cap,_; >0 and Cap,,_; + Step,, >0
Pn=90 otherwise

Qualitatively, we can analyse the random walk and just conclude that Cap ranges over the in-
terval [0, 00); quantitatively, we can ask the more interesting question: What is the probability of
bankruptcy for a given statistical behaviour of claims and income? Obviously, one can ask similar
questions also with respect to computational processes which in one way or another use limited
computational resources.

The probabilistic version of the A-calculus we introduce is the base for the definition of a
quantitative approach to a semantics based program analysis. We will define a probabilistic
semantics for the A-calculus which reflects the spirit of the example above by associating to a \-
program a linear operator specifying the dynamic of a Markov chain (a generalisation of a random
walk). We will then show how this linear operator semantics can be used to apply probabilistic
abstract interpretation techniques and obtain a quantitative version of the classical strictness
analysis of the A-calculus.

The rest of this paper is organised as follows. We start by introducing the probabilistic A-
calculus and its semantics. In the next Section we review the main features of classical abstract
interpretation and show how the framework may be applied to produce a strictness analysis for a



first-order fragment of an applied A-calculus. The paper [2] shows how these ideas can be extended
to the higher-order case. We then describe probabilistic abstract interpretation [12, 13]. The final
main section returns to the problem of strictness analysis in the probabilistic A-calculus.

2 Probabilistic A-calculus

We introduce a probabilistic version of the untyped A-calculus, that is the formal theory of func-
tions where each expression can be considered as both a function and a function argument. This
theory can be seen as the simplest programming language with higher-order objects. An extension
of this basic theory with probabilistic features is at the basis of the quantitative approach to static
program analysis we will introduce in Section 5.

Other works have introduced probabilistic features into the A-calculus, mainly motivated by
the design and implementation of probabilistic languages (see [21] and [20] for recent examples).
In this work, we aim to introduce a probabilistic semantics for the A-calculus by extending the
classical theory with a notion of probabilistic term. This corresponds essentially to a probability
distribution over classical A-terms. We recall that the set A of classical A-terms, is the set of all
expressions generated by the syntax:

M:==x | Ax.M | MN

Formally, we define the class, Ap, of probabilistic A-terms as follows. Let x range over a set
Var of variables. Then the class of probabilistic A-expressions (ranged over by P) conforms to the
syntax:

P:==x ‘ \z.P | PP ‘ @?:1 pi: P

We require that for each €-construct the associated p; are real numbers in the interval [0, 1], i.e.
pi € [0,1], and that they sum up to onel.

Danos and Harmer, [8], show that most forms of probabilistic behaviour can be encoded using
a coin flip, i.e. that a binary choice — which we also denote by P @, P> instead of (1 —p) :
P, & p: P, — is sufficient. This minimalist programme however introduces a number of technical
complications (such as distributivity in a nested binary sum) which tend to obfuscate the basic
structures. We therefore opted for an n-ary probabilistic choice.

Clearly, every classical A-term can be also seen as a probabilistic A-term; to be precise we will
write M if we consider it as a classical A\-term and M when we treat it as a probabilistic term.
This can be interpreted as the probability distribution, which we denote by M, on A, i.e. a map
A — [0,1] which assigns 1 to term M and 0 to all the other terms.

Although the recursive definition of P makes it not immediately evident, we can give a similar
interpretation to every probabilistic A-term. In fact, we can define for each P € Ap, its “flattened”
version

n
P= @ pi: M;
i=1
which corresponds one-to-one to a probability distribution on A, i.e. a vector P € V(A):
n
P= Z pi- M;
i=1

We recall that the vector space V(X, W) over a set X is the space of formal (potentially infinite)
linear combinations of elements in X with coefficients in some field W (e.g. W = R), i.e.

V(X):{chaﬂcwew, xeX}.

Thus, we can interpret a probability distribution on A as a vector in V(A) = V(A, R).

! Alternatively, one could also allow for any p; € [0,00) and statically normalise all p; to p; = p;/ > i Pi



It will be convenient to assume the existence of a (Godel) enumeration of all classical A-terms,
i.e. a function: f. : A — N which is bijective, and its inverse function b. : N — A. L

Then we can denote a probability distribution over the set A of classical A-terms by > . p;b(4)
(or, alternatively as a vector of real numbers (p;);), where p; € [0,1] for all 4 and Y, p; = 1; p;
is intended to represent the probability associated to term b(¢) € A. It will also be convenient to
introduce the following operations on vector distributions on A:

o (07 ) = Y
and

(ZMM) ® quﬁj = Z(pipj - M;Nj;)

(2]

Definition 1 The flattened version P of a probabilistic \-term P € Ap is defined by:

P=z — P=7%
P=X\xe.PP — P=\z.P
P=PP, — P=P QP

P=@Pp:P — P=> p-P
i=1 i=1

Proposition 1 For all P € Ap, P is a probability distribution on A, i.e. P = > i Di “M;, M; € A
for alli, and )", p; = 1.

Proof: By structural induction and the fact the the two operations Az and ® transform distri-
butions into distributions. O

2.1 Probabilistic f-Reduction

The notion of B-reduction expresses the computational aspect of classical A-calculus. Informally,
it consists in the evaluation of the f-normal form of a term by means of the application of the
B-rule

(Az.M)N —3 M|z := NJ.

If this process is identified with function application in programming languages, then §-reduction
is actually the execution of A-term programs.

For our probabilistic A-calculus, we need a notion of probabilistic 3-reduction which is able to
take into account the different alternatives of a probabilistic choice represented by a probabilistic
A-term. We will introduce two different versions of an operational semantics for our probabilistic
A-calculus: the first one uses distributions over classical A-terms as operational states and a
non-probabilistic transition relation =g on them which can be seen as a ‘lifting’ of the classical
B-reduction —g; the second one is based on a probabilistic transition relation —” on probabilistic
A-terms defined in the SOS style, typically adopted in the semantics of programming languages.

2.1.1 Distribution-Based Semantics

Formally, we introduce the probabilistic one-step 3-reduction =g for probabilistic A-terms as an
extension of the classical one-step G-reduction relation —g on the classical terms A, which we will
briefly recall in the following.



Definition 2 The binary relation —g on A is defined by:
(Ax.M)N —3 Mz := NJ;
M —g N
MZ -3 NZ
M —g N
Az M —g Ax.N

Note that the the first two rules together enforce a leftmost reduction strategy making the
reduction process deterministic.

Definition 3 The binary relation =3 on Ap is defined by:

M —g N
M =3 N
M 75
M =3 M
M =3 ﬁl
Dipi: Mi =5 D;pi: Ni
Note that since G-reduction with a leftmost strategy is deterministic, there is no ambiguity in
the second rule.

Classically, we say that term M [-reduces to term N if (M, N) is in the reflexive, transitive

closure,—7%, of —3. Analogously, we define the relation =7 on Ap as the reflexive, transitive
closure of =3.

Definition 4 The binary relation = on Ap is defined by:
P=%5Pp
P =3 P’
P=3P
P :>ﬁP2,P2:>5P3
P1 :>z3 P3

The computational idea behind the classical (-reduction is to calculate for a term M its -
normal form (if there any), that is a term N with no sub-expressions of the form (Az.N’')N".
In fact, if M has a f-normal form N, then this is unique and M —% N. In the case where no
reduction strategy is assumed, this is a consequence of the Church-Rosser theorem [1].

The probabilistic S-reduction allows us to compute G-normal forms for classical terms together
with an information on the probability of actually achieving them by (-reduction.

Definition 5 A probabilistic A\-term P is a probabilistic 3-normal form if it is a probability dis-
tribution on basic A-terms which are $-normal forms, i.e. P = .p; - M; and M; are 3-normal
forms for all i such that p; # 0.

Proposition 2 For a probabilistic A\-term P there is at most one probabilistic term Pg such that
Pg is a probabilistic -normal form and P =} Pg.

Proof: The transition relation =g is deterministic, i.e. for every probabilistic term P with
P =3 P, and P =3 P, it follows that P, = P,. This follows from the fact that we use a
deterministic reduction strategy (left-most). O



2.1.2 Term-Based Semantics

A more programming language oriented definition of the reduction of probabilistic A-terms, is
based on the definition of a probabilistic transition relation —PC A, x [0,1] x A, on probabilistic
A terms A,. This will subsume the classical non-probabilistic 8-reduction — 3.

Definition 6 The probabilistic transition relation —PC A, x [0,1] x A, is defined inductively by

the following rules:
PP p

(PQ) —P (P'Q)
B)  (A\2.P)Q —p Plz:=(Q)]
(9) (Dipi: P) —§ b

where P,Q € A, are probabilistic terms.

(app)

We write P, —? P, to mean that P; reduces to P, with probability p in one step, i.e. by
application of one of the above reduction rules. If the reduction process is finite, then it terminates
with a term which is a A-term or a constant. The app and [ rules together enforce the leftmost
reduction strategy.

Example 1 The possible reductions of the probabilistic A-term P = ((Ax.0) &
can be depicted as follows:

(Az.2))(L @3 42)

1
2

1 (Az.z)) (L ds 42)

2

g,

(A2.0)(L @3 42) (Az.z)(L 3 42)
1% ﬂll
0 Loy 42
L 6li
1 42

The original term is of the form QQ', thus we have to apply the rule (app), i.e. reduce the
first term Q first. This is of the form Py ®1 Py, so we have to apply the (0) rule and choose Py

and Py with their respective probability % After that we end up with two terms which are both of
the form (Ax.T)T'; thus we can apply with probability one the () rule which gives us either the
constant 0 or the choice L @z 42. The latter then reduces via the () rule either to L or 42 with
the indicated probabilities.

The transitive closure —*P of —P is defined in the usual way, but with some care for the
interpretation of the label p; this is calculated by taking the product of probabilities along the paths
and then summing up the probabilities along different paths which reach the same probabilistic
A-term (see e.g. [10]). As an example consider the slightly modified version of the term P in the
example above, P’ = ((Az.0) @1 (Az.z))(L ®3 0). By simply replacing 42 by 0 in the reduction
tree for P, we see that there are two paths leading from P’ to 0 with probability % -1 and % -1- %
respectively, so that we have P’ —*P 0 with p = % + % = %.

While in the classical case we can identify a unique “normal form” for every A-term (in case we
do not assume a leftmost reduction strategy this is guaranteed by the Church-Rosser theorem),
probabilistic A-terms can be reduced to a number of “final terms”. It is easy to see that these
are always classical terms and in particular classical S-normal forms. This inspires the following
definition of the semantics of a probabilistic A-term as a distribution over classical S-normal forms,
that is as a vector in V(A).



Definition 7 We define the observables of a probabilistic A-term P € A, as:
O(P) = {{(M;,p;) | P—="P" My N M; /+p5}
Note that the definition of —*F (and in particular of the label p in this relation) guarantees
that
Z{Pi | (M, pi) € O(P)} =1,
that is O(P) € V(A) is a probability distribution for every P € A,,.

Example 2 The observables of the term P in Example 1 are
1 3 1
P)= = 42, — 1,=)H}
o) = {(0.3). (125 ) (L5}

We show that the probabilistic observables defined via the probabilistic transition system in Sec-
tion 2.1.2 correspond to the probabilistic S-normal forms that can be calculated via the proba-
bilistic (- reduction rule introduced in Section 2.1.1

2.1.3 Correspondence

Proposition 3 Let P € A, be a probabilistic A-term which admits a probabilistic B-normal form.
Then we have:

Proof: By induction on the depth of probabilistic choices.

We say that a probabilistic A-term is of choice depth 0 if it is a classical A-term; it is of choice
depth n+1 when it is of the form €, p; : P; where the P; are probabilistic A-terms of choice depth
less or equal to n and at least one of the P;’s is exactly of choice depth n.

By hypothesis we have that for every classical A-term M involved in a (probabilistic) reduction,
there exists a classical A-term N such that M —>;§ N, that is N is the normal form of M.

Choice depth 0 or 1: Terms of the form @], p; : M; with n > 1 and M; classical terms are
identical to their flattened form. By the third rule of Definition 3 of the relation =3 and
the definition of its transitive closure =73, we see that each of the classical terms M; reduces
independently of the others to its normal form N;. We thus obtain a distribution of the
normal forms Y, p; - N; using =7%. We end up with the same distribution if we (i) select a
term M; with probability p; according to the (§)-rule in Definition 6 and then reduce it to
its (classical) normal form using the (probabilistic) S-reduction for (probabilistic) terms.

Choice depth n > 1: By structural induction.

p = x This case cannot occur.
P = Az.P’ Since by the inductive hypothesis Pj = O(P’) where Py = >_, p; - M; for some
M; in f-normal form, we have that P = @D, pi : Ax.M;. Since each M; is already a

classical normal normal form, i.e. M; —>E M;, we have Zl i - Ax.M; :>E ZZ pi - Az M;.
On the other hand it is obvious that we have O(P) = {(P,1)} as we have \x.M; /3.

P = P, P, By the inductive hypothesis we can again assume that Py = @, p1; : Mi; and
P, = @j p2j : Mo; with My; and Ms; B-normal forms. Again the transition relation —>f3
and =g result in the combination of normal forms My;M>; —3 Njj;; the probabilities
are exactly given by pi;pa; for reaching the normal term N;;.

P =@, p: P;: Without loss of generality we can assume that P = py : P; & py : P, where
Py and P; are probabilistic A-terms of choice depth n’ < n. By the induction hypothesis
we have Py = @, p1; : My; and Py = @j p2; : Ma;. The flattened version of P is thus
of the form @iplp”Mu ® @j papa; Maj;. Again it is obvious that —»% and =3 lead to
the same linear combination of normal terms.



2.2 Linear Representation

In this section we introduce a linear operator on the vector space V(A) as a representation of the
the semantics O(P) for a probabilistic A-term P which is more suitable as a base for a probabilistic
analysis. For this purpose we will use the distribution-based semantics introduced in Section 2.1.1
as an intermediate step, and define a linear operator representing the one-step reduction relation
=3. We first define a linear operator for the S-reduction of the classical A-calculus, i.e. for terms
M, N € A. This is given by:

T:V(A) — V()

with the following entries:

1 fM—gN
(T)MN: 1 1fM7L>ﬁ AN M=N
0 otherwise

and then the restriction for each classical A-term M € A:
Ty =R TR,

where 7w a7y is the projection onto the reachable states R(M) i.e. the sub-vector space V(R(M))
of V(A).
For a probabilistic term P € A, we consider its linear representation, i.e. its flattened form

PeVA):
P= sz' ﬁz
and the restriction of T to the union of reachable states, i.e.
Tp =my, Ry Ty, R(az)-
Now we can define the semantics of P via the iteration of the operator T p, as follows.
Definition 8 For a probabilistic A\-term P € A, we define its semantics as:
[F] =P lim T}

Proposition 4 For every probabilistic term P € A, which admits a probabilistic B-normal form
we have:

Proof: Obvious from the construction of the operator Tp and the correspondence shown in
Proposition 3. O

Example 3 Consider again the probabilistic A-term from Example 1:
P=((A2.0) &1 (Az.2))(L ®2 42)

After the flattening procedure we get the probability distribution

— 11— 1— 1— 3~
P = (z)Ax. —Az. -1 4+ -42
(2)\a:0+2/\:1:x)®(4 +t3 )
1 3 1 3
= —(Az.0)L+ -(Az.0)42+ - (A\z.z)L + < (A\z.z)42
8 8 8 8
An enumeration of the reachable terms is:
1 (Az.0)L 4 (Az.x)L 70
2 (A\2.0)42 5 (\z.z)42 8 L
3 (Az.0)0 6 (\z.z)0 9 42.



According to this enumeration we can represent P by the vector

P=(% 20 4%t 2 0000),
and we have:

000 0O0O0T1TUO0O0

000 0O0O0T1TUO0O0

000 00O0T1TUO00

000 0O0O0UO0T1O0
Tp=| 00000000 1 |=1lmT,

000O0DO0UOT1TUO0O0 e

000 0O0O0T1TUO0O0

000 00O0UO0T10

00 00O0O0UO0TUO0 1

Thus we get: -
[Pl=P-Tp=(0 0 0 0 0 0 3 & 2).

3 Classical Abstract Interpretation

Program analysis aims to determine some property of a program without running it. A classical
example is Reaching Definitions analysis which determines, for each node in a flowchart, which
definitions (assignments) reach it [18]. The results of this analysis might be used to perform
a constant folding transformation of the program. Such transformations should be semantics
preserving and it is therefore important that the analysis gives correct information about the
program. Often the properties that we are interested in are undecidable and so correctness is
replaced by some approximation notion.

We start by sketching the classical approach to semantics-based program analysis: abstract
interpretation [4, 18]. The semantics of a program f identifies some set V of values and specifies
how the program transforms one value vy to another vo: fF vy — vs.

In a similar way, a program analysis identifies the set L of properties and specifies how a
program f transforms one property [y to another ls: fF 11 > [s.

As we have seen, every program analysis should be correct with respect to the semantics. For
first-order program analyses, i.e. those that abstract properties of values, this is established by
directly relating properties to values using a correctness relation: R :V x L — {true, false}. The
intention is that v R [ formalises our claim that the value v is described by the property [.

The correctness relation is often achieved via a Galois connection: (V,a,v,L) is a Galois
connection between the complete lattices (V,C) and (L,C) ifand onlyif«: V — Landy: L - V
are monotone functions that satisfy: yoa J Av.w and a0y E AL

Having defined a suitable “set” of properties we then define suitable interpretations of program
operations. The framework of abstract interpretation guarantees that the analysis will be safe as
long as we use an interpretation, F,} ., of each language operator, F, that satisfies: F 1, J aoFoy.

Since interesting languages involve iteration or recursion we also have to construct efficient
implementations; a generic solution to this problem is the theory of widenings and narrowings [4].

3.1 Strictness Analysis

Strictness analysis [17, 2] aims to answer for some function fi Does f L = 1? If the function
has this property then it either uses its argument or is the bottom function. In either case, an
affirmative answer would mean that arguments can be passed by value rather than using (the
more costly) lazy evaluation. For illustration, we will restrict ourselves to a first-order applied
A-calculus with integers as the only data type.

We can construct a Galois connection (P (Z, ), a, v, Two) where Py is the Hoare Powerdo-
main construction on the integers Z and Two is {0,1} ordered by 0 = 1. The elements of the



Hoare Powerdomain in this case are just down-closed sets ordered by subset inclusion, so that
every set contains L.
We define:

N {0 if Z={1l} 1S) = {{L} if S=0

1 otherwise Z, ifS=1

We can construct the induced operations that correspond to the operations in this first-order
applied A-calculus:

Concrete operation | Induced operation
base type constants 1
if  then y else z xM(yUz)
x opy xly

The conditional takes three arguments (z, y, 2); the predicate must be defined and then the result
is at least as defined as either of the branches. Thus the abstract interpretation of

(X z.if x =0 then 15 else 42)

is(Az.(zen1)N(1U1L)) = Az Since (A z. ) 0 = 0, this tells us that our original function
is strict. We now extend this approach to a probabilistic A-calculus by applying techniques of
Probabilistic Abstract Interpretation [12, 13]. This will allow us to solve one important problem
that despite decades of research into strictness analysis methods based on abstract interpretation
has remained open, namely the precise and formal characterisation of the information loss.

4 Probabilistic Abstract Interpretation

Probabilistic Abstract Interpretation (PAI) was introduced in [12, 13] as a method for approximat-
ing the semantics of probabilistic programs which re-formulates the classical theory of Abstract
Interpretation [4] in a setting suitable for a quantitative program analysis.

The PAI framework is based on the notion of probabilistic domains which we will identify
with Hilbert spaces over some set representing the computational states. Given two probabilistic
domains, C and D, a probabilistic abstract interpretation is a pair of linear maps, A : C — D
and G : D — C, between the concrete domain C and the abstract domain D, such that G is
the Moore-Penrose pseudo-inverse of A, and vice versa. Let C and D be two Hilbert spaces and
A : C — D a bounded linear map between them. A bounded linear map At = G : D — C is the
Moore-Penrose pseudo-inverse of A iff

AoG=P,y, and Go A =Pg

where P 4 and P denote orthogonal projections onto the ranges of A and G.
Alternatively, if A is Moore-Penrose invertible, its Moore-Penrose pseudo-inverse, AT satisfies
the following:

(i) AATA=A, (iii) (AAT)* = AAT,
(i) ATAAT = AT (iv) (ATA)* = ATA.
where M* is the adjoint of M. It is instructive to compare these equations with the classical
setting. For example, if (o, ) is a Galois insertion: «oyoa =« and yoa oy =1.
As in the classical framework, given a concrete semantics we can always construct a best correct

approximation for this semantics, although the notions of correctness and optimality assume in
our linear setting a different connotation as explained in the following.



If ® is a linear operator on some vector space V expressing the probabilistic semantics of a
concrete system, and A : V +— W is a linear abstraction function from the concrete domain into
an abstract domain W, we can compute the (unique) Moore-Penrose pseudo-inverse G = At of
A. An abstract semantics can then be defined as the linear operator on the abstract domain W:

U=AodPoG =GPA.

In the case of classical abstract interpretation the abstract semantics constructed in this way
(called the induced semantics in [5]) is guaranteed to be the best correct approxzimation of the
concrete semantics, meaning that it is the most precise among all correct approximation (the
relative precision being left unquantified). In the linear space based setting of PAI where the
order of the classical domains is replaced by some notion of metric distance, the induced abstract
semantics is the closest one to the concrete semantics. This “closeness” property expresses both
the “safety” of the approximation and its optimality, which comes from the following properties
of the Moore-Penrose pseudo-inverse. The theory of the least-square approximation [9, 7] tells us
that if C and D be two finite dimensional vector spaces, A : C — D a linear map between them,
and AT = G : D — C its Moore-Penrose pseudo-inverse, then the vector o = yG is the one
minimising the distance between xA for any vector x in C and y, i.e.

inf [[2A — y| = [[zoA — y]|.
inf lzA —y[| = [lzoA — y]

In other words, if we consider the equation x A = y we can identify a (exact) solution x, as a
vector for which ||z, A —y| = 0. In particular in the case that no such solution vector z, exists we
can generalise the concept of a exact solution to that of a “pseudo-solution”, i.e. we can look for
a xo such that xgA is the closest vector to y we can construct. This closest approximation to the
exact solution is now constructed using the Moore-Penrose pseudo-inverse, i.e. take zq = yAf.

Returning to our program analysis setting, suppose that we have an operator ® and a vector z.
We can apply ® to z and abstract the result giving x® A or we can apply the abstract operator to
an abstract vector giving tAAT®A. Ideally, we would like these to be equal. If A is invertible then
its Moore-Penrose pseudo-inverse is identical to the inverse and we are done. In program analysis
A is never a square matrix and thus AAT in zAAT®A will lead to some loss of precision. The
Moore-Penrose pseudo-inverse is as close as possible to an inverse if the matrix is not invertible
and thus for the particular choice of A, AT®A is the best approximation of ® that we can have.
Moreover, by choosing an appropriate notion of distance we can measure this closeness to get a
quantitative estimate of the information lost in the abstraction.

5 Probabilistic Strictness Analysis

In this section we will use the PAI technique previously introduced to define a probabilistic ab-
straction of the linear operator expressing the semantics of a probabilistic A-term (see Section 2.2).
This will allow us to construct a probabilistic strictness analysis from which we will be able to
extract quantitative information such as the probability that a given reduction will not terminate.

In many cases, and particularly in strictness analysis, the abstraction is a surjective function.
An alternative view of abstraction in this case is that it maps concrete values to equivalence classes.
Equivalence relations can be represented by a particular kind of operators, namely classification
operators.

We call an n x m-matrix K a classification matrix if it is a 0/1-matrix, where every row has
exactly one non-zero entry and columns have at least one non-zero entry. Classification matrices
are thus particular kinds of stochastic matrices. We denote by K(n,m) the set of all n x m-
classification matrices (m < n). Let X = {x1,...,2,} be a finite set. Then for each equivalence
relation =~ on X with | X/~| = m, there exists a classification matrix K € K(n,m) and vice versa.
Each column in the classification matrix represents a (non-empty) equivalence class.

The pseudo-inverse of a classification matrix K € K(n, m) corresponds to its normalised trans-
pose or adjoint KT = V(K”) (these coincide for real K), where the normalisation operation N is

10



defined for a matrix A by:

0 otherwise.

Aij e — g
N(A)ij—{ T ifai =30 Ay #0

A suitable abstraction for probabilistic strictness analysis classifies terms as undefined, don’t
know or defined. We abstract every term in the enumeration to one of these values. The don’t know
value is used to classify terms whose “definedness” is not yet determined. Classically 0 represents
definite non-termination whilst 1 represents possible termination. The use of three values here
allows for a more informative analysis — the defined value means definitely terminating. This
abstraction is achieved by the classification operator corresponding to the partition of the set of
terms into the three classes represented by 0, ? (unknown) and 1. We will demonstrate the method
by the following examples.

Example 4 Coming back to our running Example 1:

P=((A2.0) @1 (A\z.2))(L @3z 42)
and its flattened version P — P:
p= L (e0) L) S (A0)42) & - (Aea) L) ® 5« (Aza)d2

Using the following abstraction operator and its pseudo-inverse

010

010

010

010 000 O0O0UO0O0T10
K=|010 K=(3: 214+ L 1L 1 000

010 000000 3 0 3

00 1

100

00 1

we get the abstract (induced) semantical operator Tﬁ :V({0,7,1}) = V({0,?,1}):

0
T? = KTpK = 0
0

OO= =
ol O

As the flattened version P (of this program) is constructed only of classical \-terms which can
be reduced in a single step to their normal form the abstract semantics turns out to be an exact
abstraction in the sense that we have:

PTp-K=(L 0 I)=P K- T}

i.e. the abstracted concrete semantics coincides with the abstract semantics.

The last example is optimal as the abstraction does not loose any information, however in
general we will encounter a loss of precision when we move from the concrete to the abstract
semantics, as the following example illustrates:

Example 5 Consider the probabilistic term

P = % s (Az.x)(Ar.x)(42) @ 12—2 (Azax)(L) @
% (Azx)Azx) (L) & % s (Az.x)(Az.0)(L)

and the enumeration of the reachable(classical) A terms:
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1 (A\z.x)(Az.x)(42)

5 (Az.x)(42) 8 (Az.0)(1)
2 (Az.z)(l)

6 L 9 42
3 (Az.x)(Az.xz)(L)

7 (Az.x)(L) 10 0

N

(Az.x)(Az.0)(L)

Then we can construct the restricted one-step reduction operator for P and a suitable classifi-
cation matriz for this program:

000 O01O0O0O0TUO0OF® 0 10
00 0O0O0OT1TO0OTO0OTGO0ODO 0 10
00 0O0O0OO0OT1TTUO0OTUO0OF®O 010
00 0O0O0OO0OO0OT1TGO0OF®O 010
000 O0O0OO0OO0OO0OT1F@O0 010
Tr= 00 0O0O0OT1O0TO0TGO0ODF®O K= 1 00
000 O0O0OT1TO0OTO0OTGO0OD®O 0 10
000 O0OO0OO0OO0OTU 0T O01 010
00 0O0O0OO0OO0OTO0OT1F@O0 0 0 1
00 0O0O0OO0OO0OTO0OTO0T1 0 01

We can then construct the abstract one-step reduction operator:

1 0 0
T# =K'TpK = [ 029 043 029
0 0 1

The middle row and column represent the don’t know value. The value in the middle row,
middle column gives a bound on how much the other two values in that row might change when
we iterate — in this sense, it gives a measure of the precision of the current abstract operator.
Iterating this abstract operator causes the probability of a transition from don’t know to don’t know
to decrease rapidly; for example after two iterations we have:

1 0 0
(T%)? = 041 018 041
0o 0 1

Achieving a defined outcome becomes more and more likely. This result could be used to support
the decision to speculatively evaluate the argument.

One advantage of the use of linear operators is that we can measure them. The standard way
to measure the “size” of a linear operator is via an operator morm which in turn may have its
origins in a vector norm:

@) Iz =0 (iii) [ = [of||Z]|
(i) (|7 =0=a=a  (iv) [|Z+g] < [Z] + 7]

For example, we could use the 1-norm (sum of absolute values), euclidean norm (square root of
the sum of squares of absolute values) or the supremum norm (supremum of absolute values).

Example 6 For the example above, an accurate abstraction of the original program can be achieved
by taking the limit of the iterations of the abstract operator (numerically computed as S1°°):

. 1 0 0
lim (T%) = 050 0 0.50
e 0 0 1
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The limit of Tp gives instead the concrete semantics of P:

0000O0O0GO0GOTDO
0000010000
0000010000
000000000 1
) 00000O0GO0GO0TO0
A Te=Te=1 0600001000 0
0000010000
000000000 1
00000O0GO0O0TO0
000000000 1

from which we can directly construct the abstract semantical operator

1 0 0
K'(lim TH)K =K'T2K = | 043 0 0.57
e 0 0 1

By comparing the two operators we get KI[P]K and lim S we get
[K'(lim T%)K — lim (KITpK)'||o = 0.143

and when we compare the abstract and concrete semantics after two iterations (when the concrete
semantics converges to its limit) we have:

IKITZK — (T%)?||» = 0.367.

These norm differences measure the “precision” of the abstract semantics. In the first case we
see that the abstract semantics limi_,oo(Tﬁ)i and the abstracted semantics K1 (lim; o, T%)K differ
by about 14%, i.e. the true chance of obtaining L or a constant and the estimated probabilities
are within £7%; and indeed we see that, for example, the true chance of getting L is about 43%,
while the abstract semantics forecasts a 50% chance of obtaining this result.

6 Conclusions

In this paper we introduced a probabilistic version of the A-calculus and provided it with three
different semantics. One is based on a probabilistic transition relation on probabilistic A-terms
which subsumes the classical, i.e. non-probabilistic, 8-reduction; a second one is defined via a
classical transition relation based on probability distributions on classical terms; and a third one
is a linear operator semantics which specifies the computational dynamics in the form of so-called
Markov chains, e.g. [19]. All the three semantics are equivalent in the sense that they assign
the same meaning to a probabilistic A-term P. This is essentially a distribution on the S-normal
forms to which the classical sub-terms of P can be S-reduced. The second semantics can be seen
as an intermediate step between the first one and the linear operator semantics, which is the most
appropriate as a base for quantitative analysis.

We have also reviewed the classic approach to abstract interpretation and strictness analysis
and shown how Di Pierro and Wiklicky’s notion of probabilistic abstract interpretation [12, 13] is
a natural analogue of the classical framework in a probabilistic setting. We have illustrated the
approach for the probabilistic A-calculus in the context of a simple strictness analysis. This quan-
titative version of strictness analysis is based on the linear operator semantics for the A-calculus
and aims in constructing an abstract semantics which is as close as possible to the abstraction
of the concrete semantics. The final outcome of this analysis are quantitative estimates on the
probability that a probabilistic term reduces to a constant normal form or to L.
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In our formal treatment of the semantics and analysis of the probabilistic A-calculus we assumed
that the A-terms we consider all have normal forms, i.e. essentially finite, terminating reduction
sequences. This allows us to use straight forward constructions from linear algebra. In related work
we have shown that in principle it is possible to accommodate also infinite reduction sequences,
e.g. [11]. However, this requires a recasting of our framework in a functional analytical setting,
using results and concepts from the theory of Hilbert spaces and C*-algebras (see e.g. [3, 15]),
which would deserve a separate treatment.

A present shortcoming of our work is that the strictness analysis is not defined in a compo-
sitional way. However, the intermediate, distribution-based semantics can be seen as a kind of
‘lifting’ of the classical B-rule and it seems therefore possible to import results from the semantics
of the classical a-calculus and classical strictness analysis in order to define a compositional linear
semantics and to refine the simple probabilistic strictness analysis presented in this paper.
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